Nickel on Oxidatively Modified Carbon as a Promising Cost-Efficient Catalyst for Reduction of P-Nitrophenol
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Oxidized Modified Carbon (OMC)
2.3. Synthesis of the Reduced OMC/Ni (rOMC/Ni) Composite
2.4. X-ray Photoelectron Spectroscopy (XPS)
2.5. Catalytic Reduction of P-Nitrophenol
3. Results and Discussion
3.1. Characterization
3.2. Catalytic Activity of the rOMC/Ni
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Larous, S.; Meniai, A.H. Elimination of Organic Pollutants from Wastewater. Application to P-Nitrophenol. Desalin. Water Treat. 2013, 51, 5014–5020. [Google Scholar] [CrossRef]
- Ofomaja, A.E.; Unuabonah, E.I. Adsorption Kinetics of 4-Nitrophenol onto a Cellulosic Material, Mansonia Wood Sawdust and Multistage Batch Adsorption Process Optimization. Carbohydr. Polym. 2011, 83, 1192–1200. [Google Scholar] [CrossRef]
- Boehncke, A.; Koennecker, G.; Mangelsdorf, I.; Wibbertmann, A. Concise International Chemical Assessment Document 20: Mononitrophenols. In IPCS Concise International Chemical Assessment Documents; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Al-asheh, S.; Banat, F.; Masad, A. Kinetics and Equilibrium Sorption Studies of 4-Nitrophenol on Pyrolyzed and Activated Oil Shale Residue. Environ. Geol. 2004, 45, 1109–1117. [Google Scholar] [CrossRef]
- Sahiner, N.; Demirci, S. The Use of M@p(4-VP) and M@p (VI) (M:Co, Ni, Cu) Cryogel Catalysts as Reactor in a Glass Column in the Reduction of p-Nitrophenol to p-Aminophenol under Gravity. Asia-Pac. J. Chem. Eng. 2019, 14, e2305. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, L.; Xu, Z.; Hu, J.; Tang, A.; Zuo, X. Mineral-Modulated Co Catalyst with Enhanced Adsorption and Dissociation of BH4− for Hydrogenation of p-Nitrophenol to p-Aminophenol. Chemosphere 2022, 291, 132871. [Google Scholar] [CrossRef]
- Lunar, L.; Sicilia, D.; Rubio, S.; Pérez-Bendito, D.; Nickel, U. Degradation of Photographic Developers by Fenton’s Reagent: Condition Optimization and Kinetics for Metol Oxidation. Water Res. 2000, 34, 1791–1802. [Google Scholar] [CrossRef]
- Zhao, P.; Feng, X.; Huang, D.; Yang, G.; Astruc, D. Basic Concepts and Recent Advances in Nitrophenol Reduction by Gold- and Other Transition Metal Nanoparticles. Coord. Chem. Rev. 2015, 287, 114–136. [Google Scholar] [CrossRef]
- Guo, M.; He, J.; Li, Y.; Ma, S.; Sun, X. One-Step Synthesis of Hollow Porous Gold Nanoparticles with Tunable Particle Size for the Reduction of 4-Nitrophenol. J. Hazard. Mater. 2016, 310, 89–97. [Google Scholar] [CrossRef]
- Meng, N.; Zhang, S.; Zhou, Y.; Nie, W.; Chen, P. Novel Synthesis of Silver/Reduced Graphene Oxide Nanocomposite and Its High Catalytic Activity towards Hydrogenation of 4-Nitrophenol. RSC Adv. 2015, 5, 70968–70971. [Google Scholar]
- Saha, S.; Pal, A.; Kundu, S.; Basu, S.; Pal, T. Photochemical Green Synthesis of Calcium-Alginate-Stabilized Ag and Au Nanoparticles and Their Catalytic Application to 4-Nitrophenol Reduction. Langmuir 2010, 26, 2885–2893. [Google Scholar] [CrossRef]
- Svalova, A.; Brusko, V.; Sultanova, E.; Kirsanova, M.; Khamidullin, T.; Vakhitov, I.; Dimiev, A.M. Individual Ni Atoms on Reduced Graphene Oxide as Efficient Catalytic System for Reduction of 4-Nitrophenol. Appl. Surf. Sci. 2021, 565, 150503. [Google Scholar] [CrossRef]
- Narayanan, K.B.; Sakthivel, N. Heterogeneous Catalytic Reduction of Anthropogenic Pollutant, 4-Nitrophenol by Silver-Bionanocomposite Using Cylindrocladium Floridanum. Bioresour. Technol. 2011, 102, 10737–10740. [Google Scholar] [CrossRef] [PubMed]
- Menumerov, E.; Hughes, R.A.; Neretina, S. Catalytic Reduction of 4-Nitrophenol: A Quantitative Assessment of the Role of Dissolved Oxygen in Determining the Induction Time. Nano Lett. 2016, 16, 7791–7797. [Google Scholar] [CrossRef] [PubMed]
- Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes. J. Phys. Chem. C 2010, 114, 8814–8820. [Google Scholar] [CrossRef]
- Shultz, L.R.; Feit, C.; Stanberry, J.; Gao, Z.; Xie, S.; Anagnostopoulos, V.A.; Liu, F.; Banerjee, P.; Jurca, T. Ultralow Loading Ruthenium on Alumina Monoliths for Facile, Highly Recyclable Reduction of p-Nitrophenol. Catalysts 2021, 11, 165. [Google Scholar] [CrossRef]
- Song, P.; Feng, J.J.; Zhong, S.X.; Huang, S.S.; Chen, J.R.; Wang, A.J. Facile Preparation of Reduced Graphene Oxide Supported PtNi Alloyed Nanosnowflakes with High Catalytic Activity. RSC Adv. 2015, 5, 35551–35557. [Google Scholar] [CrossRef]
- Aazza, M.; Ahlafi, H.; Moussout, H.; Mounir, C.; Fadel, A.; Addad, A. Catalytic Reduction of Nitro-Phenolic Compounds over Ag, Ni and Co Nanoparticles Catalysts Supported on γ-Al2O3. J. Environ. Chem. Eng. 2020, 8, 103707. [Google Scholar] [CrossRef]
- Dong, Z.; Le, X.; Dong, C.; Zhang, W.; Li, X.; Ma, J. Ni@Pd Core-Shell Nanoparticles Modified Fibrous Silica Nanospheres as Highly Efficient and Recoverable Catalyst for Reduction of 4-Nitrophenol and Hydrodechlorination of 4-Chlorophenol. Appl. Catal. B Environ. 2015, 162, 372–380. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, Y.; Sun, C.; Hao, S. Facile Route Fabrication of Nickel Based Mesoporous Carbons with High Catalytic Performance towards 4-Nitrophenol Reduction. Green Chem. 2014, 16, 2273–2280. [Google Scholar] [CrossRef]
- Wu, K.L.; Yu, R.; Wei, X.W. Monodispersed FeNi2 Alloy Nanostructures: Solvothermal Synthesis, Magnetic Properties and Size-Dependent Catalytic Activity. Cryst. Eng. Comm. 2012, 14, 7626–7632. [Google Scholar] [CrossRef]
- Romanchuk, A.Y.; Kuzenkova, A.S.; Slesarev, A.S.; Tour, J.M.; Kalmykov, S.N. Cs(I) and Sr(II) Sorption onto Graphene Oxide. Solvent Extr. Ion. Exch. 2016, 34, 594–602. [Google Scholar] [CrossRef]
- Romanchuk, A.Y.; Slesarev, A.S.; Kalmykov, S.N.; Kosynkin, D.V.; Tour, J.M. Graphene Oxide for Effective Radionuclide Removal. Phys. Chem. Chem. Phys. 2013, 15, 2321–2327. [Google Scholar] [CrossRef] [PubMed]
- Sitko, R.; Turek, E.; Zawisza, B.; Malicka, E.; Talik, E.; Heimann, J.; Gagor, A.; Feist, B.; Wrzalik, R. Adsorption of Divalent Metal Ions from Aqueous Solutions Using Graphene Oxide. Dalt. Trans. 2013, 42, 5682–5689. [Google Scholar] [CrossRef] [PubMed]
- Klímová, K.; Pumera, M.; Luxa, J.; Jankovský, O.; Sedmidubský, D.; Matějková, S.; Sofer, Z. Graphene Oxide Sorption Capacity toward Elements over the Whole Periodic Table: A Comparative Study. J. Phys. Chem. C 2016, 120, 24203–24212. [Google Scholar] [CrossRef]
- Amirov, R.R.; Shayimova, J.; Nasirova, Z.; Dimiev, A.M. Chemistry of Graphene Oxide. Reactions with Transition Metal Cations. Carbon 2017, 116, 356–365. [Google Scholar] [CrossRef]
- Amirov, R.R.; Shayimova, J.; Dimiev, A.M. Distribution of Gd(III) Ions at the Graphene Oxide/Water Interface. J. Colloid Interface Sci. 2018, 527, 222–229. [Google Scholar] [CrossRef]
- Dimiev, A.M.; Tour, J.M. Mechanism of Graphene Oxide. ACS Nano 2014, 8, 3060–3068. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1957, 208, 1937. [Google Scholar] [CrossRef]
- Talyzin, A.V.; Mercier, G.; Klechikov, A.; Hedenström, M.; Johnels, D.; Wei, D.; Cotton, D.; Opitz, A.; Moons, E. Brodie vs. Hummers Graphite Oxides for Preparation of Multi-Layered Materials. Carbon 2017, 115, 430–440. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef]
- Dimiev, A.M.; Shukhina, K.; Khannanov, A. Mechanism of the Graphene Oxide Formation. The Role of Water, “Reversibility” of the Oxidation, and Mobility of the C–O Bonds. Carbon 2020, 166, 1–14. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- Lowe, S.E.; Zhong, Y.L. Challenges of Industrial-Scale Graphene Oxide Production. In Graphene Oxide: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2016; pp. 410–431. ISBN 9781119069447. [Google Scholar]
- Khannanov, A.; Nekljudov, V.V.; Gareev, B.; Kiiamov, A.; Tour, J.M.; Dimiev, A.M. Oxidatively Modified Carbon as Efficient Material for Removing Radionuclides from Water. Carbon 2017, 115, 394–401. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galyaltdinov, S.; Svalova, A.; Brusko, V.; Kirsanova, M.; Dimiev, A.M. Nickel on Oxidatively Modified Carbon as a Promising Cost-Efficient Catalyst for Reduction of P-Nitrophenol. Molecules 2022, 27, 5637. https://doi.org/10.3390/molecules27175637
Galyaltdinov S, Svalova A, Brusko V, Kirsanova M, Dimiev AM. Nickel on Oxidatively Modified Carbon as a Promising Cost-Efficient Catalyst for Reduction of P-Nitrophenol. Molecules. 2022; 27(17):5637. https://doi.org/10.3390/molecules27175637
Chicago/Turabian StyleGalyaltdinov, Shamil, Anna Svalova, Vasiliy Brusko, Maria Kirsanova, and Ayrat M. Dimiev. 2022. "Nickel on Oxidatively Modified Carbon as a Promising Cost-Efficient Catalyst for Reduction of P-Nitrophenol" Molecules 27, no. 17: 5637. https://doi.org/10.3390/molecules27175637
APA StyleGalyaltdinov, S., Svalova, A., Brusko, V., Kirsanova, M., & Dimiev, A. M. (2022). Nickel on Oxidatively Modified Carbon as a Promising Cost-Efficient Catalyst for Reduction of P-Nitrophenol. Molecules, 27(17), 5637. https://doi.org/10.3390/molecules27175637