Risk Assessment of Triflumezopyrim and Imidacloprid in Rice through an Evaluation of Residual Data
Abstract
:1. Introduction
2. Results and Discussions
2.1. Optimization of Extraction Conditions
2.2. Optimization of Purification Conditions
2.3. Method Validation
2.4. Pesticide Residues in Rice Samples
2.5. Risk Assessment
2.5.1. Long-Term Intake Assessment
2.5.2. Short-Term Intake Assessment
3. Materials and Methods
3.1. Materials and Reagents
3.2. Sample Acquisition
3.3. Sample Preparation
3.4. UPLC-MS/MS Analysis
3.5. Method Validation
3.6. Statistical Calculations
3.7. Long-Term Intake Assessment
3.8. Short-Term Intake Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murai, T.; Jin, S.; Itoh, M.; Horie, Y.; Higashi, T.; Ikegawa, S. Analysis of steryl glucosides in rice bran-based fermented food by LC/ESI-MS/MS. Steroids 2020, 158, 108605. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.-C.; Zhang, W.; Wang, L.-X.; Zhang, S.; Zhang, K.; Gao, C.-F.; Wu, S.-F. Resistance monitoring and cross-resistance patterns of three rice planthoppers, Nilaparvata lugens, Sogatella furcifera and Laodelphax striatellus to dinotefuran in China. Pestic. Biochem. Phys. 2016, 134, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-X.; Zhu, Z.-F.; Lu, X.-L.; Li, X.; Ge, L.; Fang, J.; Wu, J.-C. Effects of two pesticides, TZP and JGM, on reproduction of three planthopper species, Nilaparvata lugens Stål, Sogatella furcifera Horvath, and Laodelphax striatella Fallén. Pestic. Biochem. Phys. 2014, 115, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Crall, J.D.; Switzer, C.M.; Oppenheimer, R.L.; Ford Versypt, A.N.; Dey, B.; Brown, A.; Eyster, M.; Guérin, C.; Pierce, N.E.; Combes, S.A.; et al. Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science 2018, 362, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Gao, H.; Liu, X.; Wang, Y.; Lan, J.; LI, Y.; Lv, S.; Zhu, K.; Gong, P. Detection of Pesticide Residues in Vegetables Sold in Changchun City, China. J. Food Protect. 2020, 84, 481–489. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Cui, X.; Wang, X.; Shen, H.; Chen, Z.; Huang, C.; Meruva, N.; Zhou, L.; Wang, F.; et al. Application and enantiomeric residue determination of diniconazole in tea and grape and apple by supercritical fluid chromatography coupled with quadrupole-time-of-flight mass spectrometry. J. Chromatogr. A 2018, 1581–1582, 144–155. [Google Scholar] [CrossRef]
- Whitehorn, P.R.; O’Connor, S.; Wackers, F.L.; Goulson, D. Neonicotinoid Pesticide Reduces Bumble Bee Colony Growth and Queen Production. Science 2012, 336, 351–352. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Luo, Q.H.; Hou, C.S.; Wang, Q.; Dai, P.L.; Gao, J.; Liu, Y.J.; Diao, Q.Y. Sublethal effects of imidacloprid on targeting muscle and ribosomal protein related genes in the honey bee Apis mellifera L. Scientific Reports 2017, 7, 15943. [Google Scholar] [CrossRef]
- Chu, Y.; Tong, Z.; Dong, X.; Sun, M.; Gao, T.; Duan, J.; Wang, M. Simultaneous determination of 98 pesticide residues in strawberries using UPLC-MS/MS and GC-MS/MS. Microchem. J. 2020, 156, 104975. [Google Scholar] [CrossRef]
- Fan, Y.; Lai, K.; Rasco, B.A.; Huang, Y. Analyses of phosmet residues in apples with surface-enhanced Raman spectroscopy. Food Control 2014, 37, 153–157. [Google Scholar] [CrossRef]
- Hjorth, K.; Johansen, K.; Holen, B.; Andersson, A.; Christensen, H.B.; Siivinen, K.; Toome, M. Pesticide residues in fruits and vegetables from South America – A Nordic project. Food Control 2011, 22, 1701–1706. [Google Scholar] [CrossRef]
- Li, H.; Zhong, Q.; Wang, X.; Luo, F.; Zhou, L.; Sun, H.; Yang, M.; Lou, Z.; Chen, Z.; Zhang, X. The degradation and metabolism of chlorfluazuron and flonicamid in tea: A risk assessment from tea garden to cup. Science of The Total Environment 2021, 754, 142070. [Google Scholar] [CrossRef]
- Cordova, D.; Benner, E.A.; Schroeder, M.E.; Holyoke, C.W.; Zhang, W.; Pahutski, T.F.; Leighty, R.M.; Vincent, D.R.; Hamm, J.C. Mode of action of triflumezopyrim: A novel mesoionic insecticide which inhibits the nicotinic acetylcholine receptor. Insect. Biochem. Molec 2016, 74, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Holyoke, C.W., Jr.; Cordova, D.; Zhang, W.; Barry, J.D.; Leighty, R.M.; Dietrich, R.F.; Rauh, J.J.; Pahutski, T.F., Jr.; Lahm, G.P.; Tong, M.-H.T.; et al. Mesoionic insecticides: A novel class of insecticides that modulate nicotinic acetylcholine receptors. Pest. Manag. Sci. 2017, 73, 796–806. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Holyoke, C.W.; Pahutski, T.F.; Lahm, G.P.; Barry, J.D.; Cordova, D.; Leighty, R.M.; Singh, V.; Vicent, D.R.; Tong, M.-H.T.; et al. Mesoionic pyrido [1,2-a]pyrimidinones: Discovery of triflumezopyrim as a potent hopper insecticide1. Bioorg. Med. Chem. Lett 2017, 27, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Claeys, W.L.; Schmit, J.F.; Bragard, C.; Maghuin-Rogister, G.; Pussemier, L.; Schiffers, B. Exposure of several Belgian consumer groups to pesticide residues through fresh fruit and vegetable consumption. Food Control 2011, 22, 508–516. [Google Scholar] [CrossRef]
- Duan, Y.; Guan, N.; Li, P.; Li, J.; Luo, J. Monitoring and dietary exposure assessment of pesticide residues in cowpea (Vigna unguiculata L. Walp) in Hainan, China. Food Control 2016, 59, 250–255. [Google Scholar] [CrossRef]
- Liu, X.; Wang, L.; Li, H.; Yin, J.; Lv, S.; Zhu, K. Investigation of the Presence of 22 Organochlorine Pesticide Residues in Ginseng from Jilin Province, China. J. Food Protect. 2019, 82, 1625–1629. [Google Scholar] [CrossRef]
- Hamilton, D.; Ambrus, Á.; Dieterle, R.; Felsot, A.; Harris, C.; Petersen, B.; Racke, K.; Wong, S.-S.; Gonzalez, R.; Tanaka, K.; et al. Pesticide residues in food—acute dietary exposure. Pest. Manag. Sci. 2004, 60, 311–339. [Google Scholar] [CrossRef]
- Huan, Z.; Xu, Z.; Luo, J.; Xie, D. Monitoring and exposure assessment of pesticide residues in cowpea (Vigna unguiculata L. Walp) from five provinces of southern China. Regul. Toxicol. Pharm. 2016, 81, 260–267. [Google Scholar] [CrossRef]
- Xu, X.; Li, L.; Huang, X.; Lin, H.; Liu, G.; Xu, D.; Jiang, J. Survey of Four Groups of Cumulative Pesticide Residues in 12 Vegetables in 15 Provinces in China. J. Food Protect. 2018, 81, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Li, G.-L.; Ning, Y.-F.; Zhou, T.; Mei, Y.; Guo, Z.-Z.; Feng, Y.-Q. Rapid magnetic solid-phase extraction based on magnetic graphitized carbon black for the determination of 1-naphthol and 2-naphthol in urine. Microchem. J. 2019, 147, 67–74. [Google Scholar] [CrossRef]
- Islam, A.K.M.M.; Lee, H.S.; Ro, J.H.; Kim, D.; Kwon, H. Application of high-surface-area graphitized carbon black with primary secondary amine as an alternative quick, easy, cheap, effective, rugged, and safe cleanup material for pesticide multi-residue analysis in spinach. J. Sep. Sci. 2019, 42, 2379–2389. [Google Scholar] [CrossRef] [PubMed]
- Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues. In Proceedings of the Pesticide Residues in Food 2017, Geneva, Switzerland, 12–21 September 2017.
- Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues. In Proceedings of the Pesticide Residues in Food 2002, Rome, Italy, 16–25 September 2002.
- Wu, C.; Wang, L.; Li, H.; Yu, S. Determination of 4(5)-methylimidazole in foods and beverages by modified QuEChERS extraction and liquid chromatography-tandem mass spectrometry analysis. Food Chem. 2019, 280, 278–285. [Google Scholar] [CrossRef]
- Nuzul, M.I.; Jong, V.Y.M.; Koo, L.F.; Chan, T.H.; Ang, C.H.; Idris, J.; Husen, R.; Wong, S.W. Effects of Extraction Methods on Phenolic Content in the Young Bamboo Culm Extracts of Bambusa beecheyana Munro. Molecules 2022, 27, 2359. [Google Scholar] [CrossRef]
- Ferrer, C.; Lozano, A.; Agüera, A.; Girón, A.J.; Fernández-Alba, A.R. Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. J. Chromatogr. A 2011, 1218, 7634–7639. [Google Scholar] [CrossRef]
- Kanrar, B.; Mandal, S.; Bhattacharyya, A. Validation and uncertainty analysis of a multiresidue method for 42 pesticides in made tea, tea infusion and spent leaves using ethyl acetate extraction and liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 1926–1933. [Google Scholar] [CrossRef]
- Chambers, E.; Wagrowski-Diehl, D.M.; Lu, Z.; Mazzeo, J.R. Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. J. Chromatogr. B 2007, 852, 22–34. [Google Scholar] [CrossRef]
- Hingmire, S.; Oulkar, D.P.; Utture, S.C.; Ahammed Shabeer, T.P.; Banerjee, K. Residue analysis of fipronil and difenoconazole in okra by liquid chromatography tandem mass spectrometry and their food safety evaluation. Food Chem. 2015, 176, 145–151. [Google Scholar] [CrossRef]
- Hayar, S.; Zeitoun, R.; Maestroni, B.M. Validation of a Rapid Multiresidue Method for the Determination of Pesticide Residues in Vine Leaves. Comparison of the Results According to the Different Conservation Methods. Molecules 2021, 26, 1176. [Google Scholar] [CrossRef]
- Rahman, M.M.; Abd El-Aty, A.M.; Choi, J.-H.; Kim, S.-W.; Shin, S.C.; Shim, J.-H. Consequences of the matrix effect on recovery of dinotefuran and its metabolites in green tea during tandem mass spectrometry analysis. Food Chem. 2015, 168, 445–453. [Google Scholar] [CrossRef]
- Chen, X.; Dong, F.; Xu, J.; Liu, X.; Wang, Y.; Zheng, Y. Enantioselective Degradation of Chiral Insecticide Dinotefuran in Greenhouse Cucumber and Soil. Chirality 2015, 27, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Kuang, L.; Xu, G.; Tong, Y.; Li, H.; Zhang, J.; Shen, Y.; Cheng, Y. Risk assessment of pesticide residues in Chinese litchis. J. Food Protect. 2022, 85, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Nougadère, A.; Merlo, M.; Héraud, F.; Réty, J.; Truchot, E.; Vial, G.; Cravedi, J.-P.; Leblanc, J.-C. How dietary risk assessment can guide risk management and food monitoring programmes: The approach and results of the French Observatory on Pesticide Residues (ANSES/ORP). Food Control 2014, 41, 32–48. [Google Scholar] [CrossRef]
- Malhat, F.; Badawy, H.M.A.; Barakat, D.A.; Saber, A.N. Residues, dissipation and safety evaluation of chromafenozide in strawberry under open field conditions. Food Chem. 2014, 152, 18–22. [Google Scholar] [CrossRef]
- Wang, Z.; Cang, T.; Qi, P.; Zhao, X.; Xu, H.; Wang, X.; Zhang, H.; Wang, X. Dissipation of four fungicides on greenhouse strawberries and an assessment of their risks. Food Control 2015, 55, 215–220. [Google Scholar] [CrossRef]
- Chen, X.; Fan, X.; Ma, Y.; Hu, J. Dissipation behaviour, residue distribution and dietary risk assessment of tetraconazole and kresoxim-methyl in greenhouse strawberry via RRLC-QqQ-MS/MS technique. Ecotox. Environ. Safe. 2018, 148, 799–804. [Google Scholar] [CrossRef]
Compounds | Spiking Levels/(mg/kg) | Average Recovery/% | RSD/% | LOQ/(mg/kg) |
---|---|---|---|---|
imidacloprid | 0.01 | 106 | 2.1 | 0.01 |
0.10 | 91 | 2.6 | ||
0.20 | 97 | 3.4 | ||
triflumezopyrim | 0.01 | 104 | 1.1 | 0.01 |
0.10 | 101 | 1.4 | ||
0.20 | 94 | 1.4 |
Compounds | Matrix | Regression Equation | Correlation Coefficients | ME/% |
---|---|---|---|---|
imidacloprid | solvent | y = 1,963,648x − 3902 | 0.9999 | - |
rice | y = 1,176,517x − 449 | 0.9980 | −37.3 | |
triflumezopyrim | solvent | y = 1,617,540x + 211 | 0.9998 | - |
rice | y = 5,291,693x − 1059 | 0.9992 | 224.2 |
Compounds | ADI, mg/kg bw | ARfD, mg/kg bw | STMR, mg/kg | HR, mg/kg |
---|---|---|---|---|
imidacloprid | 0.06 | 0.4 | 0.05 | 0.05 |
triflumezopyrim | 0.2 | 1 | 0.086 | 0.16 |
Age | Gender | bw/(kg) | Fi/(g d−1) | NEDI/(μg kg−1 d−1 bw) | RQ/(%) | ||
---|---|---|---|---|---|---|---|
Imidacloprid | Triflumezopyrim | Imidacloprid | Triflumezopyrim | ||||
2–3 | Male | 13.2 | 135.5 | 0.883 | 0.513 | 0.855 | 0.441 |
Female | 12.3 | 133.7 | 0.935 | 0.543 | 0.906 | 0.467 | |
4–6 | Male | 16.8 | 179.7 | 0.920 | 0.535 | 0.891 | 0.460 |
Female | 16.2 | 159.5 | 0.847 | 0.492 | 0.820 | 0.423 | |
7–10 | Male | 22.9 | 230.8 | 0.867 | 0.504 | 0.840 | 0.433 |
Female | 21.7 | 212.0 | 0.840 | 0.488 | 0.814 | 0.420 | |
11–13 | Male | 34.1 | 266.2 | 0.671 | 0.390 | 0.651 | 0.336 |
Female | 34.0 | 238.4 | 0.603 | 0.351 | 0.584 | 0.302 | |
14–17 | Male | 46.7 | 308.7 | 0.568 | 0.331 | 0.551 | 0.284 |
Female | 45.2 | 240.7 | 0.458 | 0.266 | 0.444 | 0.229 | |
18–29 | Male | 58.4 | 309.6 | 0.456 | 0.265 | 0.442 | 0.228 |
Female | 52.1 | 260.9 | 0.431 | 0.250 | 0.417 | 0.215 | |
30–44 | Male | 64.9 | 316.2 | 0.419 | 0.244 | 0.406 | 0.210 |
Female | 55.7 | 278.6 | 0.430 | 0.250 | 0.417 | 0.215 | |
45–59 | Male | 63.1 | 314.9 | 0.429 | 0.250 | 0.416 | 0.215 |
Female | 57.0 | 272.8 | 0.412 | 0.239 | 0.399 | 0.206 | |
60–69 | Male | 61.5 | 274.0 | 0.383 | 0.223 | 0.371 | 0.192 |
Female | 54.3 | 242.9 | 0.385 | 0.224 | 0.373 | 0.192 | |
≥70 | Male | 58.5 | 258.3 | 0.380 | 0.221 | 0.368 | 0.190 |
Female | 51.0 | 223.5 | 0.377 | 0.219 | 0.365 | 0.188 |
Age | bw/(kg) | LP/(g d−1) | Ue/(g) | NESTI/(μg kg−1 d−1, bw) | %ARfD/(%) | ||
---|---|---|---|---|---|---|---|
Imidacloprid | Triflumezopyrim | Imidacloprid | Triflumezopyrim | ||||
1–6 | 16.1 | 1004.28 | <25 | 3.119 | 9.980 | 0.780 | 0.998 |
General population | 53.2 | 2046.23 | <25 | 1.923 | 6.154 | 0.481 | 0.615 |
Compounds | Ions | Declustering Potential/V | Collision Energy/V |
---|---|---|---|
imidacloprid | 256.2/175 * 256.2/209 | 69 | 25.2 18.4 |
triflumezopyrim | 399.1/278.1 * 399.1/121 | 120 | 40 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, M.; Silipunyo, T.; Huang, H.; Yin, Q.; Han, B.; Wang, M. Risk Assessment of Triflumezopyrim and Imidacloprid in Rice through an Evaluation of Residual Data. Molecules 2022, 27, 5685. https://doi.org/10.3390/molecules27175685
Zhang Y, Wang M, Silipunyo T, Huang H, Yin Q, Han B, Wang M. Risk Assessment of Triflumezopyrim and Imidacloprid in Rice through an Evaluation of Residual Data. Molecules. 2022; 27(17):5685. https://doi.org/10.3390/molecules27175685
Chicago/Turabian StyleZhang, Yue, Meiran Wang, Thiphavanh Silipunyo, Haizhu Huang, Qingchun Yin, Bingjun Han, and Mingyue Wang. 2022. "Risk Assessment of Triflumezopyrim and Imidacloprid in Rice through an Evaluation of Residual Data" Molecules 27, no. 17: 5685. https://doi.org/10.3390/molecules27175685
APA StyleZhang, Y., Wang, M., Silipunyo, T., Huang, H., Yin, Q., Han, B., & Wang, M. (2022). Risk Assessment of Triflumezopyrim and Imidacloprid in Rice through an Evaluation of Residual Data. Molecules, 27(17), 5685. https://doi.org/10.3390/molecules27175685