Fast and Sensitive HPLC-ESI-MS/MS Method for Etoricoxib Quantification in Human Plasma and Application to Bioequivalence Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Development and Optimization
2.2. System Suitability
2.3. Method Validation
2.4. Comparative Dissolution Profiles
2.5. Bioequivalence Study
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instruments and Chromatographic Conditions
3.3. Stock Standard Solutions, Working Standard Solutions, Calibration Standards and Quality Control (QC) Samples
3.4. Sample Preparation
3.5. System Suitability
3.6. Method Validation
3.7. Comparative Dissolution Profiles
3.8. Application to Bioequivalence Study
3.9. Pharmacokinetic Analysis and Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Analyte | Precursor Ion | Type of Ion Transition | MRM Transition (Product Ion) | Q1 Pre Bias (V) | Collison Energy (V) | Q3 Pre Bias (V) |
---|---|---|---|---|---|---|
Etoricoxib | 359.15 | Quantification | 279.10 | −18.0 | −40.0 | −30.0 |
Confirmation | 280.10 | −18.0 | −31.0 | −30.0 | ||
Etoricoxib D4 | 363.10 | Quantification | 282.10 | −19.0 | −43.0 | −30.0 |
Confirmation | 284.15 | −19.0 | −31.0 | −21.0 |
References
- Goldberg, D.S.; McGee, S.J. Pain as a global public health priority. BMC Public Health 2011, 11, 770. [Google Scholar] [CrossRef] [PubMed]
- International Association for the Study of Pain. Unrelieved Pain Is a Majpor Global Healthcare Problem. Available online: https://www.iasp-pain.org/?Section=Home&Template=%2FCM%2FContentDisplay.cfm&ContentID=2908 (accessed on 27 June 2022).
- World Health Organization Supports Global Effort to Relieve Chronic Pain. Available online: https://www.afro.who.int/news/world-health-organization-supports-global-effort-relieve-chronic-pain (accessed on 27 June 2022).
- Varrassi, G.; Alon, E.; Bagnasco, M.; Lanata, L.; Mayoral-Rojals, V.; Paladini, A.; Pergolizzi, J.V.; Perrot, S.; Scarpignato, C.; Tölle, T. Towards an effective and safe treatment of inflammatory pain: A Delphi-guided expert consensus. Adv. Ther. 2019, 36, 2618–2637. [Google Scholar] [CrossRef] [PubMed]
- Brooks, P.M.; Day, R.O. Nonsteroidal antiinflammatory drugs—Differences and similarities. N. Engl. J. Med. 1991, 324, 1716–1725. [Google Scholar] [PubMed]
- Day, R.O.; Graham, G.G. Non-steroidal anti-inflammatory drugs (NSAIDs). BMJ 2013, 346, f3195. [Google Scholar] [PubMed]
- Scarpignato, C.; Lanas, A.; Blandizzi, C.; Lems, W.F.; Hermann, M.; Hunt, R.H. Safe prescribing of non-steroidal anti-inflammatory drugs in patients with osteoarthritis-an expert consensus addressing benefits as well as gastrointestinal and cardiovascular risks. BMC Med. 2015, 13, 55. [Google Scholar] [CrossRef]
- Sarzi-Puttini, P.; Atzeni, F.; Lanata, L.; Bagnasco, M. Efficacy of ketoprofen vs. ibuprofen and diclofenac: A systematic review of the literature and meta-analysis. Clin. Exp. Rheumatol. 2013, 31, 731–738. [Google Scholar]
- Takemoto, J.K.; Reynolds, J.K.; Remsberg, C.M.; Vega-Villa, K.R.; Davies, N.M. Clinical pharmacokinetic and pharmacodynamic profile of etoricoxib. Clin. Pharmacokinet. 2008, 47, 703–720. [Google Scholar] [CrossRef]
- Escudero-Contreras, A.; Cervantes, J.V.; Collantes-Estévez, E. Update on the clinical pharmacology of etoricoxib, a potent cyclooxygenase-2 inhibitor. Future Rheumatol. 2007, 2, 545–565. [Google Scholar] [CrossRef]
- Patel, D.; Shah, M.; Shah, S.; Shah, T.; Amin, A. Design, development, and optimization of orally disintegrating tablets of etoricoxib using vacuum-drying approach. PDA J. Pharm. Sci. Technol. 2008, 62, 224–232. [Google Scholar]
- Riendeau, D.; Percival, M.D.; Brideau, C.; Charleson, S.; Dubé, D.; Ethier, D.; Falgueyret, J.P.; Friesen, R.W.; Gordon, R.; Greig, G.; et al. Etoricoxib (MK-0663): Preclinical profile and comparison with other agents that selectively inhibit cyclooxygenase-2. J. Pharmacol. Exp. Ther. 2001, 296, 558–566. [Google Scholar]
- Rodrigues, A.D.; Halpin, R.A.; Geer, L.A.; Cui, D.; Woolf, E.J.; Matthews, C.Z.; Gottesdiener, K.M.; Larson, P.J.; Lasseter, K.C.; Agrawal, N.G. Absorption, metabolism, and excretion of etoricoxib, a potent and selective cyclooxygenase-2 inhibitor, in healthy male volunteers. Drug Metab. Dispos. 2003, 31, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N.G.; Matthews, C.Z.; Mazenko, R.S.; Kline, W.F.; Woolf, E.J.; Porras, A.G.; Geer, L.A.; Wong, P.H.; Cho, M.; Cote, J.; et al. Pharmacokinetics of etoricoxib in patients with renal impairment. J. Clin. Pharmacol. 2004, 44, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.N.; Tso, T.K. Etoricoxib improves osteoarthritis pain relief, joint function, and quality of life in the extreme elderly. Bosn. J. Basic Med. Sci. 2018, 18, 87–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, N.G.; Porras, A.G.; Matthews, C.Z.; Woolf, E.J.; Miller, J.L.; Mukhopadhyay, S.; Neu, D.C.; Gottesdiener, K.M. Dose proportionality of oral etoricoxib, a highly selective cyclooxygenase-2 inhibitor, in healthy volunteers. J. Clin. Pharmacol. 2001, 41, 1106–1110. [Google Scholar] [CrossRef]
- Agrawal, N.G.; Porras, A.G.; Matthews, C.Z.; Rose, M.J.; Woolf, E.J.; Musser, B.J.; Dynder, A.L.; Mazina, K.E.; Lasseter, K.C.; Hunt, T.L.; et al. Single- and multiple-dose pharmacokinetics of etoricoxib, a selective inhibitor of cyclooxygenase-2, in man. J. Clin. Pharmacol. 2003, 43, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Thorat, S.M.; Chemate, S. Formulation and development of capsule in capsule drug delivery system for biphasic delivery of etoricoxib. Int. J. Pharm. Pharm. Res. 2016, 6, 68–78. [Google Scholar]
- Cochrane, D.J.; Jarvis, B.; Keating, G.M. Etoricoxib. Drugs 2002, 62, 2637–2651. [Google Scholar] [CrossRef]
- Shohag, M.H.; Islam, M.S.; Ahmed, M.U.; Joti, J.J.; Islam, M.S.; Hasanuzzaman, M.; Hasnat, A. Pharmacokinetic and bioequivalence study of etoricoxib tablet in healthy Bangladeshi volunteers. Arzneimittelforschung 2011, 61, 617–621. [Google Scholar] [CrossRef]
- Tjandrawinata, R.R.; Setiawati, A.; Nofiarny, D.; Susanto, L.W.; Setiawati, E. Pharmacokinetic equivalence study of nonsteroidal anti-inflammatory drug etoricoxib. Clin. Pharmacol. 2018, 6, 43–51. [Google Scholar] [CrossRef]
- Rajan, D.S.; Bose, A.; Gowda, K.V.; Ghosh, A.; Pal, T.K. Development and validation of an HPLC method for analysis of etoricoxib in human plasma. Indian J. Pharm. Sci. 2006, 68, 4. [Google Scholar]
- Ramakrishna, N.V.; Vishwottam, K.N.; Wishu, S.; Koteshwara, M. Validated liquid chromatographic ultraviolet method for the quantitation of Etoricoxib in human plasma using liquid-liquid extraction. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 816, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Shakya, A.K.; Khalaf, N.A. High performance liquid chromatographic determination of Etoricoxib in human plasma. Asian J. Chem. 2007, 19, 5241. [Google Scholar]
- Pavan Kumar, V.V.; Vinu, M.C.; Ramani, A.V.; Mullangi, R.; Srinivas, N.R. Simultaneous quantitation of etoricoxib, salicylic acid, valdecoxib, ketoprofen, nimesulide and celecoxib in plasma by high-performance liquid chromatography with UV detection. Biomed. Chromatogr. 2006, 20, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Bräutigam, L.; Nefflen, J.U.; Geisslinger, G. Determination of etoricoxib in human plasma by liquid chromatography–tandem mass spectrometry with electrospray ionisation. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 788, 309–315. [Google Scholar] [CrossRef]
- Dalmora, S.L.; da Silva Sangoi, M.; da Silva, L.M.; Oliveira Macedo, R.; Barth, T. Validation of a capillary zone electrophoresis method for the comparative determination of etoricoxib in pharmaceutical formulations. J. Sep. Sci. 2008, 31, 169–176. [Google Scholar] [CrossRef]
- Werner, U.; Werner, D.; Hinz, B.; Lambrecht, C.; Brune, K. A liquid chromatography–mass spectrometry method for the quantification of both etoricoxib and valdecoxib in human plasma. Biomed. Chromatogr. 2005, 19, 113–118. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, N.; Ji, W.; Wen, Q. Rapid quantitative analysis of etoricoxib in human plasma by UPLC-MS/MS and application to a pharmacokinetic study in Chinese healthy volunteers. Biomed. Chromatogr. 2019, 33, e4414. [Google Scholar] [CrossRef]
- Junior, L.B.; Ceni, D.C.; Fronza, M.; de Oliveira, P.R.; Dalmora, S.L. Validation of an LC-Tandem MS/MS method for the determination of etoricoxib in human plasma and pharmaceutical formulations. J. Liq. Chromatogr. Relat. Tec. 2006, 29, 123–135. [Google Scholar] [CrossRef]
- Najib, O.N.; Hassan, R.; Alwadi, B.; Idkaidek, N.M.; Najib, N.M. Bioequivalence evaluation of two brands of etoricoxib 120mg tablets (Etoricoxib-SAJA & ARCOXIA®)–in healthy human volunteers. Mod. Clin. Med. Res. 2017, 1, 7–12. [Google Scholar]
- Alzweiri, M.; Sallam, M.; Al-Zyoud, W.; Aiedeh, K. Stability Study of Etoricoxib a Selective Cyclooxygenase-2 Inhibitor by a New Single and Rapid Reversed Phase HPLC Method. Symmetry 2018, 10, 288. [Google Scholar] [CrossRef]
- Stone, J. Chapter 3—Sample preparation techniques for mass spectrometry in the clinical laboratory, Mass Spectrometry for the Clinical Laboratory. In Mass Spectrometry for the Clinical Laboratory; Academic Press: Cambridge, MA, USA, 2017; pp. 37–62. [Google Scholar]
- Dallob, A.; Hawkey, C.J.; Greenberg, H.; Wight, N.; De Schepper, P.; Waldman, S.; Wong, P.; DeTora, L.; Gertz, B.; Agrawal, N.; et al. Characterization of etoricoxib, a novel, selective COX-2 inhibitor. J. Clin. Pharmacol. 2003, 43, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Renner, B.; Zacher, J.; Buvanendran, A.; Walter, G.; Strauss, J.; Brune, K. Absorption and distribution of etoricoxib in plasma, CSF, and wound tissue in patients following hip surgery—A pilot study. Naunyn Schmiedebergs Arch. Pharmacol. 2010, 381, 127–136. [Google Scholar] [CrossRef]
- Briscoe, C.J.; Stiles, M.R.; Hage, D.S. System suitability in bioanalytical LC/MS/MS. J. Pharm. Biomed. 2007, 44, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Loh, G.O.K.; Wong, E.Y.L.; Tan, Y.T.F.; Lee, Y.L.; Pang, L.H.; Chin, M.C.; Damenthi, N.; Peh, K.K. Simple and rapid LC-MS/MS method for determination of sitagliptin in human plasma and application to bioequivalence study. J. Chromatogr. B Biomed. Appl. 2020, 1159, 122337. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency Science Medicines Health. Guideline on Bioanalytical Method Validation; EMEA/CHMP/EWP/192217/2009 Rev. 1 Corr. 2. Committee for Medicinal Products for Human Use (CHMP). 2012. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf (accessed on 27 June 2022).
- Bioanalytical Method Validation Guidance for Industry. U.S. Department of Health and Human Services, Food and Drug Administration: Silver Spring, MD, USA.; Center for Drug Evaluation and Research (CDER): Silver Spring, MD, USA.; Center for Veterinary Medicine (CVM): Rockville, MD, USA; 2018. Available online: http://www.fda.gov/downloads/Drugs/Guidances/ucm070107.pdf (accessed on 27 June 2022).
- ASEAN Guideline for the Conduct of Bioequivalence Studies. Guideline on the Investigation of Bioequivalence (European Medicines Agency, London, 20 January 2010, CPMP/EWP/QWP/1401/98 Rev 1). 2015. Available online: https://asean.org/wp-content/uploads/2012/10/BE_Guideline_FinalMarch2015_endorsed_22PPWG.pdf (accessed on 27 June 2022).
- Chow, S.C.; Liu, J.P. Statistical assessment of biosimilar products. J. Biopharm. Stat. 2009, 20, 10–30. [Google Scholar] [CrossRef]
References | Analytical Method | Type of Biological Matrix | Calibration Range | Sample Reparation Method | Injection Volume (μL) | Analysis Time (min) | Recovery (%) |
---|---|---|---|---|---|---|---|
[20] | HPLC-UV | Human plasma | 10–750 ng/mL | Acetonitrile PPT | 20 | NA | 97.53–98.96 |
[21] | HPLC-UV | Human plasma | 5–5002.9 ng/mL | LLE | 50 | 10 | NA |
[22] | HPLC-UV | Human plasma | 20–2500 ng/mL | LLE | 20 | 15 | 79.53–85.70 |
[23] | HPLC-UV | Human plasma | 5–2500 ng/mL | LLE | 100 | 10 | 75.60–76.60 |
[24] | HPLC-UV | Human plasma | 15–3200 ng/mL | LLE | 100 | 10 | 76.50–80.50 |
[25] | HPLC-UV | Human plasma | 0.1–50 μg/mL | LLE | 100 | 45 | 83.00 |
[26] | LC-MS/MS | Human plasma | 0.2–200 ng/mL | SPE | 15 | 2.5 | >90.00 |
[27] | LC-MS/MS | Human plasma | 1–5000 ng/mL | SPE | 20 | 2 | 93.72–96.18 |
[28] | LC-MS/MS | Human plasma | 10–2500 ng/mL | LLE | 20 | 10 | 104.50 |
[29] | LC-MS/MS | Human plasma | 5–5000 ng/mL | Acetonitrile PPT | 3 | 2.5 | 94.25–96.48 |
[30] | LC-MS/MS | Human plasma | 1–5000 ng/mL | LLE | 20 | 2 | 92.74–98.32 |
[31] | HPLC-UV | Human plasma | 30–3000 ng/mL | LLE | NA | >8.6 | 96.56–102.57 |
Present method | LC-MS/MS | Human plasma | 10–4000.39 ng/mL | Methanol PPT | 1 | 2 | 91.86–95.27 |
Analyte | Etoricoxib Samples (ng/mL) | |||||
---|---|---|---|---|---|---|
10.00 | 30.00 | 1000.10 | 2000.20 | 3000.29 | ||
Within-run 1 (n = 6) | Mean | 10.85 | 30.94 | 1026.07 | 2050.84 | 2956.48 |
CV (%) | 16.28 | 7.16 | 1.33 | 1.22 | 1.12 | |
Bias (%) | 5.15 | 3.14 | 2.60 | 2.53 | −1.46 | |
Within-run 2 (n = 6) | Mean | 10.54 | 31.34 | 1052.11 | 2092.15 | 3018.59 |
CV (%) | 9.73 | 7.74 | 1.57 | 0.91 | 0.64 | |
Bias (%) | 5.41 | 4.47 | 5.20 | 4.60 | 0.61 | |
Within-run 3 (n = 6) | Mean | 10.70 | 31.59 | 988.23 | 1983.04 | 2874.57 |
CV (%) | 16.67 | 5.92 | 0.80 | 0.88 | 1.08 | |
Bias (%) | 7.04 | 5.29 | −1.19 | −0.86 | −4.19 | |
Between-run (n = 18) | Mean | 10.59 | 31.29 | 1022.14 | 2042.01 | 2949.88 |
CV (%) | 13.74 | 6.61 | 2.90 | 2.46 | 2.25 | |
Bias (%) | 5.86 | 4.30 | 2.20 | 2.09 | −1.68 | |
Extended-run (n = 25) | Mean | - | 27.37 | 996.39 | 1949.15 | 2879.18 |
CV (%) | - | 6.75 | 4.97 | 4.53 | 3.87 | |
Bias (%) | - | −8.77 | −0.37 | −2.55 | −4.04 |
Analyte | Nominal Concentration (ng/mL) | Mean ± SD (%) | Precision (CV, %) |
---|---|---|---|
Etoricoxib | 30.00 (QCL) | 95.27 ± 7.36 | 7.73 |
1000.10 (QCM1) | 91.86 ± 0.55 | 0.60 | |
2000.20 (QCM2) | 94.03 ± 1.50 | 1.60 | |
3000.29 (QCH) | 94.73 ± 1.01 | 1.07 | |
Etoricoxib D4 (IS) | 3000.50 | 93.76 ± 0.96 | 1.02 |
Dilution Factor | Calculated Conc. (ng/mL) * | Mean ± SD (ng/mL) | Precision (CV, %) | Accuracy (Bias, %) |
---|---|---|---|---|
2-fold | 4729.68 | 4811.62 ± 53.15 | 1.10 | 0.23 |
4868.61 | ||||
4835.08 | ||||
4832.20 | ||||
4792.52 | ||||
10-fold | 5065.44 | 5054.65 ± 23.31 | 0.46 | 5.29 |
5063.39 | ||||
5082.05 | ||||
5023.19 | ||||
5039.18 |
Compound | Testing Conditions | Matrix | Concentration (ng/mL) | Bias (%) | Precision (CV, %) |
---|---|---|---|---|---|
Etoricoxib | Short-term (25 ± 4 °C), 24 h | Plasma | QCL, 30.00 | 2.96 | 5.27 |
QCH, 3000.29 | 4.24 | 3.01 | |||
Post-preparative in autosampler (25 ± 3 °C), 48 h | QCL, 30.00 | −1.79 | 6.62 | ||
QCH, 3000.29 | −1.43 | 1.57 | |||
Post-preparative at room temperature (25 ± 3 °C), 48 h | QCL, 30.00 | 2.76 | 5.10 | ||
QCH, 3000.29 | −1.31 | 1.40 | |||
Freeze and thaw, 7 cycles | QCL, 30.00 | −0.35 | 1.41 | ||
QCH, 3000.29 | 1.42 | 2.98 | |||
Long-term (−20 ± 10 °C), 94 days | QCL, 30.00 | −0.06 | 2.91 | ||
QCH, 3000.29 | 5.62 | 2.86 | |||
Room temperature (25 ± 4 °C), 94 days | Stock standard solution | LLOQ, 10.00 | 0.18 | 2.69 | |
ULOQ, 4000.39 | 2.87 | 1.11 | |||
Chiller (5 ± 3 °C), 94 days | LLOQ, 10.00 | −4.93 | 5.15 | ||
ULOQ, 4000.39 | 1.95 | 1.02 | |||
Room temperature (25 ± 4 °C), 94 days | Working standard solution | LLOQ, 10.00 | −6.18 | 2.48 | |
ULOQ, 4000.39 | 0.59 | 0.30 | |||
Chiller (5 ± 3 °C), 94 days | LLOQ, 10.00 | −4.48 | 0.36 | ||
ULOQ, 4000.39 | −1.49 | 1.15 | |||
Etoricoxib D4 (IS) | Room temperature (25 ± 4°C), 94 days | Stock standard solution | 3000.29 | 1.81 | 0.25 |
Chiller (5 ± 3 °C), 94 days | 3000.29 | 2.70 | 0.46 | ||
Room temperature (25 ± 4 °C), 94 days | Working standard solution | 3000.29 | 2.03 | 0.56 | |
Chiller (5 ± 3 °C), 94 days | 3000.29 | 2.31 | 0.40 |
Parameters (Unit) | Etoricoxib (Mean ± SD) | |
---|---|---|
Test | Reference | |
Cmax (ng/mL) | 2220.27 ± 456.86 | 2233.90 ± 468.86 |
AUC0–72 (h.ng/mL) | 38,656.80 ± 10,798.28 | 38,851.00 ± 11,123.90 |
Tmax (h) | 1.35 ± 0.55 | 1.41 ± 0.73 |
t1/2 (h) | 24.93 ± 8.26 | 30.09 ± 15.15 |
ke (1/h) | 0.03 ± 0.01 | 0.03 ± 0.01 |
MRT (h) | 34.05 ± 11.76 | 40.31 ± 20.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loh, G.O.K.; Wong, E.Y.L.; Tan, Y.T.F.; Heng, S.C.; Saaid, M.; Cheah, K.Y.; Mohd Sali, N.D.; Damenthi, N.; Ng, S.S.M.; Ming, L.C.; et al. Fast and Sensitive HPLC-ESI-MS/MS Method for Etoricoxib Quantification in Human Plasma and Application to Bioequivalence Study. Molecules 2022, 27, 5706. https://doi.org/10.3390/molecules27175706
Loh GOK, Wong EYL, Tan YTF, Heng SC, Saaid M, Cheah KY, Mohd Sali ND, Damenthi N, Ng SSM, Ming LC, et al. Fast and Sensitive HPLC-ESI-MS/MS Method for Etoricoxib Quantification in Human Plasma and Application to Bioequivalence Study. Molecules. 2022; 27(17):5706. https://doi.org/10.3390/molecules27175706
Chicago/Turabian StyleLoh, Gabriel Onn Kit, Emily Yii Ling Wong, Yvonne Tze Fung Tan, Siew Chyee Heng, Mardiana Saaid, Kit Yee Cheah, Nurul Diyana Mohd Sali, Nair Damenthi, Sharon Shi Min Ng, Long Chiau Ming, and et al. 2022. "Fast and Sensitive HPLC-ESI-MS/MS Method for Etoricoxib Quantification in Human Plasma and Application to Bioequivalence Study" Molecules 27, no. 17: 5706. https://doi.org/10.3390/molecules27175706
APA StyleLoh, G. O. K., Wong, E. Y. L., Tan, Y. T. F., Heng, S. C., Saaid, M., Cheah, K. Y., Mohd Sali, N. D., Damenthi, N., Ng, S. S. M., Ming, L. C., & Peh, K. K. (2022). Fast and Sensitive HPLC-ESI-MS/MS Method for Etoricoxib Quantification in Human Plasma and Application to Bioequivalence Study. Molecules, 27(17), 5706. https://doi.org/10.3390/molecules27175706