Unravelling the Polytoxicology of Chlorfenapyr on Non-Target HepG2 Cells: The Involvement of Mitochondria-Mediated Programmed Cell Death and DNA Damage
Abstract
:1. Introduction
2. Results
2.1. Cytoactivity of HepG2 Cells
2.2. Production of Reactive Oxygen Species (ROS) and Damage of Mitochondria
2.3. Apoptosis in HepG2 Cells
2.4. Expression of Apoptosis-Related Proteins in CHL-Treated Cells
2.5. CHL Induced Autophagy in HepG2 Cells
2.6. CHL Induced DNA Damage and Cell Cycle Arrest
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Cell Culture
4.3. Measurement of Cytoactivity
4.4. Measurement of Reactive Oxygen Species (ROS) and Antioxidant Enzyme Activity
4.5. Measurement of Mitochondrial Membrane Potential (MMP)
4.6. Measurement of Mitochondrial and Cytosolic Ca2+ Levels
4.7. Measurement of Apoptosis
4.8. Measurement of Caspase-9/3 Activity
4.9. Measurement of Morphological Observation
4.10. Measurement of Autophagy
4.11. Measurement of Western Blotting
4.12. Measurement of Cell Cycle
4.13. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Wang, J.; Cao, X.; Wang, F.; Yang, Y.; Wu, S.; Wu, Y. Long-term monitoring and characterization of resistance to chlorfenapyr in Plutella xylostella (Lepidoptera, Plutellidae) from China. Pest Manag. Sci. 2019, 75, 591–597. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Q.; Yao, W.; Zhang, Z.; Wei, M. Chlorfenapyr, a potent alternative insecticide of phoxim to control Bradysia odoriphaga (Diptera, sciaridae). J. Agric. Food Chem. 2017, 29, 5908–5915. [Google Scholar] [CrossRef]
- Albers, P.; Klein, P.; Green, D.; Melancon, M.; Bradley, B.; Noguchi, G. Chlorfenapyr and mallard ducks, overview, study design, macroscopic effects, and analytical chemistry. Environ. Toxicol. Chem. 2006, 2, 438–445. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, J.; Teng, M.; Zhang, J.; Qian, L.; Duan, M.; Zhao, F.; Zhao, W.; Wang, Z.; Wang, C. Bioaccumulation, metabolism and the toxic effects of chlorfenapyr in zebrafish (Danio rerio). J. Agric. Food Chem. 2021, 69, 8110–8119. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Xin, X.; Liu, Z.; Wang, J.; Gui, Z. Transcriptional response of detoxifying enzyme genes in Bombyx mori under chlorfenapyr exposure. Pestic. Biochem. Phys. 2021, 3, 104899. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Shi, W.; Gao, S.; Lu, Y.; Cao, Y.; Zhou, P. Effects of nanopesticide chlorfenapyr on mice. Toxicol. Environ. Chem. 2010, 10, 1901–1907. [Google Scholar]
- Baek, B.; Kim, S.; Yoon, W.; Heo, T.; Yun, Y.; Kang, H. Chlorfenapyr-induced toxic leukoencephalopathy with radiologic reversibility, a case report and literature review. Korean J. Radiol. 2016, 2, 277–280. [Google Scholar] [CrossRef]
- Periasamy, S.; Deng, J.; Liu, M. Who is the real killer? Chlorfenapyr or detergent micelle-chlorfenapyr complex? Xenobiotica 2016, 9, 833–835. [Google Scholar] [CrossRef] [PubMed]
- Tharaknath, V.; Prabhakar, Y.; Kumar, K.; Babu, N. Clinical and radiological findings in chlorfenapyr poisoning. Ann. Indian Acad. Neur. 2013, 2, 252–254. [Google Scholar] [CrossRef]
- Sedlic, F.; Sepac, A.; Pravdic, D.; Camara, A.; Bienengraeber, M.; Brzezinska, A.; Wakatsuki, T.; Bosnjak, Z. Mitochondrial depolarization underlies delay in permeability transition by preconditioning with isoflurane, roles of ROS and Ca2+. Am. J. Physiol.-Cell. Physiol. 2010, 299, C506–C515. [Google Scholar] [CrossRef]
- Hurst, S.; Hoek, J.; Sheu, S. Mitochondrial Ca2+ and regulation of the permeability transition pore. J. Bioenerg. Biomembr. 2017, 1, 27–47. [Google Scholar] [CrossRef] [Green Version]
- Granville, D.; Cassidy, B.; Ruehlmann, D.; Choy, J.; Brenner, C.; Kroemer, G.; Breemen, C.; Margaron, P.; Hunt, D.; Mcmanus, B. Mitochondrial release of apoptosis-inducing factor and cytochrome c during smooth muscle cell apoptosis. Am. J. Pathol. 2001, 159, 305–311. [Google Scholar] [CrossRef]
- Yip, K.; Reed, J. Bcl-2 family proteins and cancer. Oncogene 2008, 27, 6398–6406. [Google Scholar] [CrossRef] [PubMed]
- Schrauwen, P.; Hesselink, M. Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes 2004, 53, 1412–1417. [Google Scholar] [CrossRef]
- Yang, M.; Hao, Y.; Gao, J.; Zhang, Y.; Xu, W.; Tao, L. Spinosad induces autophagy of Spodoptera frugiperda Sf9 cells and the activation of AMPK/mTOR signaling pathway. Comp. Biochem. Physiol. C 2017, 195, 52–59. [Google Scholar] [CrossRef]
- Yao, T.; Li, H.; Ren, Y.; Feng, M.; Hu, Y.; Yan, H.; Peng, L. Extraction and recovery of phenolic compounds from aqueous solution by thermo-separating magnetic ionic liquid aqueous two-phase system. Sep. Purif. Technol. 2022, 282, 120034. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, J.; Zhang, Y.; Xu, W.; Hao, Y.; Xu, Z.; Tao, L. Natural pyrethrins induce autophagy of HepG2 cells through theactivation of AMPK/mTOR pathway. Environ. Pollut. 2018, 241, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Wang, J.; Wang, Y.; Tang, J.; Ren, Y.; Geng, F. Bacteriostatic effects of high-intensity ultrasonic treatment on Bacillus subtilis vegetative cells. Ultrason. Sonochem. 2021, 81, 105862. [Google Scholar] [CrossRef]
- Sheehan, J.; Swerdlow, R.; Miller, S.; Davis, E.; Parks, J.; Parker, W.; Tuttle, J. Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic alzheimer’s disease. J. Neurosci. 1997, 12, 4612–4622. [Google Scholar] [CrossRef]
- Yang, M.; Wang, B.; Gao, J.; Zhang, Y.; Xu, W.; Tao, L. Spinosad induces programmed cell death involves mitochondrial dysfunction and cytochrome C release in Spodoptera frugiperda Sf9 cells. Chemosphere 2017, 169, 155–161. [Google Scholar] [CrossRef]
- Ren, Y.; Xia, H.; Lu, L.; Zhao, G. Characterization of the complete chloroplast genome of Hordeum vulgare L var trifurcatum with phylogenetic analysis. Mitochondrial DNA B 2021, 6, 1852–1854. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Ren, Y.; Shi, X.; Peng, L.; Zhao, J.; Song, Y.; Zhao, G. Comparative mitochondrial genome analysis of two ectomycorrhizal fungi (Rhizopogon) reveals dynamic changes of intron and phylogenetic relationships of the subphylum agaricomycotina. Int. J. Mol. Sci. 2019, 20, 5167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chang, Y.; Cao, H.; Xu, W.; Li, Z.; Tao, L. Potential threat of Chlorpyrifos to human liver cells via the caspase-dependent mitochondrial pathways. Food Agric. Immunol. 2018, 29, 294–305. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis, a review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Johnson, V.; Ko, S.; Holmstrom, T.; Eriksson, J.; Chow, S. Effector caspases are dispensable for the early nuclear morphological changes during chemical-induced apoptosis. J. Cell. Sci. 2000, 113, 2941–2953. [Google Scholar] [CrossRef] [PubMed]
- Lionaki, E.; Markaki, M.; Palikaras, K.; Tavernarakis, N. Mitochondria, autophagy and age-associated neurodegenerative diseases, new insights into a complex interplay. BBA-Bioenerg. 2015, 11, 1412–1423. [Google Scholar] [CrossRef]
- Lee, J.; Giordano, S.; Zhang, J. Autophagy, mitochondria and oxidative stress, cross-talk and redox signalling. Biochem. J. 2012, 2, 523–540. [Google Scholar] [CrossRef]
- Itakura, E.; Mizushima, N. P62 targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J. Cell Biol. 2011, 1, 17–27. [Google Scholar] [CrossRef]
- Lemasters, J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 2005, 1, 3–5. [Google Scholar] [CrossRef]
- Xu, W.; Yang, M.; Gao, J.; Zhang, Y.; Xu, W.; Tao, L. Oxidative stress and DNA damage induced by spinosad exposure in Spodoptera frugiperda Sf9 cells. Food Agric. Immunol. 2017, 8, 1–11. [Google Scholar] [CrossRef]
- Tamar, E.; Chris, N. Cellular responses to DNA damage, cell-cycle checkpoints, apoptosis and the roles of p53 and ATM. Trends Biochem. Sci. 1995, 20, 426–430. [Google Scholar]
- Celik-Ozenci, C.; Tasatargil, A.; Tekcan, M.; Sati, L.; Gungor, E.; Isbir, M.; Demir, R. Effects of abamectin exposure on male fertility in rats, potential role of oxidative stress-mediated poly (ADP-ribose) polymerase (PARP) activation. Regul. Toxicol. Pharmacol. 2011, 61, 310–317. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, W.; Gao, J.; Xu, Z.; Tao, L.; Zhong, L.; Xu, W. Spinetoram confers its cytotoxic effects by inducing AMPK/MTOR-mediated autophagy and oxidative DNA damage. Ecotoxicol. Environ. Saf. 2019, 183, 109480.1–109480.9. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Li, Q.; Lu, L.; Jin, H.; Tao, K.; Hou, T. Toxicity and physiological actions of biflavones on potassium current in insect neuronal cells. Pestic. Biochem. Phys. 2021, 171, 104735. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Mu, Y.; Yue, Y.; Jin, H.; Tao, K.; Hou, T. Neochamaejasmin A extracted from Stellera chamaejasme L. induces apoptosis involved mitochondrial dysfunction and oxidative stress in Sf9 cells. Pestic. Biochem. Phys. 2019, 43, 169–177. [Google Scholar] [CrossRef]
- Ren, Y.; He, L.; Jin, H.; Tao, K.; Hou, T. Cytotoxicity evaluation and apoptosis-inducing effects of furanone analogs in insect cell line SL2. Food Agric. Immunol. 2018, 29, 964–975. [Google Scholar] [CrossRef]
- Ren, Y.; Yang, N.; Yue, Y.; Jin, H.; Tao, K.; Hou, T. Investigation of novel pyrazole carboxamides as new apoptosis inducers on neuronal cells in Helicoverpa zea. Bioorg. Med. Chem. 2018, 26, 2280–2286. [Google Scholar] [CrossRef]
- Ren, Y.; Jin, H.; Tao, K.; Hou, T. Apoptotic effects of 1,5-bis-(5-nitro-2-furanyl)-1,4-pentadien-3-one on Drosophila SL2 cells. Mol. Cell. Toxicol. 2015, 11, 187–192. [Google Scholar] [CrossRef]
- Ren, Y.; Shi, J.; Mu, Y.; Jin, H.; Tao, K.; Hou, T. AW1 neuronal cell cytotoxicity, the mode of action of insecticidal fatty acids. J. Agric. Food Chem. 2019, 43, 12129–12136. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Q.; Lu, L.; Jin, H.; Tao, K.; Hou, T. Isochamaejasmin induces toxic effects on Helicoverpa zea via DNA damage and mitochondria-associated apoptosis. Pest Manag. Sci. 2021, 1, 557–567. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; He, X.; Yan, X.; Yang, Y.; Li, Q.; Yao, T.; Lu, L.; Peng, L.; Zou, L. Unravelling the Polytoxicology of Chlorfenapyr on Non-Target HepG2 Cells: The Involvement of Mitochondria-Mediated Programmed Cell Death and DNA Damage. Molecules 2022, 27, 5722. https://doi.org/10.3390/molecules27175722
Ren Y, He X, Yan X, Yang Y, Li Q, Yao T, Lu L, Peng L, Zou L. Unravelling the Polytoxicology of Chlorfenapyr on Non-Target HepG2 Cells: The Involvement of Mitochondria-Mediated Programmed Cell Death and DNA Damage. Molecules. 2022; 27(17):5722. https://doi.org/10.3390/molecules27175722
Chicago/Turabian StyleRen, Yuanhang, Xuan He, Xiyue Yan, Yanting Yang, Qiang Li, Tian Yao, Lidan Lu, Lianxin Peng, and Liang Zou. 2022. "Unravelling the Polytoxicology of Chlorfenapyr on Non-Target HepG2 Cells: The Involvement of Mitochondria-Mediated Programmed Cell Death and DNA Damage" Molecules 27, no. 17: 5722. https://doi.org/10.3390/molecules27175722
APA StyleRen, Y., He, X., Yan, X., Yang, Y., Li, Q., Yao, T., Lu, L., Peng, L., & Zou, L. (2022). Unravelling the Polytoxicology of Chlorfenapyr on Non-Target HepG2 Cells: The Involvement of Mitochondria-Mediated Programmed Cell Death and DNA Damage. Molecules, 27(17), 5722. https://doi.org/10.3390/molecules27175722