Chemical Markers and Pharmacological Characters of Pelargonium graveolens Essential Oil from Palestine
Abstract
:1. Introduction
2. Results
2.1. Phytochemistry
2.2. Antioxidant Activity
2.3. Target Metabolic Enzyme Inhibitory Activity
2.4. Cytotoxicity
2.5. Cyclooxygenase Inhibitory Activity
2.6. Antimicrobial Effect
3. Discussion
3.1. Phytochemistry of the Pelargonium graveolens EO
3.2. Antioxidant Activity
3.3. Metabolic Lipase, α-Amylase, and α-Glucosidase Inhibitory Activities
3.4. Antimicrobial Effects
3.5. Cytotoxicity
3.6. Cyclooxygenase Suppressant Effect
4. Materials and Methods
4.1. Plant Material
4.2. Essential Oil Extraction
4.3. Chromatographic Analyses
4.4. Free Radical Scavenging Activity
4.5. Porcine Pancreatic Lipase Inhibitory Activity
4.6. α-Amylase Inhibitory Activity
4.7. α-Glucosidase Inhibitory Activity
4.8. Antimicrobial Activity
4.9. Cell Culture and Cytotoxicity Assay
4.10. Cyclooxygenase Inhibitory Effect
4.11. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Atta, A.H.; Kenawy, S.; Awaad, A.; El-Melegy, R. Anti-inflammatory, antipyretic and antioxidant effect of some medicinal plant extracts. J. Complement. Integr. Med. 2011, 8. [Google Scholar] [CrossRef]
- Khosravi, M.; Poursaleh, A.; Ghasempour, G.; Farhad, S.; Najafi, M. The effects of oxidative stress on the development of atherosclerosis. Biol. Chem. 2019, 400, 711–732. [Google Scholar]
- Jain, A.K.; Mehra, N.K.; Swarnakar, N.K. Role of antioxidants for the treatment of cardiovascular diseases: Challenges and opportunities. Curr. Pharm. Des. 2015, 21, 4441–4455. [Google Scholar]
- World Health Organizaion. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 1 April 2022).
- Curioni, C.C.; da Silva, A.C.F.; da Silva Pereira, A.; Mocellin, M.C. The Role of Dietary Habits on Development and Progress of Risk Factors of Chronic Non-communicable Diseases. In Healthy Lifestyle; Springer: Berlin/Heidelberg, Germany, 2022; pp. 105–129. [Google Scholar]
- World Health Organization. Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 22 March 2022).
- Abu-Rmeileh, N.M.E.; Husseini, A.; Capewell, S.; Flaherty, M. Preventing type 2 diabetes among Palestinians: Comparing five future policy scenarios. BMJ Open 2013, 3, e003558. [Google Scholar] [CrossRef]
- Mosleh, R.; Hawash, M.; Jarrar, Y. The Relationships among the Organizational Factors of a Tertiary Healthcare Center for Type 2 Diabetic Patients in Palestine. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 464–471. [Google Scholar]
- World Health Organization. Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance#:~:text=What%20is%20antimicrobial%20resistance%3F,spread%2C%20severe%20illness%20and%20death (accessed on 9 May 2022).
- World Health Oganization. Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 12 September 2021).
- Abu-Rmeileh, N.M.E.; Gianicolo, E.A.L.; Bruni, A.; Mitwali, S.; Portaluri, M.; Bitar, J.; Hamad, M.; Giacaman, R.; Vigotti, M.A. Cancer mortality in the West Bank, Occupied Palestinian Territory. BMC Public Health 2016, 16, 76. [Google Scholar] [CrossRef]
- Hawash, M.; Jaradat, N.; Hameedi, S.; Mousa, A. Design, synthesis and biological evaluation of novel benzodioxole derivatives as COX inhibitors and cytotoxic agents. BMC Chem. 2020, 14, 54. [Google Scholar]
- Pisano, M. NSAIDs: Balancing the risks and benefits. US Pharm. 2016, 41, 24–26. [Google Scholar]
- Niculau, E.D.; Alves, P.B.; Nogueira, P.C.; Romão, L.P.; Cunha, G.D.; Blank, A.F.; Silva, A.D. Chemical Profile and Use of the Peat as an Adsorbent for Extraction of Volatile Compounds from Leaves of Geranium (Pelargonium graveolens L’ Herit). Molecules 2020, 25, 4923. [Google Scholar] [CrossRef]
- Ahamad, J.; Uthirapathy, S. Chemical characterization and antidiabetic activity of essential oils from Pelargonium graveolens leaves. ARO-Sci. J. Koya Univ. 2021, 9, 109–113. [Google Scholar]
- Azarafshan, M.; Peyvandi, M.; Abbaspour, H.; Noormohammadi, Z.; Majd, A. The effects of UV-B radiation on genetic and biochemical changes of Pelargonium graveolens L’Her. Physiol. Mol. Biol. Plants Int. J. Funct. Plant Biol. 2020, 26, 605–616. [Google Scholar] [CrossRef]
- Kumar, N.; Ghosh, D.; Chaudhary, N.; Chanotiya, C.S. Rainfall-induced premature senescence modulates biochemical and essential oils profiles in Pelargonium graveolens L′Hér. under sub-tropical climate. Ind. Crops Prod. 2022, 178, 114630. [Google Scholar]
- Peterson, A.; Machmudah, S.; Roy, B.C.; Goto, M.; Sasaki, M.; Hirose, T. Extraction of essential oil from geranium (Pelargonium graveolens) with supercritical carbon dioxide. J. Chem. Technol. Biotechnol. 2006, 81, 167–172. [Google Scholar]
- Elshafie, H.S.; Camele, I. An overview of the biological effects of some mediterranean essential oils on human health. Biomed Res. Int. 2017, 2017, 9268468. [Google Scholar]
- Narnoliya, L.K.; Jadaun, J.S.; Singh, S.P. The phytochemical composition, biological effects and biotechnological approaches to the production of high-value essential oil from geranium. In Essential Oil Research; Springer: Berlin/Heidelberg, Germany, 2019; pp. 327–352. [Google Scholar]
- Ghannadi, A.; Bagherinejad, M.; Abedi, D.; Jalali, M.; Absalan, B.; Sadeghi, N. Antibacterial activity and composition of essential oils from Pelargonium graveolens L’Her and Vitex agnus-castus L. Iran J. Microbiol. 2012, 4, 171–176. [Google Scholar]
- Afifi, F.; Kasabri, V.; Abu-Dahab, R.; Abaza, I. Chemical composition and in vitro studies of the essential oil and aqueous extract of Pelargonium graveolens growing in Jordan for hypoglycaemic and hypolipidemic properties. Eur. J. Med. Plants 2014, 4, 220–233. [Google Scholar]
- Al Abadla, Z.; Schlink, U.; Wahab, M.A.; Robaa, S. Urban Heat Island and Thermal Human Comfort in Tulkarm, West Bank, Palestine. J. Mater. Environ. Sci. 2020, 11, 1361–1373. [Google Scholar]
- Džamić, A.M.; Soković, M.D.; Ristić, M.S.; Grujić, S.M.; Mileski, K.S.; Marin, P.D. Chemical composition, antifungal and antioxidant activity of Pelargonium graveolens essential oil. J. Appl. Pharm. Sci. 2014, 4, 001–005. [Google Scholar]
- Bigos, M.; Wasiela, M.; Kalemba, D.; Sienkiewicz, M. Antimicrobial activity of geranium oil against clinical strains of Staphylococcus aureus. Molecules 2012, 17, 10276–10291. [Google Scholar]
- Fayed, S.A. Antioxidant and anticancer activities of Citrus reticulate (Petitgrain Mandarin) and Pelargonium graveolens (Geranium) essential oils. Res. J. Agric. Biol. Sci. 2009, 5, 740–747. [Google Scholar]
- Hsouna, A.B.; Hamdi, N. Phytochemical composition and antimicrobial activities of the essential oils and organic extracts from Pelargonium graveolens growing in Tunisia. Lipids Health Dis. 2012, 11, 167. [Google Scholar] [CrossRef]
- Ćavar, S.; Maksimović, M. Antioxidant activity of essential oil and aqueous extract of Pelargonium graveolens L’Her. Food Control 2012, 23, 263–267. [Google Scholar] [CrossRef]
- Bhupathiraju, S.N.; Hu, F.B. Epidemiology of obesity and diabetes and their cardiovascular complications. Circ. Res. 2016, 118, 1723–1735. [Google Scholar] [CrossRef]
- Jaradat, N.; Qadi, M.; Abualhasan, M.N.; Al-lahham, S.; Al-Rimawi, F.; Hattab, S.; Hussein, F.; Zakarneh, D.; Hamad, I.; Sulayman, I. Carbohydrates and lipids metabolic enzymes inhibitory, antioxidant, antimicrobial and cytotoxic potentials of Anchusa ovata Lehm. from Palestine. Eur. J. Integr. Med. 2020, 34, 101066. [Google Scholar] [CrossRef]
- Jugran, A.K.; Rawat, S.; Devkota, H.P.; Bhatt, I.D.; Rawal, R.S. Diabetes and plant-derived natural products: From ethnopharmacological approaches to their potential for modern drug discovery and development. Phytother. Res. 2021, 35, 223–245. [Google Scholar] [CrossRef] [PubMed]
- Hammad, A.M.; Watanabe, W.; Fujii, T.; Shimamoto, T. Occurrence and characteristics of methicillin-resistant and-susceptible Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci from Japanese retail ready-to-eat raw fish. Int. J. Food Microbiol. 2012, 156, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 2018, 4, 1–23. [Google Scholar]
- Dorman, H.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Lopez-Romero, J.C.; González-Ríos, H.; Borges, A.; Simões, M.J.E.-B.C.; Medicine, A. Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus. Evid. Based Complement. Altern. Med. 2015, 2015, 795435. [Google Scholar]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef]
- Halees, R.Y.; Talib, W.H.; Issa, R.A. Varthemia iphionoides and Pelargonium graveolens Extracts as a Treatment of Breast Cancer Implanted in Diabetic Mice. Pharmacogn. Mag. 2019, 15, 698–707. [Google Scholar]
- Boukhatem, M.; Sudha, T.; Darwish, N.; Nada, H.; Mousa, S. Essence aromatique du Géranium Odorant (Pelargonium graveolens L’Hérit.) d’Algérie: Exploration des propriétés antioxydante, anti-inflammatoire et anticancéreuse (anti-angiogénique et cytotoxique), in vitro et in ovo, vis-à-vis de différentes lignées cellulaires cancéreuses métastasiques. Ann. Pharm. Fr. 2022, 80, 383–396. [Google Scholar] [PubMed]
- Yu, W.-N.; Lai, Y.-J.; Ma, J.-W.; Ho, C.-T.; Hung, S.-W.; Chen, Y.-H.; Chen, C.-T.; Kao, J.-Y.; Way, T.-D. Citronellol Induces Necroptosis of Human Lung Cancer Cells via TNF-α Pathway and Reactive Oxygen Species Accumulation. In Vivo 2019, 33, 1193–1201. [Google Scholar] [CrossRef]
- Kelm, M.; Nair, M.; Strasburg, G.; DeWitt, D. Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine 2000, 7, 7–13. [Google Scholar] [CrossRef]
- Maisonneuve, S.A. European Pharmacopoeia; European Union: Strasbourg, France, 1983; Volume 458. [Google Scholar]
- Chaouch, M.; Chaqroune, A. Phytochemical Profiling of Essential Oils Isolated Using Hydrodistillation and Microwave Methods and Characterization of Some Nutrients in Origanum compactum Benth from Central-Northern. Biointerface Res. Appl. Chem. 2021, 11, 9358–9371. [Google Scholar]
- Jaradat, N.A.; Abualhasan, M. Comparison of phytoconstituents, total phenol contents and free radical scavenging capacities between four Arum species from Jerusalem and Bethlehem. Pharm. Sci. 2016, 22, 120. [Google Scholar] [CrossRef]
- Khalil, A.; Jaradat, N.; Hawash, M.; Issa, L. In vitro biological evaluation of benzodioxol derivatives as antimicrobial and antioxidant agents. Arab. J. Sci. Eng. 2021, 46, 5447–5453. [Google Scholar] [CrossRef]
- Chaqroune, A.; Taleb, M. Effects of Extraction Technique and Solvent on Phytochemicals, Antioxidant, and Antimicrobial Activities of Cultivated and Wild Rosemary (Rosmarinus officinalis L.) from Taounate Region. Biointerface Res. Appl. Chem. 2022, 12, 8441–8452. [Google Scholar]
- Jaradat, N.; Zaid, A.; Hussein, F.; Zaqzouq, M.; Aljammal, H.; Ayesh, O. Anti-lipase potential of the organic and aqueous extracts of ten traditional edible and medicinal plants in Palestine; a comparison study with orlistat. Medicines 2017, 4, 89. [Google Scholar] [CrossRef]
- Hawash, M.; Jaradat, N.; Shekfeh, S.; Abualhasan, M.; Eid, A.M.; Issa, L. Molecular docking, chemo-informatic properties, alpha-amylase, and lipase inhibition studies of benzodioxol derivatives. BMC Chem. 2021, 15, 40. [Google Scholar]
- Ali, H.; Houghton, P.; Soumyanath, A. α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J. Ethnopharmacol. 2006, 107, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Jaradat, N.A.; Al-lahham, S.; Zaid, A.N.; Hussein, F.; Issa, L.; Abualhasan, M.N.; Hawash, M.; Yahya, A.; Shehadi, O.; Omair, R.J.E.J.o.I.M. Carlina curetum plant phytoconstituents, enzymes inhibitory and cytotoxic activity on cervical epithelial carcinoma and colon cancer cell lines. Eur. J. Integr. Med. 2019, 30, 100933. [Google Scholar] [CrossRef]
- Hawash, M.; Jaradat, N.; Eid, A.M.; Abubaker, A.; Mufleh, O.; Al-Hroub, Q.; Sobuh, S. Synthesis of novel isoxazole–carboxamide derivatives as promising agents for melanoma and targeted nano-emulgel conjugate for improved cellular permeability. BMC Chem. 2022, 16, 47. [Google Scholar] [CrossRef]
- Ayerbe, N.; Routier, S.; Gillaizeau, I.; Maiereanu, C.; Caignard, D.-H.; Pierré, A.; Léonce, S.; Coudert, G.J.B. Synthesis and biological evaluation of novel benzodioxinocarbazoles (BDCZs) as potential anticancer agents. Bioorg. Med. Chem. Lett. 2010, 20, 4670–4674. [Google Scholar] [CrossRef]
Constituents | Retention Times | Retention Indices | Area | EO (%) |
---|---|---|---|---|
α-Pinene | 8.71 | 933 | 5,219,705 | 0.19 |
Myrcene | 11.09 | 991 | 1,247,632 | 0.04 |
α-Phellandrene | 11.73 | 1006 | 809,821 | 0.03 |
p-Cymene | 12.5 | 1018 | 599,766 | 0.02 |
Limonene | 12.57 | 1022 | 244,234 | 0.01 |
Sylvestrene | 12.69 | 1030 | 2,322,006 | 0.08 |
Santolina alcohol | 12.91 | 1035 | 761,560 | 0.03 |
Phenylacetaldehyde | 13.16 | 1041 | 142,181 | 0.01 |
o-Tolualdehyde | 13.34 | 1046 | 1,297,560 | 0.05 |
trans-Ocimene | 13.45 | 1048 | 684,117 | 0.02 |
cis-1,1,3,5-tetramethylcyclohexane | 13.945 | 1060 | 225,932 | 0.01 |
cis-Linalool oxide | 14.47 | 1073 | 8,052,599 | 0.29 |
trans-Linalool oxide | 15.45 | 1097 | 7,288,440 | 0.26 |
Linalool | 15.65 | 1102 | 68,394,208 | 2.45 |
cis-Rose oxide | 16.033 | 1111 | 56,869,124 | 2.04 |
trans-Rose oxide | 16.67 | 1128 | 22,926,890 | 0.82 |
Neoisopulegol | 17.52 | 1151 | 1,362,589 | 0.05 |
Citronellal | 17.67 | 1155 | 3,737,836 | 0.13 |
trans-Menthan-3-one | 17.79 | 1158 | 3,701,619 | 0.13 |
Isomenthone | 18.14 | 1167 | 207,492,256 | 7.43 |
Neoisomenthol | 19.05 | 1191 | 4,323,271 | 0.15 |
α-Terpineol | 19.31 | 1197 | 4,471,245 | 0.16 |
Rhodinol | 20.31 | 1224 | 43,395,516 | 1.55 |
Citronellol | 20.6 | 1233 | 682,125,248 | 24.44 |
Neral | 20.92 | 1242 | 2,910,552 | 0.1 |
Geraniol | 21.42 | 1256 | 43,679,076 | 1.57 |
Citronellyl formate | 22.14 | 1276 | 436,307,872 | 15.63 |
Geranyl formate | 23 | 1300 | 94,869,424 | 3.4 |
α-Cubebene | 24.65 | 1346 | 5,753,072 | 0.21 |
Citronellyl acetate | 24.74 | 1348 | 12,922,121 | 0.46 |
α-Ylangene | 25.61 | 1373 | 15,292,231 | 0.55 |
Geranyl acetate | 25.69 | 1375 | 9,889,024 | 0.35 |
Bourbonene | 25.88 | 1379 | 26,907,980 | 0.96 |
β-Elemene | 26.07 | 1385 | 4,791,249 | 0.17 |
Longifolene | 26.66 | 1410 | 1,218,996 | 0.04 |
β-Caryophellene | 27.05 | 1421 | 46,656,692 | 1.67 |
β-Copaene | 27.38 | 1433 | 1,369,444 | 0.05 |
Citronellyl propanoate | 27.67 | 1442 | 27,053,746 | 0.97 |
6,9-Guaiadiene | 27.74 | 1444 | 13,679,959 | 0.49 |
Spirolepechinene | 27.83 | 1447 | 923,947 | 0.03 |
trans-Muurola-3,5-diene | 27.98 | 1451 | 17,618,874 | 0.63 |
trans-Prenyl limonene | 28.19 | 1458 | 13,135,552 | 0.47 |
Aromadendrane | 28.34 | 1463 | 13,325,749 | 0.48 |
Geranyl propanoate | 28.6 | 1464 | 39,640,280 | 1.42 |
γ-Muurolene | 28.72 | 1472 | 7,682,250 | 0.28 |
Amorphene | 28.82 | 1475 | 1,448,632 | 0.05 |
Germacerene D | 29 | 1484 | 71,366,280 | 2.56 |
β-Selinene | 29.1 | 1488 | 1,581,278 | 0.06 |
Viridiflorene | 29.33 | 1495 | 61,363,196 | 2.2 |
Bicyclogermacren | 29.47 | 1499 | 10,318,428 | 0.37 |
α-Muurolene | 29.554 | 1502 | 3,793,223 | 0.14 |
trans-β-Guaiene | 29.689 | 1507 | 2,964,878 | 0.11 |
Germacrene A | 29.794 | 1910 | 2,806,741 | 0.1 |
γ-Cadinene | 29.994 | 1517 | 6,085,463 | 0.22 |
Δ-Cadinene | 30.159 | 1522 | 36,284,956 | 1.3 |
Citronellyl butanoate | 30.314 | 1528 | 46,489,824 | 1.67 |
α-Cadinene | 30.584 | 1537 | 4,487,362 | 0.16 |
α-Agarofuran | 31.054 | 1553 | 8,448,215 | 0.3 |
Geranyl butanoate | 31.239 | 1559 | 75,206,368 | 2.69 |
11-Norbourbonan-1-one | 31.384 | 1563 | 2,648,644 | 0.09 |
β-Phenyl ethyl tiglate | 32.09 | 1588 | 70,742,752 | 2.53 |
Geranyl 2-methyl butanoate | 32.455 | 1600 | 3,184,698 | 0.11 |
β-Atlantol | 32.76 | 1611 | 2,970,958 | 0.11 |
1,10-di-epi-Cubenol | 33.06 | 1621 | 7,473,155 | 0.27 |
γ-Eudesmol | 33.275 | 1629 | 239,952,880 | 8.6 |
Amorph-4-en-7-ol | 33.451 | 1636 | 10,539,318 | 0.38 |
7-epi-a-Eudesmol | 34.175 | 1661 | 21,753,554 | 0.78 |
Citronellyl tiglate | 34.311 | 1667 | 46,228,004 | 1.66 |
Geranyl tiglate | 35.261 | 1700 | 66,467,516 | 2.38 |
E-Nerolidyl acetate | 35.721 | 1716 | 8,573,079 | 0.31 |
Total | 99.47 | |||
Phytochemical group | ||||
Monoterpene hydrocarbon | 0.39 | |||
Oxygenated monoterpenoid | 75.51 | |||
Sesquiterpene hydrocarbons | 13.04 | |||
Oxygenated sesquiterpenes | 10.53 | |||
Total | 99.47 |
Antioxidants, Target Metabolic Enzymes, Cancer Cells Lines, and COX | IC50 (µg/mL) | |
---|---|---|
PGEO | Positive Controls | |
DPPH | 3.88 ± 0.45 | 1.88 ± 0.45 a |
Lipase | 478.14 ± 1.2 | 12.3 ± 0.33 b |
α-Amylase | 66.09 ± 1.43 | 6.64 ± 0.32 c |
α-Glucosidase | 52.44 ± 0.29 | 37.15 ± 0.33 c |
HeLa | 315.19 ± 2.05 | 0.84 ± 1.1 d |
MCF7 | 32.71 ± 1.25 | 0.37 ± 0.22 d |
Hep3B | 40.70 ± 1.89 | 1.21 ± 1.0 d |
COX-1 | 14.03 ± 1.74 | 5.72 ± 0.09 e |
COX-2 | 275.97 ± 2.08 | 0.0152 ± 0.007 e |
Microbial Species | PGEO | Ampicillin | Ciprofloxacin | Fluconazole |
---|---|---|---|---|
S. aureus | 0.78 ± 0.01 | 6.25 ± 0.2 | 0.78 ± 0.01 | - |
MRSA | 1.56 ± 0.01 | 32 ± 0.64 | 12.5 ± 0.79 | - |
E. coli | 50 ± 0.56 | 3.12 ± 0.56 | 0.78 ± 0.01 | - |
P. vulgaris | 6.25 ± 0.12 | 3.25 ± 0.21 | 0.06 ± 0.001 | - |
K. pneumoniae | 25 ± 0.31 | 12.5 ± 0.05 | 0.06 ± 0.001 | - |
P. aeruginosa | 50 ± 0.55 | 100 ± 1.01 | 3.12 ± 0.31 | - |
C. albicans | 6.25 ± 0.02 | - | - | 3.12 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaradat, N.; Hawash, M.; Qadi, M.; Abualhasan, M.; Odetallah, A.; Qasim, G.; Awayssa, R.; Akkawi, A.; Abdullah, I.; Al-Maharik, N. Chemical Markers and Pharmacological Characters of Pelargonium graveolens Essential Oil from Palestine. Molecules 2022, 27, 5721. https://doi.org/10.3390/molecules27175721
Jaradat N, Hawash M, Qadi M, Abualhasan M, Odetallah A, Qasim G, Awayssa R, Akkawi A, Abdullah I, Al-Maharik N. Chemical Markers and Pharmacological Characters of Pelargonium graveolens Essential Oil from Palestine. Molecules. 2022; 27(17):5721. https://doi.org/10.3390/molecules27175721
Chicago/Turabian StyleJaradat, Nidal, Mohammed Hawash, Mohammad Qadi, Murad Abualhasan, Aseel Odetallah, Ghfran Qasim, Reem Awayssa, Amna Akkawi, Ibtesam Abdullah, and Nawaf Al-Maharik. 2022. "Chemical Markers and Pharmacological Characters of Pelargonium graveolens Essential Oil from Palestine" Molecules 27, no. 17: 5721. https://doi.org/10.3390/molecules27175721
APA StyleJaradat, N., Hawash, M., Qadi, M., Abualhasan, M., Odetallah, A., Qasim, G., Awayssa, R., Akkawi, A., Abdullah, I., & Al-Maharik, N. (2022). Chemical Markers and Pharmacological Characters of Pelargonium graveolens Essential Oil from Palestine. Molecules, 27(17), 5721. https://doi.org/10.3390/molecules27175721