Facile Access to 2-Selenoxo-1,2,3,4-tetrahydro-4-quinazolinone Scaffolds and Corresponding Diselenides via Cyclization between Methyl Anthranilate and Isoselenocyanates: Synthesis and Structural Features
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthetic Part
3.2. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: The advances continue. Eur. J. Med. Chem. 2015, 90, 124–169. [Google Scholar] [CrossRef] [PubMed]
- Asif, M. Chemical Characteristics, Synthetic Methods, and Biological Potential of Quinazoline and Quinazolinone Derivatives. Int. J. Med. Chem. 2014, 2014, 395637. [Google Scholar] [CrossRef]
- Jafari, E.; Khajouei, M.; Hassanzadeh, F.; Hakimelahi, G.; Khodarahmi, G. Quinazolinone and quinazoline derivatives: Recent structures with potent antimicrobial and cytotoxic activities. Res. Pharm. Sci. 2016, 11, 1–14. [Google Scholar] [PubMed]
- Hameed, A.; Al-Rashida, M.; Uroos, M.; Ali, S.A.; Arshia; Ishtiaq, M.; Khan, K.M. Quinazoline and quinazolinone as important medicinal scaffolds: A comparative patent review (2011–2016). Expert Opin. Ther. Pat. 2018, 28, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Moreno, E.; Plano, D.; Lamberto, I.; Font, M.; Encío, I.; Palop, J.A.; Sanmartín, C. Sulfur and selenium derivatives of quinazoline and pyrido [2,3-d]pyrimidine: Synthesis and study of their potential cytotoxic activity in vitro. Eur. J. Med. Chem. 2012, 47, 283–298. [Google Scholar] [CrossRef] [PubMed]
- Moreno, E.; Doughty-Shenton, D.; Plano, D.; Font, M.; Encío, I.; Palop, J.A.; Sanmartín, C. A dihydroselenoquinazoline inhibits S6 ribosomal protein signalling, induces apoptosis and inhibits autophagy in MCF-7 cells. Eur. J. Pharm. Sci. 2014, 63, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Kasibhatla, S.; Baichwal, V.; Cai, S.X.; Roth, B.; Skvortsova, I.; Skvortsov, S.; Lukas, P.; English, N.M.; Sirisoma, N.; Drewe, J.; et al. MPC-6827: A Small-Molecule Inhibitor of Microtubule Formation That Is Not a Substrate for Multidrug Resistance Pumps. Cancer Res. 2007, 67, 5865–5871. [Google Scholar] [CrossRef] [PubMed]
- Sirisoma, N.; Pervin, A.; Zhang, H.; Jiang, S.; Willardsen, J.A.; Anderson, M.B.; Mather, G.; Pleiman, C.M.; Kasibhatla, S.; Tseng, B.; et al. Discovery of N-(4-Methoxyphenyl)-N,2-dimethylquinazolin-4-amine, a Potent Apoptosis Inducer and Efficacious Anticancer Agent with High Blood Brain Barrier Penetration. J. Med. Chem. 2009, 52, 2341–2351. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, M.; Qu, Y.; Tang, W.; Zheng, Y.; Lian, J.; Ji, M.; Xu, L. Design and synthesis of novel Gefitinib analogues with improved anti-tumor activity. Bioorg. Med. Chem. 2010, 18, 3812–3822. [Google Scholar] [CrossRef]
- Hanusek, J.; Hejtmánková, L.; Kubicová, L.; Sedlák, M. Synthesis of Substituted 2-Benzoylaminothiobenzamides and Their Ring Closure to Substituted 2-Phenylquinazoline-4-thiones. Molecules 2001, 6, 323–337. [Google Scholar] [CrossRef] [Green Version]
- Kubicová, L.; Šustr, M.; Kráľová, K.; Chobot, V.; Vytlačilová, J.; Jahodář, L.; Vuorela, P.; Macháček, M.; Kaustová, J. Synthesis and Biological Evaluation of Quinazoline-4-thiones. Molecules 2003, 8, 756–769. [Google Scholar] [CrossRef]
- Niewiadomy, A.; Matysiak, J.; Karpińska, M.M. Synthesis and Anticancer Activity of New 2-Aryl-4H-3,1-benzothiazines. Arch. Pharm. Weinh. 2011, 344, 224–230. [Google Scholar] [CrossRef]
- Sancineto, L.; Iraci, N.; Massari, S.; Attanasio, V.; Corazza, G.; Barreca, M.L.; Sabatini, S.; Manfroni, G.; Avanzi, N.R.; Cecchetti, V.; et al. Computer-Aided Design, Synthesis and Validation of 2-Phenylquinazolinone Fragments as CDK9 Inhibitors with Anti-HIV-1 Tat-Mediated Transcription Activity. ChemMedChem 2013, 8, 1941–1953. [Google Scholar] [CrossRef] [PubMed]
- Häcker, H.-G.; Grundmann, F.; Lohr, F.; Ottersbach, P.A.; Zhou, J.; Schnakenburg, G.; Gütschow, M. 2-Amino- and 2-Alkylthio-4H-3,1-benzothiazin-4-ones: Synthesis, Interconversion and Enzyme Inhibitory Activities. Molecules 2009, 14, 378–402. [Google Scholar] [CrossRef]
- Komar, M.; Kraljević, T.G.; Jerković, I.; Molnar, M. Application of Deep Eutectic Solvents in the Synthesis of Substituted 2-Mercaptoquinazolin-4(3H)-Ones: A Comparison of Selected Green Chemistry Methods. Molecules 2022, 27, 558. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Deka, R.; Singh, H.B. Recent Developments in the Chemistry of NHC-based Selones: Syntheses, Applications and Reactivity. Chem. Lett. 2018, 48, 65–79. [Google Scholar] [CrossRef]
- Mammadova, G.Z.; Matsulevich, Z.V.; Osmanov, V.K.; Borisov, A.V.; Khrustalev, V.N. 1,3-Benzothia{\-}zole-2(3{\it H})-selone. Acta Crystallogr. Sect. E 2011, 67, o3050. [Google Scholar] [CrossRef] [PubMed]
- Mammadova, G.Z.; Matsulevich, Z.V.; Osmanov, V.K.; Borisov, A.V.; Khrustalev, V.N. 1-Methyl-2,3-dihydro-1{\it H}-benzimidazole-2-selone. Acta Crystallogr. Sect. E 2012, 68, o1381. [Google Scholar] [CrossRef]
- Alcolea, V.; Plano, D.; Encío, I.; Palop, J.A.; Sharma, A.K.; Sanmartín, C. Chalcogen containing heterocyclic scaffolds: New hybrids with antitumoral activity. Eur. J. Med. Chem. 2016, 123, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Yun, L.M.; Shakhidoyatov, K.M. 2-Selenoxoquinazolones-4, a new kind of quinazolone. Chem. Heterocycl. Compd. 1986, 22, 345–346. [Google Scholar] [CrossRef]
- Šibor, J.; Žůrek, D.; Humpa, O.; Pazdera, P. Acid-Base Initiated Cyclization and Retrocyclization Reactions of Ethyl 2-(3-Acylselenoureido)benzoates, -thiophene-3-carboxylates and the Corresponding 2-(3-Acylisoselenoureido) Derivatives. Molecules 2000, 5, 37–50. [Google Scholar] [CrossRef]
- Atanassov, P.K.; Linden, A.; Heimgartner, H. Synthesis of 4-(Phenylamino)quinazoline-2(1H)-selones and Diselenides from Isoselenocyanates: Dimroth Rearrangement of an Intermediate. Helv. Chim. Acta 2004, 87, 1873–1887. [Google Scholar] [CrossRef]
- Desiraju, G.R. Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis. Angew. Chem. Int. Ed. Engl. 1995, 34, 2311–2327. [Google Scholar] [CrossRef]
- Hobza, P.; Havlas, Z. Blue-Shifting Hydrogen Bonds. Chem. Rev. 2000, 100, 4253–4264. [Google Scholar] [CrossRef]
- Eliseeva, A.A.; Ivanov, D.M.; Novikov, A.S.; Kukushkin, V.Y. Recognition of the π-hole donor ability of iodopentafluorobenzene – a conventional σ-hole donor for crystal engineering involving halogen bonding. CrystEngComm 2019, 21, 616–628. [Google Scholar] [CrossRef]
- Scheiner, S. The Pnicogen Bond: Its Relation to Hydrogen, Halogen, and Other Noncovalent Bonds. Acc. Chem. Res. 2013, 46, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.S.; Lane, P.; Clark, T.; Riley, K.E.; Politzer, P. σ-Holes, π-holes and electrostatically-driven interactions. J. Mol. Model. 2012, 18, 541–548. [Google Scholar] [CrossRef]
- Li, H.; Lu, Y.; Liu, Y.; Zhu, X.; Liu, H.; Zhu, W. Interplay between halogen bonds and π–π stacking interactions: CSD search and theoretical study. Phys. Chem. Chem. Phys. 2012, 14, 9948–9955. [Google Scholar] [CrossRef] [PubMed]
- Nelyubina, Y.V.; Antipin, M.Y.; Lyssenko, K.A. Extremely short halogen bond: The nature and energy of iodine–oxygen interactions in crystalline iodic acid. Mendeleev Commun. 2011, 21, 250–252. [Google Scholar] [CrossRef]
- Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Halogen Bonding Based Recognition Processes: A World Parallel to Hydrogen Bonding. Acc. Chem. Res. 2005, 38, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, R.; Zhou, Z.; Li, W.; Cheng, J. S···X halogen bonds and H···X hydrogen bonds in H2CS–XY (XY = FF, ClF, ClCl, BrF, BrCl, and BrBr) complexes: Cooperativity and solvent effect. J. Chem. Phys. 2012, 136, 14302. [Google Scholar] [CrossRef] [PubMed]
- Tsirelson, V.G.; Zhou, P.F.; Tang, T.-H.; Bader, R.F.W. Topological definition of crystal structure: Determination of the bonded interactions in solid molecular chlorine. Acta Crystallogr. Sect. A 1995, 51, 143–153. [Google Scholar] [CrossRef]
- Grabowski, S.J. Lewis Acid Properties of Tetrel Tetrafluorides—The Coincidence of the σ-Hole Concept with the QTAIM Approach. Crystals 2017, 7, 43. [Google Scholar] [CrossRef]
- Khrustalev, V.N.; Grishina, M.M.; Matsulevich, Z.V.; Lukiyanova, J.M.; Borisova, G.N.; Osmanov, V.K.; Novikov, A.S.; Kirichuk, A.A.; Borisov, A.V.; Solari, E.; et al. Novel cationic 1,2,4-selenadiazoles: Synthesis via addition of 2-pyridylselenyl halides to unactivated nitriles, structures and four-center Se⋯N contacts. Dalt. Trans. 2021, 50, 10689–10691. [Google Scholar] [CrossRef]
- Grudova, M.V.; Khrustalev, V.N.; Kubasov, A.S.; Strashnov, P.V.; Matsulevich, Z.V.; Lukiyanova, J.M.; Borisova, G.N.; Kritchenkov, A.S.; Grishina, M.M.; Artemjev, A.A.; et al. Adducts of 2-Pyridylselenenyl Halides and Nitriles as Novel Supramolecular Building Blocks: Four-Center Se···N Chalcogen Bonding versus Other Weak Interactions. Cryst. Growth Des. 2022, 22, 313–322. [Google Scholar] [CrossRef]
- Buslov, I.V.; Novikov, A.S.; Khrustalev, V.N.; Grudova, M.V.; Kubasov, A.S.; Matsulevich, Z.V.; Borisov, A.V.; Lukiyanova, J.M.; Grishina, M.M.; Kirichuk, A.A.; et al. 2-Pyridylselenenyl versus 2-Pyridyltellurenyl Halides: Symmetrical Chalcogen Bonding in the Solid State and Reactivity towards Nitriles. Symmetry 2021, 13, 2350. [Google Scholar] [CrossRef]
- Artemjev, A.A.; Novikov, A.P.; Burkin, G.M.; Sapronov, A.A.; Kubasov, A.S.; Nenajdenko, V.G.; Khrustalev, V.N.; Borisov, A.V.; Kirichuk, A.A.; Kritchenkov, A.S.; et al. Towards Anion Recognition and Precipitation with Water-Soluble 1,2,4-Selenodiazolium Salts: Combined Structural and Theoretical Study. Int. J. Mol. Sci. 2022, 23, 6372. [Google Scholar] [CrossRef] [PubMed]
- Grudova, M.V.; Novikov, A.S.; Kubasov, A.S.; Khrustalev, V.N.; Kirichuk, A.A.; Nenajdenko, V.G.; Tskhovrebov, A.G. Aurophilic Interactions in Cationic Three-Coordinate Gold(I) Bipyridyl/Isocyanide Complex. Crystals 2022, 12, 613. [Google Scholar] [CrossRef]
- Khrustalev, V.N.; Savchenko, A.O.; Zhukova, A.I.; Chernikova, N.Y.; Kurykin, M.A.; Novikov, A.S.; Tskhovrebov, A.G. Attractive fluorine···fluorine interactions between perfluorinated alkyl chains: A case of perfluorinated Cu(II) diiminate Cu[C2F5-C(NH)-CF=C(NH)-CF3]2. Z. Fur Krist.-Cryst. Mater. 2021, 236, 117–122. [Google Scholar] [CrossRef]
- Tskhovrebov, A.G.; Novikov, A.S.; Kritchenkov, A.S.; Khrustalev, V.N.; Haukka, M. Attractive halogen···halogen interactions in crystal structure of trans-dibromogold(III) complex. Z. Fur Krist.-Cryst. Mater. 2020, 235, 477–480. [Google Scholar] [CrossRef]
- Shikhaliyev, N.G.; Maharramov, A.M.; Suleymanova, G.T.; Babazade, A.A.; Nenajdenko, V.G.; Khrustalev, V.N.; Novikov, A.S.; Tskhovrebov, A.G. Arylhydrazones of α-keto esters via methanolysis of dichlorodiazabutadienes: Synthesis and structural study. Mendeleev Commun. 2021, 31, 677–679. [Google Scholar] [CrossRef]
- Tskhovrebov, A.G.; Novikov, A.S.; Tupertsev, B.S.; Nazarov, A.A.; Antonets, A.A.; Astafiev, A.A.; Kritchenkov, A.S.; Kubasov, A.S.; Nenajdenko, V.G.; Khrustalev, V.N. Azoimidazole Gold(III) Complexes: Synthesis, Structural Characterization and Self-Assembly in the Solid State. Inorg. Chim. Acta 2021, 522, 120373. [Google Scholar] [CrossRef]
- Shikhaliyev, N.G.; Maharramov, A.M.; Bagirova, K.N.; Suleymanova, G.T.; Tsyrenova, B.D.; Nenajdenko, V.G.; Novikov, A.S.; Khrustalev, V.N.; Tskhovrebov, A.G. Supramolecular organic frameworks derived from bromoaryl-substituted dichlorodiazabutadienes via Cl···Br halogen bonding. Mendeleev Commun. 2021, 31, 191–193. [Google Scholar] [CrossRef]
- Tsyrenova, B.; Nenajdenko, V. Synthesis and spectral study of a new family of 2,5-diaryltriazoles having restricted rotation of the 5-aryl substituent. Molecules 2020, 25, 480. [Google Scholar] [CrossRef] [PubMed]
- Repina, O.V.; Novikov, A.S.; Khoroshilova, O.V.; Kritchenkov, A.S.; Vasin, A.A.; Tskhovrebov, A.G. Lasagna-like supramolecular polymers derived from the PdII osazone complexes via C(sp2)–H⋯Hal hydrogen bonding. Inorg. Chim. Acta 2020, 502, 119378. [Google Scholar] [CrossRef]
- Mikhaylov, V.N.; Sorokoumov, V.N.; Novikov, A.S.; Melnik, M.V.; Tskhovrebov, A.G.; Balova, I.A. Intramolecular hydrogen bonding stabilizes trans-configuration in a mixed carbene/isocyanide PdII complexes. J. Organomet. Chem. 2020, 912, 121174. [Google Scholar] [CrossRef]
- Nenajdenko, V.G.; Shikhaliyev, N.G.; Maharramov, A.M.; Atakishiyeva, G.T.; Niyazova, A.A.; Mammadova, N.A.; Novikov, A.S.; Buslov, I.V.; Khrustalev, V.N.; Tskhovrebov, A.G. Structural Organization of Dibromodiazadienes in the Crystal and Identification of Br···O Halogen Bonding Involving the Nitro Group. Molecules 2022, 27, 5110. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Varava, P.; Fabrizio, A.; Eymann, L.Y.M.; Tskhovrebov, A.G.; Planes, O.M.; Solari, E.; Fadaei-Tirani, F.; Scopelliti, R.; Sienkiewicz, A.; et al. Synthesis of aminyl biradicals by base-induced Csp3–Csp3 coupling of cationic azo dyes. Chem. Sci. 2019, 10, 5719–5724. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.H.; Parkin, G. 2-Seleno-1-alkylbenzimidazoles and their diselenides: Synthesis and structural characterization of a 2-seleno-1-methylbenzimidazole complex of mercury. Polyhedron 2013, 52, 658–668. [Google Scholar] [CrossRef]
- Antoniadis, C.D.; Blake, A.J.; Hadjikakou, S.K.; Hadjiliadis, N.; Hubberstey, P.; Schröder, M.; Wilson, C. Structural characterization of selenium and selenium-diiodine analogues of the antithyroid drug 6-{\it n}-propyl-2-thiouracil and its alkyl derivatives. Acta Crystallogr. Sect. B 2006, 62, 580–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhasin, K.K.; Arora, E.; Grover, A.S.; Jyoti; Singh, H.; Mehta, S.K.; Bhasin, A.K.K.; Jacob, C. Synthesis and characterization of new 2-pyrimidyl chalcogen (S, Se, Te) compounds: X-ray crystal structure of bis(4,6-dimethyl-2-pyrimidyl)diselenide and 4,6-dimethyl-2-(phenylselanyl)pyrimidine. J. Organomet. Chem. 2013, 732, 137–141. [Google Scholar] [CrossRef]
- Borisov, A.V.; Matsulevich, Z.V.; Osmanov, V.K.; Borisova, G.N.; Chizhov, A.O.; Mammadova, G.Z.; Maharramov, A.M.; Aisin, R.R.; Khrustalev, V.N. Diorganyl dichalcogenides with intramolecular coordination interactions: The synthesis and structure of bis(4,6-dimethylpyrimidin-2-yl) diselenide. Russ. Chem. Bull. 2013, 62, 2462–2466. [Google Scholar] [CrossRef]
- Bader, R.F.W. A Quantum Theory of Molecular Structure and Its Applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]
- Bondi, A. Van der Waals volumes and radii of metals in covalent compounds. J. Phys. Chem. 1966, 70, 3006–3007. [Google Scholar] [CrossRef]
- Grudova, M.V.; Kubasov, A.S.; Khrustalev, V.N.; Novikov, A.S.; Kritchenkov, A.S.; Nenajdenko, V.G.; Borisov, A.V.; Tskhovrebov, A.G. Exploring Supramolecular Assembly Space of Cationic 1,2,4-Selenodiazoles: Effect of the Substituent at the Carbon Atom and Anions. Molecules 2022, 27, 1029. [Google Scholar] [CrossRef] [PubMed]
- Novikov, A.S.; Gushchin, A.L. Trinuclear molybdenum clusters with sulfide bridges as potential anionic receptors via chalcogen bonding. CrystEngComm 2021, 23, 4607–4614. [Google Scholar] [CrossRef]
- Mikherdov, A.S.; Novikov, A.S.; Kinzhalov, M.A.; Zolotarev, A.A.; Boyarskiy, V.P. Intra-/Intermolecular Bifurcated Chalcogen Bonding in Crystal Structure of Thiazole/Thiadiazole Derived Binuclear (Diaminocarbene)PdII Complexes. Crystals 2018, 8, 112. [Google Scholar] [CrossRef]
- Mikherdov, A.S.; Novikov, A.S.; Kinzhalov, M.A.; Boyarskiy, V.P.; Starova, G.L.; Ivanov, A.Y.; Kukushkin, V.Y. Halides Held by Bifurcated Chalcogen–Hydrogen Bonds. Effect of μ(S,N–H)Cl Contacts on Dimerization of Cl(carbene)PdII Species. Inorg. Chem. 2018, 57, 3420–3433. [Google Scholar] [CrossRef]
- Pairan, N.F.; Kasim, N.A.M.; Yamin, B.M.; Shah, N.A.A. Crystal structure of (E)-N,N-diethyl-2-(5-nitrothiazol-2-yl)-1-phenylethen-1-amine, C15H17N3O2S. Z. Für Krist.-New Cryst. Struct. 2017, 232, 795–797. [Google Scholar] [CrossRef]
- Mikherdov, A.S.; Kinzhalov, M.A.; Novikov, A.S.; Boyarskiy, V.P.; Boyarskaya, I.A.; Dar’In, D.V.; Starova, G.L.; Kukushkin, V.Y. Difference in Energy between Two Distinct Types of Chalcogen Bonds Drives Regioisomerization of Binuclear (Diaminocarbene)PdII Complexes. J. Am. Chem. Soc. 2016, 138, 14129–14137. [Google Scholar] [CrossRef] [PubMed]
- Contreras-García, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J.-P.; Beratan, D.N.; Yang, W. NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. J. Chem. Theory Comput. 2011, 7, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H⋯F-Y systems. J. Chem. Phys. 2002, 117, 5529–5542. [Google Scholar] [CrossRef]
- Zakrzewski, J.; Huras, B.; Kiełczewska, A. Synthesis of Isoselenocyanates. Syntheses 2016, 48, 85–96. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09 C.01; Gaussian Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys. 1993, 80, 1431–1441. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Rigaku. CrysAlisPro Software System, v. 1.171.41.106a; Rigaku Oxford Diffraction: Tokyo, Japan, 2021. [Google Scholar]
- Bruker. SAINT, v. 8.34A; Bruker AXS Inc.: Madison, WI, USA, 2014. [Google Scholar]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Cryst. 2015, 48, 3–10. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef]
Contact * | ⍴(r) | ∇2⍴(r) | λ2 | Hb | V(r) | G(r) | Eint ≈ −V(r)/2 |
---|---|---|---|---|---|---|---|
3f | |||||||
Se···Se 3.717 Å | 0.007 | 0.020 | −0.007 | 0.001 | −0.003 | 0.004 | 0.9 |
4b | |||||||
Se–Se 2.360 Å | 0.102 | −0.052 | −0.102 | −0.043 | −0.074 | 0.031 | 23.2 |
Se···N 2.899 Å | 0.017 | 0.061 | −0.017 | 0.002 | −0.012 | 0.014 | 3.8 |
4c | |||||||
Se–Se 2.357 Å | 0.102 | −0.052 | −0.102 | −0.044 | −0.075 | 0.031 | 23.5 |
Se···N 2.870 Å | 0.018 | 0.063 | −0.018 | 0.001 | −0.013 | 0.014 | 4.1 |
5 | |||||||
Se–Se 2.359 Å | 0.102 | −0.054 | −0.102 | −0.044 | −0.074 | 0.030 | 23.2 |
Se···N 2.792 Å | 0.021 | 0.070 | −0.021 | 0.001 | −0.015 | 0.016 | 4.7 |
6 | |||||||
Se–Se 2.433 Å | 0.095 | −0.048 | −0.095 | −0.039 | −0.066 | 0.027 | 20.7 |
Se···N 2.733 Å | 0.024 | 0.080 | −0.024 | 0.001 | −0.018 | 0.019 | 5.6 |
Se···N 2.479 Å | 0.042 | 0.115 | −0.042 | −0.003 | −0.035 | 0.032 | 11.0 |
7 | |||||||
Se–Se 2.343 Å | 0.104 | −0.052 | −0.104 | −0.045 | −0.077 | 0.032 | 24.2 |
Se···N 2.925 Å | 0.017 | 0.059 | −0.017 | 0.002 | −0.011 | 0.013 | 3.5 |
8 | |||||||
Te–Te 2.723 Å | 0.072 | 0.138 | −0.072 | −0.018 | −0.031 | 0.013 | 9.7 |
Te···N 3.082 Å | 0.016 | 0.056 | −0.016 | 0.001 | −0.010 | 0.011 | 3.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osmanov, V.K.; Chipinsky, E.V.; Khrustalev, V.N.; Novikov, A.S.; Askerov, R.K.; Chizhov, A.O.; Borisova, G.N.; Borisov, A.V.; Grishina, M.M.; Kurasova, M.N.; et al. Facile Access to 2-Selenoxo-1,2,3,4-tetrahydro-4-quinazolinone Scaffolds and Corresponding Diselenides via Cyclization between Methyl Anthranilate and Isoselenocyanates: Synthesis and Structural Features. Molecules 2022, 27, 5799. https://doi.org/10.3390/molecules27185799
Osmanov VK, Chipinsky EV, Khrustalev VN, Novikov AS, Askerov RK, Chizhov AO, Borisova GN, Borisov AV, Grishina MM, Kurasova MN, et al. Facile Access to 2-Selenoxo-1,2,3,4-tetrahydro-4-quinazolinone Scaffolds and Corresponding Diselenides via Cyclization between Methyl Anthranilate and Isoselenocyanates: Synthesis and Structural Features. Molecules. 2022; 27(18):5799. https://doi.org/10.3390/molecules27185799
Chicago/Turabian StyleOsmanov, Vladimir K., Evgeniy V. Chipinsky, Victor N. Khrustalev, Alexander S. Novikov, Rizvan Kamiloglu Askerov, Alexander O. Chizhov, Galina N. Borisova, Alexander V. Borisov, Maria M. Grishina, Margarita N. Kurasova, and et al. 2022. "Facile Access to 2-Selenoxo-1,2,3,4-tetrahydro-4-quinazolinone Scaffolds and Corresponding Diselenides via Cyclization between Methyl Anthranilate and Isoselenocyanates: Synthesis and Structural Features" Molecules 27, no. 18: 5799. https://doi.org/10.3390/molecules27185799
APA StyleOsmanov, V. K., Chipinsky, E. V., Khrustalev, V. N., Novikov, A. S., Askerov, R. K., Chizhov, A. O., Borisova, G. N., Borisov, A. V., Grishina, M. M., Kurasova, M. N., Kirichuk, A. A., Peregudov, A. S., Kritchenkov, A. S., & Tskhovrebov, A. G. (2022). Facile Access to 2-Selenoxo-1,2,3,4-tetrahydro-4-quinazolinone Scaffolds and Corresponding Diselenides via Cyclization between Methyl Anthranilate and Isoselenocyanates: Synthesis and Structural Features. Molecules, 27(18), 5799. https://doi.org/10.3390/molecules27185799