Synthesis of Carbonyl-Containing Oxindoles via Ni-Catalyzed Reductive Aryl-Acylation and Aryl-Esterification of Alkenes
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. General Procedure for the Synthesis of Ketones
4.2. General Procedure for the Synthesis of Esters
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Figueirdo, G.S.M.; Zardo, R.S.; Silva, B.V.; Violante, F.A.; Pinto, A.C.; Fernandes, P.D. Convolutamydine A and synthetic analogues have antinociceptive properties in mice. Pharmacol. Biochem. Be. 2013, 103, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-Y.; Lin, H.-Y.; Cheng, F.; Chiang, W.; Kuo, Y.-H. Isolation and characterization of new lactam compounds that inhibit lung and colon cancer cells from adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) bran. Food Chem. Toxicol. 2008, 46, 1933–1939. [Google Scholar] [CrossRef] [PubMed]
- Ochi, M.; Kawasaki, K.; Kataoka, H.; Uchio, Y.; Nishi, H. AG-041R, a Gastrin/CCK-B Antagonist, Stimulates Chondrocyte Proliferation and Metabolism in Vitro. Biochem. Bioph. Res. Co. 2001, 283, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Hinze, M.E.; Daughtry, J.L.; Lewis, C.A. Access to the Surugatoxin Alkaloids: Chemo-, Regio-, and Stereoselective Oxindole Annulation. J. Org. Chem. 2015, 80, 11258–11265. [Google Scholar] [CrossRef] [PubMed]
- Boddy, A.j.; Bull, J.A. Stereoselective synthesis and applications of spirocyclic oxindoles. Org. Chem. Front. 2021, 8, 1026–1084. [Google Scholar] [CrossRef]
- Marti, C.; Carreira, E.M. Construction of Spiro[pyrrolidine-3,3′-oxindoles]-Recent Applications to the Synthesis of Oxindole Alkaloids. Eur. J. Org. Chem. 2003, 12, 2209–2219. [Google Scholar] [CrossRef]
- Shen, K.; Liu, X.; Lin, L.; Feng, X. Recent progress in enantioselective synthesis of C3-functionalized oxindoles: Rare earth metals take action. Chem. Sci. 2012, 3, 327–334. [Google Scholar] [CrossRef]
- Dalpozzo, R.; Bartoli, G.; Bencivenni, G. Recent advances in organocatalytic methods for the synthesis of disubstituted 2- and 3-indolinones. Chem. Soc. Rev. 2012, 41, 7247–7290. [Google Scholar] [CrossRef]
- Cao, Z.-Y.; Wang, Y.-H.; Zeng, X.-P.; Zhou, J. Catalytic asymmetric synthesis of 3,3-disubstituted oxindoles: Diazooxindole joins the field. Tetrahedron Lett. 2014, 55, 2571–2584. [Google Scholar] [CrossRef]
- Cao, Z.-Y.; Zhou, F.; Zhou, J. Development of Synthetic Methodologies via Catalytic Enantioselective Synthesis of 3,3-Disubstituted Oxindoles. Acc. Chem. Res. 2018, 51, 1443–1454. [Google Scholar] [CrossRef]
- Ping, Y.; Li, Y.; Zhu, J.; Kong, W. Construction of Quaternary Stereocenters by Palladium Catalyzed Carbopalladation-Initiated Cascade Reactions. Angew. Chem. Int. Ed. 2019, 58, 1562. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.D.; Larin, E.M.; Mirabi, B.; Lautens, M. Metal-Catalyzed Approaches toward the Oxindole Core. Acc. Chem. Res. 2020, 53, 1605–1619. [Google Scholar] [CrossRef] [PubMed]
- Everson, D.A.; Weix, D.J. Nickel-Catalyzed Reductive Cross-Coupling of Aryl Halides with Alkyl Halides. J. Am. Chem. Soc. 2010, 132, 920–921. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Yang, T.; Wang, S.; Xu, H.; Gong, H. Nickel-Catalyzed Reductive Cross-Coupling of Unactivated Alkyl Halide. Org. Lett. 2011, 13, 2138–2141. [Google Scholar] [CrossRef]
- Nédélec, J.-Y.; Périchon, J.; Troupel, M. Organic electroreductive coupling reactions using transition metal complexes as catalysts. Top. Curr. Chem. 1997, 185, 141–173. [Google Scholar]
- Knappke, C.E.I.; Grupe, S.; Gärtner, D.; Corpet, M.; Gosmini, C.; Jacobi von Wangelin, A. Reductive Cross-Coupling Reactions between Two Electrophiles. Chem. –A Eur. J. 2014, 20, 6828–6842. [Google Scholar] [CrossRef]
- Moragas, T.; Correa, A.; Martin, R. Metal-Catalyzed Reductive Coupling Reactions of Organic Halides with Carbonyl-Type Compounds. Chem. Eur. J. 2014, 20, 8242–8258. [Google Scholar] [CrossRef]
- Everson, D.A.; Weix, D.J. Cross-Electrophile Coupling: Principles of Reactivity and Selectivity. J. Org. Chem. 2014, 79, 4793–4798. [Google Scholar] [CrossRef]
- Tasker, S.Z.; Standley, E.A.; Jamison, T.F. Recent advances in homogeneous nickel catalysis. Nature 2014, 509, 299–309. [Google Scholar] [CrossRef]
- Gu, J.; Wang, X.; Xue, W.; Gong, H. Nickel-catalyzed reductive coupling of alkyl halides with other electrophiles: Concept and mechanistic considerations. Org. Chem. Front. 2015, 2, 1411–1421. [Google Scholar] [CrossRef]
- Tollefson, E.J.; Hanna, L.E.; Jarvo, E.R. Stereospecific Nickel-Catalyzed Cross-Coupling Reactions of Benzylic Ethers and Esters. Acc. Chem. Res. 2015, 48, 2344–2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weix, D.J. Methods and Mechanisms for Cross-Electrophile Coupling of Csp2 Halides with Alkyl Electrophiles. Acc. Chem. Res. 2015, 48, 1767–1775. [Google Scholar] [CrossRef]
- Cherney, A.H.; Kadunce, N.T.; Reisman, S.E. Enantioselective and Enantiospecific Transition-Metal-Catalyzed Cross-Coupling Reactions of Organometallic Reagents to Construct C–C Bonds. Chem. Rev. 2015, 115, 9587–9652. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dai, Y.; Gong, H. Nickel-Catalyzed Reductive Couplings. Top Curr. Chem. 2016, 374, 43. [Google Scholar] [CrossRef] [PubMed]
- Lucas, E.L.; Jarvo, E.R. Stereospecific and stereoconvergent cross-couplings between alkyl electrophiles. Nat. Rev. Chem. 2017, 1, 65. [Google Scholar] [CrossRef]
- Richmond, E.; Moran, J. Recent Advances in Nickel Catalysis Enabled by Stoichiometric Metallic Reducing Agents. Synthesis 2018, 50, 499–513. [Google Scholar] [CrossRef]
- Qi, X.; Diao, T. Nickel-Catalyzed Dicarbofunctionalization of Alkenes. ACS Catal. 2020, 10, 8542–8556. [Google Scholar] [CrossRef]
- Poremba, K.E.; Dibrell, S.E.; Reisman, S.E. Nickel-Catalyzed Enantioselective Reductive Cross-Coupling Reactions. ACS Catal. 2020, 10, 8237–8246. [Google Scholar] [CrossRef]
- Xue, W.; Jia, X.; Wang, X.; Tao, X.; Yin, Z.; Gong, H. Nickel-catalyzed formation of quaternary carbon centers using tertiary alkyl electrophiles. Chem. Soc. Rev. 2021, 50, 4162–4184. [Google Scholar] [CrossRef]
- Charboneau, D.J.; Hazari, N.; Huang, H.; Uehling, M.R.; Zultanski, S.L. Homogeneous Organic Electron Donors in Nickel-Catalyzed Reductive Transformations. J. Org. Chem. 2022, 87, 7589–7609. [Google Scholar] [CrossRef]
- Yan, C.S.; Peng, Y.; Xu, X.B.; Wang, Y.W. Nickel-Mediated Inter- and Intramolecular Reductive Cross-Coupling of Unactivated Alkyl bromides and Aryl iodides at Room Temperature. Chem. Eur. J. 2012, 18, 6039–6048. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y.; Wang, X.; Anthony, D.; Diao, T. Ni-Catalyzed Two-Component Reductive Dicarbofunctionalization of Alkenes via Radical Cyclization. Chem. Commun. 2018, 54, 2558–2561. [Google Scholar] [CrossRef]
- Wang, K.; Ding, Z.; Zhou, Z.; Kong, W. Ni-Catalyzed Enantioselective Reductive Diarylation of Activated Alkenes by Domino Cyclization/Cross-Coupling. J. Am. Chem. Soc. 2018, 140, 12364–12368. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Wang, C. Ni-Catalyzed Asymmetric Reductive Arylalkylation of Unactivated Alkenes. Angew. Chem. Int. Ed. 2019, 58, 6722–6726. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.X.; Qiao, J.B.; Xu, G.L.; Pang, X.; Qi, L.; Ma, W.Y.; Zhao, Z.Z.; Duan, J.; Du, Y.F.; Su, P.; et al. Highly Enantioselective Cross-Electrophile Aryl-Alkenylation of Unactivated Alkenes. J. Am. Chem. Soc. 2019, 141, 7637–7643. [Google Scholar] [CrossRef]
- Li, Y.; Ding, Z.; Lei, A.; Kong, W. Ni-Catalyzed Enantioselective Reductive Aryl-Alkenylation of Alkenes: Application to the Synthesis of (+)-Physovenine and (+)-Physostigmine. Org. Chem. Front. 2019, 6, 3305–3309. [Google Scholar] [CrossRef]
- Ping, Y.; Wang, K.; Pan, Q.; Ding, Z.; Zhou, Z.; Guo, Y.; Kong, W. Ni-Catalyzed Regio- and Enantioselective Domino Reductive Cyclization: One-Pot Synthesis of 2,3-Fused Cyclopentannulated Indolines. ACS Catal. 2019, 9, 7335–7342. [Google Scholar] [CrossRef]
- Ma, T.; Chen, Y.; Li, Y.; Ping, Y.; Kong, W. Nickel-Catalyzed Enantioselective Reductive Aryl Fluoroalkenylation of Alkenes. ACS Catal. 2019, 9, 9127–9133. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, H.; Wang, C. Ni-Catalyzed Asymmetric Reductive Arylbenzylation of Unactivated Alkenes. Org. Lett. 2020, 22, 2724–2729. [Google Scholar] [CrossRef]
- Lan, Y.; Wang, C. Nickel-Catalyzed Enantioselective Reductive Carbo-Acylation of Alkenes. Commun. Chem. 2020, 3, 45. [Google Scholar] [CrossRef]
- Ping, Y.; Kong, W. Ni-Catalyzed Reductive Difunctionalization of Alkenes. Synthesis 2020, 52, 979–992. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, J.; Chen, H.; Kong, W. Stereoselective synthesis of pentasubstituted 1,3-dienes via Ni-catalyzed reductive coupling of unsymmetrical internal alkynes. Chem. Sci. 2020, 11, 10204–10211. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Liu, W.; Kong, W. Ni-Catalyzed Reductive Antiarylative Cyclization of Alkynones. Org. Lett. 2020, 22, 6982–6987. [Google Scholar] [CrossRef]
- Chen, X.-W.; Yue, J.-P.; Wang, K.; Gui, Y.-Y.; Niu, Y.-N.; Liu, J.; Ran, C.-K.; Kong, W.; Zhou, W.-J.; Yu, D.-G. Nickel-Catalyzed Asymmetric Reductive Carbo-Carboxylation of Alkenes with CO2. Angew. Chem. Int. Ed. 2021, 60, 14068–14075. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Dong, J.; Kong, W. Ni-Catalyzed Reductive Arylcyanation of Alkenes. Org. Lett. 2021, 23, 6466–6470. [Google Scholar]
- Pan, Q.; Ping, Y.; Wang, Y.; Guo, Y.; Kong, W. Ni-Catalyzed Ligand-Controlled Regiodivergent Reductive Dicarbofunctionalization of Alkenes. J. Am. Chem. Soc. 2021, 143, 10282–10291. [Google Scholar]
- Ping, Y.; Li, X.; Pan, Q.; Kong, W. Ni-Catalyzed Divergent Synthesis of 2-Benzazepine Derivatives via Tunable Cyclization and 1,4-Acyl Transfer Triggered by Amide N-C Bond Cleavage. Angew. Chem. Int. Ed 2022, 61, e202201574. [Google Scholar]
- Ping, Y.; Pan, Q.; Guo, Y.; Liu, Y.; Li, X.; Wang, M.; Kong, W. Switchable 1,2-Rearrangement Enables Expedient Synthesis of Structurally Diverse Fluorine-Containing Scaffolds. J. Am. Chem. Soc. 2022, 144, 11626–11637. [Google Scholar] [CrossRef]
- Xu, S.; Wang, K.; Kong, W. Ni-Catalyzed Reductive Arylacylation of Alkenes toward Carbonyl-Containing Oxindoles. Org. Lett. 2019, 21, 7498–7503. [Google Scholar] [CrossRef]
- Jin, Y.; Fan, P.; Wang, C. Nickel-Catalyzed Reductive Asymmetric Aryl-Acylation and Aryl-Carbamoylation of Unactivated Alkenes. CCS Chem. 2022, 4, 1510–1518. [Google Scholar] [CrossRef]
- Bergonzini, G.; Cassani, C.; Lorimer-Olsson, H.; Hçrberg, J.; Wallentin, C. Visible-Light-Mediated Photocatalytic Difunctionalization of Olefins by Radical Acylarylation and Tandem Acylation/Semipinacol Rearrangement. Chem. Eur. J. 2016, 22, 3292–3295. [Google Scholar] [CrossRef]
- Xu, S.; Chen, J.; Liu, D.; Bao, Y.; Liang, Y.; Xu, P. Aroyl chlorides as novel acyl radical precursors via visible-light photoredox catalysis. Org. Chem. Front. 2017, 4, 1331–1335. [Google Scholar] [CrossRef]
- Ji, W.; Tan, H.; Wang, M.; Lia, P.; Wang, L. Photocatalyst-free hypervalent iodine reagent catalyzed decarboxylative acylarylation of acrylamides with α-oxocarboxylic acids driven by visible-light irradiation. Chem. Commun. 2016, 52, 1462–1465. [Google Scholar] [CrossRef]
- Zheng, L.; Huang, H.; Yang, C.; Xia, W. UV Light-Mediated Difunctionalization of Alkenes through Aroyl Radical Addition/1,4-/1,2-Aryl Shift Cascade Reactions. Org. Lett. 2015, 17, 1034–1037. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, S.; Wang, J.; Chen, S.; Yu, X. Synthesis of oxindole-3-acetates through iron-catalyzed oxidative arylalkoxycarbonylation of activated alkenes. Tetrahedron 2014, 70, 3466–3470. [Google Scholar] [CrossRef]
- Wang, H.; Guo, L.; Duan, X. Silver-Catalyzed Decarboxylative Acylarylation of Acrylamides with α-Oxocarboxylic Acids in Aqueous Media. Adv. Synth. Catal. 2013, 355, 2222–2226. [Google Scholar] [CrossRef]
Entry | Ligand | Solvent | Reductant | Yield of 3a (%) b | Yield of 4a (%) b |
---|---|---|---|---|---|
1 | L1 | DMA | Mn | <1 | 6 |
2 | L2 | DMA | Mn | <1 | <1 |
3 | L3 | DMA | Mn | 5 | 35 |
4 | L4 | DMA | Mn | 10 | <1 |
5 | L5 | DMA | Mn | 12 | <1 |
6 | L6 | DMA | Mn | <1 | <1 |
7 | L7 | DMA | Mn | <1 | <1 |
8 | L8 | DMA | Mn | 57 | 21 |
9 | L8 | DMF | Mn | 52 | 11 |
10 | L8 | MeCN | Mn | 67 | 2 |
11 | L8 | THF | Mn | 48 | <1 |
12 | L8 | MeCN | Zn | 65 | 24 |
13 c | L8 | MeCN | Mn | 67 | <1 |
14 c,d | L8 | MeCN | Mn | 85 | <1 |
15 c,d,e | L8 | MeCN | Mn | 85 | <1 |
16 c,d | L8 | MeCN | - | 0 | 0 |
17 c,d,f | L8 | MeCN | Mn | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Z.; Kong, W. Synthesis of Carbonyl-Containing Oxindoles via Ni-Catalyzed Reductive Aryl-Acylation and Aryl-Esterification of Alkenes. Molecules 2022, 27, 5899. https://doi.org/10.3390/molecules27185899
Ding Z, Kong W. Synthesis of Carbonyl-Containing Oxindoles via Ni-Catalyzed Reductive Aryl-Acylation and Aryl-Esterification of Alkenes. Molecules. 2022; 27(18):5899. https://doi.org/10.3390/molecules27185899
Chicago/Turabian StyleDing, Zhengtian, and Wangqing Kong. 2022. "Synthesis of Carbonyl-Containing Oxindoles via Ni-Catalyzed Reductive Aryl-Acylation and Aryl-Esterification of Alkenes" Molecules 27, no. 18: 5899. https://doi.org/10.3390/molecules27185899
APA StyleDing, Z., & Kong, W. (2022). Synthesis of Carbonyl-Containing Oxindoles via Ni-Catalyzed Reductive Aryl-Acylation and Aryl-Esterification of Alkenes. Molecules, 27(18), 5899. https://doi.org/10.3390/molecules27185899