Silica-Based Supported Ionic Liquid-like Phases as Heterogeneous Catalysts
Abstract
:1. Introduction
2. Immobilization of Ionic Liquids on Silica-Based Materials
3. Silica-Based Supported Ionic Liquid-like Phases in Organic Catalysis
3.1. Lewis Type SILLPs
3.2. Brønsted-Type SILLPs
3.3. Fe3O4-Silica Hybrid Based SILLPs
3.4. SILLP as Matrix for Metals, Organocatalysts, and Enzymes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thore, S.; Tarverdyan, R. Measuring Sustainable Development Goals Performance; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Scheldon, R.A. The E factor 25 years on: The rise of green chemistry and sustainability. Green Chem. 2017, 19, 18–43. [Google Scholar] [CrossRef]
- Ratti, R. Industrial applications of green chemistry: Status, Challenges and Prospects. SN Appl. Sci. 2020, 2, 263. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Arends, I.; Hanefeld, U. Green Chemistry and Catalysis; Wiley-VCH Verlag GmbH: Berlin, Germany, 2020. [Google Scholar]
- Scheldon, R.A.; Woodley, J.M. Role of biocatalysis in sustainable chemistry. Chem. Rev. 2018, 118, 801–838. [Google Scholar] [CrossRef]
- De los Ríos, A.P.; Irabien, A.; Hollmann, F.; Fernández, F.J.H. Ionic Liquids: Green Solvents for Chemical Processing. J. Chem. 2013, 2013. 402172. [Google Scholar] [CrossRef]
- Greer, A.J.; Jacquemin, J.; Hardacre, C. Industrial applications of ionic liquids. Molecules 2020, 25, 5207. [Google Scholar] [CrossRef]
- Padvi, S.A.; Dalal, D.S. Task-Specific Ionic Liquids as a Green Catalysts and Solvents for Organic Synthesis. Curr. Green Chem. 2020, 7, 105–119. [Google Scholar] [CrossRef]
- Chrobok, A. The Baeyer–Villiger oxidation of ketones with Oxone® in the presence of ionic liquids as solvents. Tetrahedron 2010, 66, 6212–6216. [Google Scholar] [CrossRef]
- Domínguez de María, P. Ionic Liquids in Biotransformations and Organocatalysis: Solvents and Beyond; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 1–435. [Google Scholar]
- Drożdż, A.; Erfurt, K.; Bielas, R.; Chrobok, A. Chemo-enzymatic Baeyer–Villiger oxidation in the presence of Candida antarctica lipase B and ionic liquids. New J. Chem. 2015, 39, 1315–1321. [Google Scholar] [CrossRef]
- Karuppasamy, K.; Theerthagiri, J.; Vikraman, D.; Yim, C.-J.; Hussain, S.; Sharma, R.; Kim, H.S. Ionic Liquid-Based Electrolytes for Energy Storage Devices: A Brief Review on Their Limits and Applications. Polymers 2020, 12, 918. [Google Scholar] [CrossRef]
- Passos, H.; Freire, M.G.; Coutinho, J.A.P. Ionic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chem. 2014, 16, 4786–4815. [Google Scholar] [CrossRef] [Green Version]
- Bajkacz, S.; Rusin, K.; Wolny, A.; Adamek, J.; Erfurt, K.; Chrobok, A. Highly efficient extraction procedures based on natural deep eutectic solvents or ionic liquids for determination of 20-Hydroxyecdysone in Spinach. Molecules 2020, 25, 4736. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.K.; Khokarale, S.G.; Bui, T.Q.; Mikkola, J.-P.T. Ionic Liquids: Potential Materials for Carbon Dioxide Capture and Utilization. Front. Mater. 2019, 6, 42. [Google Scholar] [CrossRef]
- Vekariya, R.L. A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liq. 2017, 227, 44–60. [Google Scholar] [CrossRef]
- Welton, T. Ionic liquids in catalysis. Coord. Chem. Rev. 2004, 248, 2459–2477. [Google Scholar] [CrossRef]
- Brown, L.C.; Hogg, J.M.; Swadźba-Kwaśny, M. Lewis Acidic Ionic Liquids. Top Curr. Chem. 2017, 375, 78. [Google Scholar] [CrossRef]
- Greaves, T.L.; Drummond, C.J. Protic Ionic Liquids: Properties and Applications. Chem. Rev. 2008, 108, 206–237. [Google Scholar] [CrossRef] [PubMed]
- Amarasekara, A.S. Acidic Ionic Liquids. Chem. Rev. 2016, 116, 6133–6183. [Google Scholar] [CrossRef]
- Jasiak, K.; Siewniak, A.; Kopczyńska, K.; Chrobok, A.; Baj, S. Hydrogensulphate ionic liquids as an efficient catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. J. Chem. Technol. Biotechnol. 2016, 91, 2827–2833. [Google Scholar] [CrossRef]
- Shen, L.; Yin, H.; Wang, A.; Lu, X.; Zhang, C.; Chen, F.; Chen, H. Liquid phase catalytic dehydration of glycerol to acrolein over Brønsted acidic ionic liquid catalysts. J. Ind. Eng. Chem. 2014, 20, 759–766. [Google Scholar] [CrossRef]
- Zhang, L.; He, L.; Hong, C.-B.; Qin, S.; Tao, G.-H. Brønsted acidity of bio-protic ionic liquids: The acidic scale of [AA]X amino acid ionic liquids. Green Chem. 2015, 17, 5154–5163. [Google Scholar] [CrossRef]
- Kore, R.; Kumar, T.J.D.; Srivastava, R. Hydration of alkynes using Brönsted acidic ionic liquids in the absence of Nobel metal catalyst/H2SO4. J. Mol. Cat. A Chem. 2012, 360, 61–70. [Google Scholar] [CrossRef]
- Fang, D.; Yang, J.; Jiao, C. Dicationic Ionic Liquids as Environmentally Benign Catalysts for Biodiesel Synthesis. ACS Catal. 2010, 1, 42–47. [Google Scholar] [CrossRef]
- Latos, P.; Culkin, A.; Barteczko, N.; Boncel, S.; Jurczyk, S.; Brown, L.C.; Nockemann, P.; Chrobok, A.; Swadźba-Kwaśny, M. Water-Tolerant Trifloaluminate Ionic Liquids: New and Unique Lewis Acidic Catalysts for the Synthesis of Chromane. Front. Chem. 2018, 6, 535. [Google Scholar] [CrossRef]
- Markiton, M.; Chrobok, A.; Matuszek, K.; Seddon, K.R.; Swadźba-Kwaśny, M. Exceptional activity of gallium(iii) chloride and chlorogallate(iii) ionic liquids for Baeyer–Villiger oxidation. RSC Adv. 2016, 6, 30460–30467. [Google Scholar] [CrossRef]
- Matuszek, K.; Coffie, S.; Chrobok, A.; Swadźba-Kwaśny, M. Borenium ionic liquids as catalysts for Diels–Alder reaction: Tuneable Lewis superacids for catalytic applications. Catal. Sci. Technol. 2017, 7, 1045–1049. [Google Scholar] [CrossRef]
- Valkenberg, M.H.; deCastro, C.; Hölderich, W.F. Immobilisation of chloroaluminate ionic liquids on silica materials. Top. Catal. 2000, 14, 139–144. [Google Scholar] [CrossRef]
- Mehnert, C.P. Supported Ionic Liquid Catalysis. Eur. J. Chem. 2005, 11, 50–56. [Google Scholar] [CrossRef]
- Burguete, M.I.; García-Verdugo, E.; Karbass, N.; Luis, S.V.; Sans, V.; Sokolova, M. Development of efficient processes under flow conditions based on catalysts immobilized onto monolithic supported ionic liquid-like phases. Pure Appl. Chem. 2009, 81, 1991–2000. [Google Scholar] [CrossRef]
- Skoda-Földes, R. The Use of Supported Acidic Ionic Liquids in Organic Synthesis. Molecules 2014, 19, 8840–8884. [Google Scholar] [CrossRef]
- Schwieger, W.; Selvam, T.; Klumpp, M.; Hartmann, M. Porous Inorganic Materials as Potential Supports for Ionic Liquids. In Supported Ionic Liquids: Fundamental and Applications, 1st ed.; Fehrmann, R., Riisager, A., Haumann, M., Eds.; Wiley-VCH Verlag GmbH: Berlin, Germany, 2014; pp. 37–74. [Google Scholar]
- Giacalone, F.; Gruttadauria, M. Covalently Supported Ionic Liquid Phases: An Advanced Class of Recyclable Catalytic Systems. ChemCatChem 2016, 8, 664–684. [Google Scholar] [CrossRef]
- Vafaeezadeh, M.; Alinezhad, H. Brønsted acidic ionic liquids: Green catalysts for essential organic reactions. J. Mol. Liq. 2016, 218, 95–105. [Google Scholar] [CrossRef]
- Migowski, P.; Luska, K.L.; Leitner, W. Nanoparticles on Supported Ionic Liquid Phases - Opportunities for Application in Catalysis. Nanocatalysis in Ionic Liquids. In Nanocatalysis in Ionic Liquids, 1st ed.; Martin, H., Prechtl, G., Eds.; Wiley-VCH Verlag GmbH: Berlin, Germany, 2017; pp. 249–273. [Google Scholar]
- Marinkovic, J.M.; Riisager, A.; Franke, R.; Wasserscheid, P.; Haumann, M. Fifteen Years of Supported Ionic Liquid Phase-Catalyzed Hydroformylation: Material and Process Developments. Ind. Eng. Chem. Res. 2019, 58, 2409–2420. [Google Scholar] [CrossRef]
- Pedro, A.Q.; Coutinho, J.A.P.; Freire, M.G. Immobilization of Ionic Liquids, Types of Materials, and Applications. In Encyclopedia of Ionic Liquids; Zhang, S., Ed.; Springer Nature: Singapore, 2019; pp. 1–12. [Google Scholar]
- Bartlewicz, O.; Dąbek, I.; Szymańska, A.; Maciejewski, H. Heterogeneous Catalysis with the Participation of Ionic Liquids. Catalysts 2020, 10, 1227. [Google Scholar] [CrossRef]
- Garcia-Verdugo, E.; Lozano, P.; Luis, S.V. Biocatalytic Processes Based on Supported Ionic Liquids. In Supported Ionic Liquids: Fundamental and Applications, 1st ed.; Fehrmann, R., Riisager, A., Haumann, M., Eds.; Wiley-VCH Verlag GmbH: Berlin, Germany, 2014; pp. 351–368. [Google Scholar]
- Wolny, A.; Chrobok, A. Ionic Liquids for Development of Heterogeneous Catalysts Based on Nanomaterials for Biocatalysis. Nanomaterials 2021, 11, 2030. [Google Scholar] [CrossRef] [PubMed]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Donato, K.Z.; Matějka, L.; Mauler, R.S.; Donato, R.K. Recent Applications of Ionic Liquids in the Sol-Gel Process for Polymer–Silica Nanocomposites with Ionic Interfaces. Colloids Interfaces 2017, 1, 5. [Google Scholar] [CrossRef]
- Du, A.; Wang, Z.; Shang, Y.; Sun, X. Interactions Between an Ionic Liquid and Silica, Silica and Silica, and Rubber and Silica and Their Effects on the Properties of Styrene-Butadiene Rubber Composites. J. Macromol. Sci. Phys. 2019, 58, 99–112. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Ulrich, V.; Donnelly, G.F.; Lorenzini, F.; Marr, A.C.; Marr, P.C. A Recyclable Acidic Ionic Liquid Gel Catalyst for Dehydration: Comparison with an Analogous SILP Catalyst. ACS Sustain. Chem. Eng. 2015, 3, 792–796. [Google Scholar] [CrossRef]
- Dhar, A.; Siva Kumar, N.; Khimani, M.; Al-Fatesh, A.S.; Ibrahim, A.A.; Fakeeha, A.H.; Patel, H.; Vekariya, R.L. Silica-immobilized ionic liquid Brønsted acids as highly effective heterogeneous catalysts for the isomerization of n-heptane and n-octane. RSC Adv 2020, 10, 15282. [Google Scholar] [CrossRef]
- Riisager, A.; Fehrmann, R.; Haumann, M.; Wasserscheid, P. Supported Ionic Liquid Phase (SILP) Catalysis: An Innovative Concept for Homogeneous Catalysis in Continuous Fixed-Bed Reactors. Eur. J. Inorg. Chem. 2006, 4, 695–706. [Google Scholar] [CrossRef]
- Kukawka, R.; Pawlowska-Zygarowicz, A.; Dzialkowska, J.; Pietrowski, M.; Maciejewski, H.; Bica, K.; Smiglak, M. A highly effective supported ionic liquid phase (SILP) catalysts—Characterization and application to the hydrosilylation reaction. ACS Sustain. Chem. Eng. 2019, 7, 4699–4706. [Google Scholar] [CrossRef]
- Lozano, P.; Diego, T.; de Carrié, D.; Vaultier, M.; Iborra, J.L. Continuous green biocatalytic processes using ionic liquids and supercritical carbon dioxide. Chem. Commun. 2002, 7, 692–693. [Google Scholar] [CrossRef] [PubMed]
- Valkenberg, M.H.; deCastro, C.; Hölderich, W.F. Immobilisation of ionic liquids on solid supports. Green Chem. 2001, 4, 88–93. [Google Scholar] [CrossRef]
- Jyothi, T.M.; Kaliya, M.L.; Herskowitz, M.; Landau, M.V. A comparative study of an MCM-41 anchored quaternary ammonium chloride/SnCl4 catalyst and its silica gel analogue. Chem. Commun. 2001, 11, 992–993. [Google Scholar] [CrossRef]
- Hagiwara, H.; Sekifuji, M.; Hoshi, T.; Qiao, K.; Yokoyama, C. Synthesis of Bis(indolyl)methanes Catalyzed by Acidic Ionic Liquid Immobilized on Silica (ILIS). Synlett 2007, 8, 1320–1322. [Google Scholar] [CrossRef]
- Qiao, K.; Hagiwara, H.; Yokoyama, C. Acidic ionic liquid modified silica gel as novel solid catalysts for esterification and nitration reactions. J. Mol. Catal. A Chem. 2006, 246, 65–69. [Google Scholar] [CrossRef]
- Hagiwara, H.; Sekifuji, M.; Hoshi, T.; Suzuki, T.; Quanxi, B.; Qiao, K.; Yokoyama, C. Sustainable Conjugate Addition of Indoles Catalyzed by Acidic Ionic Liquid Immobilized on Silica. Synlett 2008, 4, 608–610. [Google Scholar] [CrossRef]
- Kumar, P.; Vermeiren, W.; Dath, J.-P.; Hoelderich, W.F. Production of alkylated gasoline using ionic liquids and immobilized ionic liquids. Appl. Catal. A Gen. 2006, 304, 131–141. [Google Scholar] [CrossRef]
- Liu, S.; Shang, J.; Zhang, S.; Yang, B.; Deng, Y. Highly Efficient Trimerization of Isobutene Over Silica Supported Chloroaluminate Ionic Liquid Using C4 Feed. Catal. Today 2013, 200, 41–48. [Google Scholar] [CrossRef]
- Wang, G.; Yu, N.; Peng, L.; Tan, R.; Zhao, H.; Yin, D.; Yin, D. Immobilized Chloroferrate Ionic Liquid: An Efficient and Reusable Catalyst for Synthesis of Diphenylmethane and its Derivatives. Catal. Lett. 2008, 123, 252–258. [Google Scholar] [CrossRef]
- Zhao, H.; Yu, N.; Wang, J.; Zhuang, D.; Ding, Y.; Tan, R.; Yin, D. Preparation and catalytic activity of periodic mesoporous organosilica incorporating Lewis acidic chloroindate(III) ionic liquid moieties. Microporous Mesoporous Mater. 2009, 122, 240–246. [Google Scholar] [CrossRef]
- Matuszek, K.; Chrobok, A.; Latos, P.; Markiton, M.; Szymańska, K.; Jarzębski, A.; Swadźba-Kwaśny, M. Silica-supported chlorometallate(iii) ionic liquids as recyclable catalysts for Diels–Alder reaction under solventless conditions. Catal. Sci. Technol. 2016, 6, 8129–8137. [Google Scholar] [CrossRef]
- Siewniak, A.; Forajter, A.; Szymańska, K. Mesoporous Silica-Supported Ionic Liquids as Catalysts for Styrene Carbonate Synthesis from CO2. Catalysts 2020, 10, 1363. [Google Scholar] [CrossRef]
- Yao, J.; Sheng, M.; Bai, S.; Su, H.; Shang, H.; Deng, H.; Sun, J. Ionic Liquids Grafted Mesoporous Silica for Chemical Fixation of CO2 to Cyclic Carbonate: Morphology Effect. Catal. Lett. 2021, 152, 781–790. [Google Scholar] [CrossRef]
- Zhen, B.; Jiao, Q.; Wu, Q.; Li, H. Catalytic performance of acidic ionic liquid-functionalized silica in biodiesel production. J. Energy Chem. 2014, 23, 97–104. [Google Scholar] [CrossRef]
- Wiredu, B.; Amarasekara, A.S. Synthesis of a silica-immobilized Brönsted acidic ionic liquid catalyst and hydrolysis of cellulose in water under mild conditions. Catal. Commun. 2014, 48, 41–44. [Google Scholar] [CrossRef]
- Bao, Q.; Qiao, K.; Tomida, D.; Yokoyama, C. Preparation of 5-hydroymethylfurfural by dehydration of fructose in the presence of acidic ionic liquid. Catal. Commun. 2008, 9, 1383–1388. [Google Scholar] [CrossRef]
- Elhamifar, D.; Nasr-Esfahani, M.; Karimi, B.; Moshkelgosha, R.; Shábani, A. Ionic Liquid and Sulfonic Acid Based Bifunctional Periodic Mesoporous Organosilica (BPMO-IL-SO3H) as a Highly Efficient and Reusable Nanocatalyst for the Biginelli Reaction. ChemCatChem 2014, 6, 2593–2599. [Google Scholar] [CrossRef]
- Elhamifar, D.; Karimi, B.; Moradi, A.; Rastegar, J. Synthesis of Sulfonic Acid Containing Ionic-Liquid-Based Periodic Mesoporous Organosilica and Study of Its Catalytic Performance in the Esterification of Carboxylic Acids. ChemPlusChem 2014, 79, 1147–1152. [Google Scholar] [CrossRef]
- Wang, W.; Wang, D.; Yang, Q.; An, H.; Zhao, X.; Wang, Y. Silica-immobilized acid ionic liquid: An efficient catalyst for pentanal self-condensation. J. Chem. Technol. Biotechnol. 2020, 95, 2964–2972. [Google Scholar] [CrossRef]
- Kotadia, D.A.; Soni, S.S. Sulfonic acid functionalized solid acid: An alternative eco-friendly approach for transesterification of non-edible oils with high free fatty acids. Monatsh. Chem. 2013, 144, 1735–1741. [Google Scholar] [CrossRef]
- Kotadia, D.A.; Soni, S.S. Silica gel supported –SO3H functionalised benzimidazolium based ionic liquid as a mild and effective catalyst for rapid synthesis of 1-amidoalkyl naphthols. J. Mol. Catal. A Chem. 2012, 353–354, 44–49. [Google Scholar] [CrossRef]
- Chrobok, A.; Baj, S.; Pudło, W.; Jarzębski, A. Supported hydrogensulfate ionic liquid catalysis in Baeyer–Villiger reaction. Appl. Catal. A Gen. 2009, 366, 22–28. [Google Scholar] [CrossRef]
- Zhang, J.; Wan, H.; Guan, G. Preparation and Catalytic Performance of Silica Gel Immobilized Acidic Ionic Liquid Catalyst. Reaction. Eng. Technol. 2008, 24, 503–508. [Google Scholar]
- Seddighi, M.; Shirini, F.; Mamaghani, M. Brønsted acidic ionic liquid supported on rice husk ash (RHA-[pmim]HSO4): A highly efficient and reusable catalyst for the synthesis of 1-(benzothiazolylamino)phenylmethyl-2-naphthols. Comptes Rendus Chim. 2015, 18, 573–580. [Google Scholar] [CrossRef]
- Shirini, F.; Seddighi, M.; Mamaghani, M. Brönsted acidic ionic liquid supported on rice husk ash (RHA–[pmim]HSO4): A highly efficient and reusable catalyst for the formylation of amines and alcohols. RSC Adv. 2014, 4, 50631–50638. [Google Scholar] [CrossRef]
- Rostamnia, S.; Hassankhani, A.; Hossieni, H.G.; Gholipour, B.; Xin, H. Brønsted acidic hydrogensulfate ionic liquid immobilized SBA-15: [MPIm][HSO4]@SBA-15 as an environmentally friendly, metal- and halogen-free recyclable catalyst for Knoevenagel–Michael-cyclization processes. J. Mol. Catal. A Chem. 2014, 395, 463–469. [Google Scholar] [CrossRef]
- Niknam, K.; Piran, A. Silica-Grafted Ionic Liquids as Recyclable Catalysts for the Synthesis of 3,4-Dihydropyrano[c]chromenes and Pyra-no [2,3-c]pyrazoles. Green Sustain. Chem. 2013, 3. 31420. [Google Scholar] [CrossRef]
- Damavandi, S. Immobilized Ionic Liquid-Catalyzed Synthesis of Pyrano[3,2-b]indole Derivatives. E-J. Chem. 2012, 9, 1490–1493. [Google Scholar] [CrossRef]
- Damavandi, S.; Sandaroos, R. Novel Synthetic Route to Pyrano[2,3-b]pyrrole Derivatives. Syn. React. Inorg. Metal Org. Nano Metal Chem. 2012, 42, 621–627. [Google Scholar] [CrossRef]
- Eshghi, H.; Zohuri, G.H.; Sandaroos, R.; Damavandi, S. Synthesis of novel benzo[f]chromene compounds catalyzed by ionic liquid. Heterocycl. Commun. 2012, 18, 67–70. [Google Scholar] [CrossRef]
- Damavandi, S.; Sandaroos, R. Novel Multicomponent Synthesis of 2,9-Dihydro-9-methyl-2-oxo-4-aryl-1H-pyrido [2, 3-b] indole-3-carbonitrile Compounds. J. Chem. Sci. 2013, 125, 95–100. [Google Scholar] [CrossRef]
- Goldani, M.T.; Sandaroos, R.; Damavandi, S. Efficient Polymeric Catalyst for One-pot Synthesis of Acenaphtho [1, 2-b] Pyrroles. Res. Chem. Intermed. 2014, 40, 139–147. [Google Scholar] [CrossRef]
- Sandaroos, R.; Damavandi, S.; Salimi, M. Facile one-pot synthesis of 5-amino-7-aryl-6-cyano-4H-pyrano[3,2-b]pyrroles using supported hydrogen sulfate ionic liquid. Monatsh. Chem. 2012, 143, 1655–1661. [Google Scholar] [CrossRef]
- Xiong, J.; Zhu, W.; Ding, W.; Yang, L.; Chao, Y.; Li, H. Phosphotungstic Acid Immobilized on Ionic Liquid-Modified SBA-15: Efficient Hydrophobic Heterogeneous Catalyst for Oxidative Desulfurization in Fuel. Ind. Eng. Chem. Res. 2014, 53, 19895–19904. [Google Scholar] [CrossRef]
- Wan, H.; Zhang, J.; Guan, G. Preparation of Supported Acidic Ionic Liquid by Covalent Bond Grafting and its Catalysis in Synthesis of n-Butyl Acetate. Shiyou Huagong/Petrochem. Technol. 2009, 38, 134–138. [Google Scholar]
- Zhang, Q.; Luo, J.; Wei, Y. A silica gel supported dual acidic ionic liquid: An efficient and recyclable heterogeneous catalyst for the one-pot synthesis of amidoalkyl naphthols. Green Chem. 2010, 12, 2246–2254. [Google Scholar] [CrossRef]
- Vafaeezadeh, M.; Dizicheh, Z.B.; Hashemi, M.M. Mesoporous silica-functionalized dual Brønsted acidic ionic liquid as an efficient catalyst for thioacetalization of carbonyl compounds in water. Catal. Commun. 2013, 41, 96–100. [Google Scholar] [CrossRef]
- Miao, J.; Wan, H.; Shao, Y.; Guan, G.; Xu, B. Acetalization of carbonyl compounds catalyzed by acidic ionic liquid immobilized on silica gel. J. Mol. Catal. A Chem. 2011, 348, 77–82. [Google Scholar] [CrossRef]
- Safaei, S.; Mohammadpoor-Baltork, I.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. Nano-silica supported acidic ionic liquid as an efficient catalyst for the multi-component synthesis of indazolophthalazine-triones and bis-indazolophthalazine-triones. Catal. Sci. Technol. 2013, 3, 2717. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Z.; Xia, C. Silica-Gel-Supported Dual Acidic Ionic Liquids as Efficient Catalysts for the Synthesis of Polyoxymethylene Dimethyl Ethers. Ind. Eng. Chem. Res. 2016, 55, 1859–1865. [Google Scholar] [CrossRef]
- Singh, S.K.; Dhepe, P.L. Novel Synthesis of Immobilized Brønsted- Acidic Ionic Liquid: Application in Lignin Depolymerization. ChemistrySelect 2018, 3, 5461–5470. [Google Scholar] [CrossRef]
- Miao, J.; Wan, H.; Guan, G. Synthesis of immobilized Brønsted acidic ionic liquid on silica gel as heterogeneous catalyst for esterification. Catal. Commun. 2011, 12, 353–356. [Google Scholar] [CrossRef]
- Ma, W.; Wang, W.; Liang, Z.; Hu, S.; Shen, R.; Wu, C. Synthesis of novel acidic ionic liquid immobilized on silica. Kinet. Catal. 2014, 55, 665–670. [Google Scholar] [CrossRef]
- Sofia, L.T.A.; Krishnan, A.; Sankar, M.; Kala Raj, N.K.; Manikandan, P.; Rajamohanan, P.R.; Ajithkumar, T.G. Immobilization of Phosphotungstic Acid (PTA) on Imidazole Functionalized Silica: Evidence for the Nature of PTA Binding by Solid State NMR and Reaction Studies. J. Phys. Chem. C. 2009, 113, 21114–21122. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, D.; Wang, L.; Wang, X.; Li, L.; Xing, Z.; Ding, H. Immobilized phosphotungstic acid based ionic liquid: Application for heterogeneous esterification of palmitic acid. Fuel 2018, 216, 364–370. [Google Scholar] [CrossRef]
- Li, P.-H.; Li, B.-L.; Hu, H.-C.; Zhao, X.-N.; Zhang, Z.-H. Ionic liquid supported on magnetic nanoparticles as highly efficient and recyclable catalyst for the synthesis of β-keto enol ethers. Catal. Commun. 2014, 46, 118–122. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Thi Le, N.-P.; Nguyen Chau, D.-K.; Tran, P.H. New nano-Fe3O4-supported Lewis acidic ionic liquid as a highly effective and recyclable catalyst for the preparation of benzoxanthenes and pyrroles under solvent-free sonication. RSC Adv. 2018, 8, 35681–35688. [Google Scholar] [CrossRef]
- Alinezhad, H.; Tajbakhsh, M.; Ghobadi, N. Ionic liquid immobilized on Fe3O4 nanoparticles: A magnetically recyclable heterogeneous catalyst for one-pot three-component synthesis of 1,8-dioxodecahydroacridines. Res. Chem. Intermed. 2015, 41, 9979–9992. [Google Scholar] [CrossRef]
- Nezhad, E.R.; Karimian, S.; Sajjadifar, S. Imidazole functionalized magnetic Fe3O4 nanoparticles a highly efficient and reusable Brønsted acid catalyst for the regioselective thiocyanation of aromatic and heteroaromatic compounds at room temperature in water:ethanol. J. Sci. 2015, 26, 233–240. [Google Scholar]
- Nasrollahzadeh, M.; Issaabadi, Z.; Sajadi, S.M. Fe3O4@SiO2 nanoparticle supported ionic liquid for green synthesis of antibacterially active 1-carbamoyl-1-phenylureas in water. RSC Adv. 2018, 8, 27631–27644. [Google Scholar] [CrossRef] [PubMed]
- Pourjavadi, A.; Hosseini, S.H.; Doulabi, M.; Fakoorpoor, S.M.; Seidi, F. Multi-Layer Functionalized Poly(Ionic Liquid) Coated Magnetic Nanoparticles: Highly Recoverable and Magnetically Separable Brønsted Acid Catalyst. ACS Catal. 2012, 2, 1259–1266. [Google Scholar] [CrossRef]
- Gupta, R.; Yadav, M.; Gaur, R.; Arora, G.; Rana, P.; Yadav, P.; Sharma, R.K. Silica-Coated Magnetic-Nanoparticle-Supported DABCO-Derived Acidic Ionic Liquid for the Efficient Synthesis of Bioactive 3,3-Di(indolyl)indolin-2-ones. ACS Omega. 2019, 4, 21529–21539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghzadeh, S.M. A heteropolyacid-based ionic liquid immobilized onto magnetic fibrous nano-silica as robust and recyclable heterogeneous catalysts for the synthesis of tetrahydrodipyrazolopyridines in water. RSC Adv. 2016, 6, 75973–75980. [Google Scholar] [CrossRef]
- Zhang, Q.; Su, H.; Luo, J.; Wei, Y. A Magnetic Nanoparticle Supported Dual Acidic Ionic Liquid: A “Quasi-Homogeneous” Catalyst for the One-pot Synthesis of Benzoxanthenes. Green Chem. 2012, 14, 201–208. [Google Scholar] [CrossRef]
- Khalafi-Nezhad, A.; Mohammadi, S. Magnetic, Acidic, Ionic Liquid-catalyzed One-pot Synthesis of Spirooxindoles. ACS Comb. Sci. 2013, 15, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Wu, Z.; Chen, W.; Guan, G.; Cai, Y.; Chen, C.; Liu, X. Heterogenization of ionic liquid based on mesoporous material as magnetically recyclable catalyst for biodiesel production. J. Mol. Catal. A Chem. 2015, 398, 127–132. [Google Scholar] [CrossRef]
- Wu, Z.; Li, Z.; Wu, G.; Wang, L.; Lu, S.; Wang, L.; Guan, G. Brønsted Acidic Ionic Liquid Modified Magnetic Nanoparticle: An Efficient and Green Catalyst for Biodiesel Production. Ind. Eng. Chem. Res. 2014, 53, 3040–3046. [Google Scholar] [CrossRef]
- Wang, P.; Kong, A.; Wang, W.; Zhu, H.; Shan, Y. Facile Preparation of Ionic liquid Functionalized Magnetic Nano-solid Acid Catalysts for Acetalization Reaction. Catal. Lett. 2010, 135, 159–164. [Google Scholar] [CrossRef]
- Zare, A.; Barzegar, M. Dicationic ionic liquid grafted with silica-coated nano-Fe3O4 as a novel and efficient catalyst for the preparation of uracil-containing heterocycles. Res. Chem. Intermed. 2020, 46, 3727–3740. [Google Scholar] [CrossRef]
- Isaad, J. Acidic ionic liquid supported on silica-coated magnetite nanoparticles as a green catalyst for one-pot diazotization–halogenation of the aromatic amines. RSC Adv. 2014, 4, 49333–49341. [Google Scholar] [CrossRef]
- Zhen, B.; Jiao, Q.; Zhang, Y.; Wu, Q.; Li, H. Acidic ionic liquid immobilized on magnetic mesoporous silica: Preparation and catalytic performance in esterification. Appl. Catal. A Gen. 2012, 445–446, 239–245. [Google Scholar] [CrossRef]
- Naeimi, H.; Nejadshafiee, V.; Islami, M.R. Iron (III)-doped, ionic liquid matrix-immobilized, mesoporous silica nanoparticles: Application as recyclable catalyst for synthesis of pyrimidines in water. Microporous Mesoporous Mater 2016, 227, 23–30. [Google Scholar] [CrossRef]
- Sobhani, S.; Honarmand, M. Ionic liquid immobilized on γ-Fe2O3 nanoparticles: A new magnetically recyclable heterogeneous catalyst for one-pot three-component synthesis of 2-amino-3,5-dicarbonitrile-6-thio-pyridines. Appl. Catal. A Gen. 2013, 467, 456–462. [Google Scholar] [CrossRef]
- Jia, X.; Zhang, X.; Wang, Z.; Zhao, S. Tertiary amine ionic liquid incorporated Fe3O4 nanoparticles as a versatile catalyst for the Knoevenagel reaction. Synth. Commun. 2022, 52, 774–786. [Google Scholar] [CrossRef]
- Azgomi, N.; Mokhtary, M. Nano-Fe3O4@SiOSiO2 supported ionic liquid as an efficient catalyst for the synthesis of 1,3-thiazolidin-4-ones under solvent-free conditions. J. Mol. Catal. A Chem. 2015, 398, 58–64. [Google Scholar] [CrossRef]
- Mamaghani, M.; Sheykhan, M.; Sadeghpour, M.; Tavakoli, F. An expeditious one-pot synthesis of novel bioactive indole-substituted pyrido[2,3-d]pyrimidines using Fe3O4@SiOSiO2-supported ionic liquid nanocatalyst. Monatsh. Fur Chem. 2018, 149, 1437–1446. [Google Scholar] [CrossRef]
- Zheng, X.; Luo, S.; Zhang, L.; Cheng, J.-P. Magnetic nanoparticle supported ionic liquid catalysts for CO2 cycloaddition reactions. Green Chem. 2009, 11, 455. [Google Scholar] [CrossRef]
- Safari, J.; Zarnegar, Z. Brønsted Acidic Ionic Liquid based Magnetic Nanoparticles: A New Promoter for the Biginelli Synthesis of 3, 4-Dihydropyrimidin-2 (1 H)-ones/thiones. New J. Chem. 2014, 38, 358–365. [Google Scholar] [CrossRef]
- Garkoti, C.; Shabir, J.; Mozumdar, S. An imidazolium based ionic liquid supported on Fe3O4@SiOSiO22 nanoparticles as an efficient heterogeneous catalyst for N-formylation of amines. New J. Chem. 2017, 41, 9291–9298. [Google Scholar] [CrossRef]
- Azarifar, D.; Ebrahimiasl, H.; Karamian, R.; Ahmadi-Khoei, M. s-Triazinium-based ionic liquid immobilized on silica-coated Fe3O4 magnetic nanoparticles: An efficient and magnetically separable heterogeneous catalyst for synthesis of 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile derivatives for antioxidant and antifungal evaluation studies. J. Iran. Chem. Soc. 2018, 16, 341–354. [Google Scholar]
- Ghorbani-Choghamarani, A.; Norouzi, M. Synthesis and characterization of ionic liquid immobilized on magnetic nanoparticles: A recyclable heterogeneous organocatalyst for the acetylation of alcohols. J. Magn. Magn. Mater. 2016, 401, 832–840. [Google Scholar] [CrossRef]
- Safaei Ghomi, J.; Zahedi, S. Novel ionic liquid supported on Fe3O4 nanoparticles and its application as a catalyst in Mannich reaction under ultrasonic irradiation. Sonochemistry 2017, 34, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xia, C. Magnetic hydroxyapatite-encapsulated γ-Fe2O3 nanoparticles functionalized with basic ionic liquids for aqueous Knoevenagel condensation. Appl. Catal. A Gen. 2009, 366, 141–147. [Google Scholar] [CrossRef]
- Nikoofar, K.; Molaei Yielzoleh, F. Cascade embedding triethyltryptophanium iodide ionic liquid (TrpEt3+I −) on silicated titanomagnetite core (Fe3-xTixO4-SiO2@TrpEt3+I−): A novel nano organic–inorganic hybrid to prepare a library of 4-substituted quinoline-2-carboxylates and 4,6-disubstituted quinoline-2-carboxylates. J. Chin. Chem. Soc. 2021, 68, 1549–1562. [Google Scholar]
- Gu, Y.; Li, G. Ionic Liquids-Based Catalysis with Solids: State of the Art. Adv. Synth. Catal. 2009, 351, 817–847. [Google Scholar] [CrossRef]
- Mehnert, C.P.; Cook, R.A.; Dispenziere, N.C.; Afeworki, M. Supported Ionic Liquid Catalysis—A New Concept for Homogeneous Hydroformylation Catalysis. J. Am. Chem. Soc. 2002, 124, 12932–12933. [Google Scholar] [CrossRef]
- Riisager, A. Continuous fixed-bed gas-phase hydroformylation using supported ionic liquid-phase (SILP) Rh catalysts. J. Catal. 2003, 219, 452–455. [Google Scholar] [CrossRef]
- Riisager, A.; Eriksen, K.M.; Wasserscheid, P. Propene and 1-Octene Hydroformylation with Silica-Supported, Ionic Liquid-Phase (SILP) Rh-Phosphine Catalysts in Continuous Fixed-Bed Mode. Catal. Lett. 2003, 90, 149–153. [Google Scholar] [CrossRef]
- An, H.; Wang, D.; Miao, S.; Yang, Q.; Zhao, X.; Wang, Y. Preparation of Ni-IL/SiO2 and its catalytic performance for one-pot sequential synthesis of 2-propylheptanol from n-valeraldehyde. RSC Adv. 2020, 10, 28100–28105. [Google Scholar] [CrossRef]
- Sadeghzadeh, S.M. PbS based ionic liquid immobilized onto fibrous nano-silica as robust and recyclable heterogeneous catalysts for the hydrogen production by dehydrogenation of formic acid. Microporous Mesoporous Mater. 2016, 234, 310–316. [Google Scholar] [CrossRef]
- Gruttadauria, M.; Liotta, L.F.; Salvo, A.M.P.; Giacalone, F.; La Parola, V.; Aprile, C.; Noto, R. Multi-Layered, Covalently Supported Ionic Liquid Phase (mlc-SILP) as Highly Cross-Linked Support for Recyclable Palladium Catalysts for the Suzuki Reaction in Aqueous Medium. Adv. Synth. Catal. 2011, 353, 2119–2130. [Google Scholar] [CrossRef]
- Calabrese, C.; Campisciano, V.; Siragusa, F.; Liotta, L.; Aprile, C.; Gruttadauria, M.; Giacalone, F. SBA-15/POSS-Imidazolium hybrids as Catalytic Nanoreactor: The role of the support in the stabilization of Palladium species for C−C Cross Coupling Reactions. Adv. Synth. Catal. 2019, 361, 3758–3767. [Google Scholar] [CrossRef]
- Pavia, C.; Ballerini, E.; Bivona, L.A.; Giacalone, F.; Aprile, C.; Vaccaro, L.; Gruttadauria, M. Palladium Supported on Cross-Linked Imidazolium Network on Silica as Highly Sustainable Catalysts for the Suzuki Reaction under Flow Conditions. Adv. Synth. Catal. 2013, 355, 2007–2018. [Google Scholar] [CrossRef]
- Montroni, E.; Lombardo, M.; Quintavalla, A.; Trombini, C.; Gruttadauria, M.; Giacalone, F. A Liquid-Liquid Biphasic Homogeneous Organocatalytic Aldol Protocol Based on the Use of a Silica Gel Bound Multilayered Ionic Liquid Phase. ChemCatChem 2012, 4, 1000–1006. [Google Scholar] [CrossRef]
- Zhong, N.; Li, Y.; Cai, C.; Gao, Y.; Liu, N.; Liu, G.; Tan, W.; Zeng, Y. Enhancing the catalytic performance of Candida antarctica lipase B by immobilization onto the ionic liquids modified SBA-15. Eur. J. Lipid. Sci. Tech. 2018, 120, 1700357. [Google Scholar] [CrossRef]
- Zou, B.; Chu, Y.; Xia, J.; Chen, X.; Huo, S. Immobilization of lipase by ionic liquid-modified mesoporous SiO2 adsorption and calcium alginate-embedding method. Appl. Biochem. Biotechnol. 2018, 185, 606–618. [Google Scholar] [CrossRef]
- Xie, W.; Zang, X. Lipase immobilized on ionic liquid-functionalized magnetic silica composites as a magnetic biocatalyst for production of trans-free plastic fats. Food Chem. 2018, 257, 15–22. [Google Scholar] [CrossRef]
Catalyst | Reaction Type | Reaction Conditions | Reaction Parameters | Lit. |
---|---|---|---|---|
SiO2 [tespmim][Cl-AlCl3] a | Friedel–Crafts alkylation of benzene with dodecene | 6% wt. cat., benzene:dodecene (10:1; n/n), 80 °C, 1 h | A b > 90%, S c > 90% | [29] |
SiO2 [pmim][Cl-AlCl3] d | Friedel–Crafts alkylation of benzene with olefins | 1% wt. cat., benzene:olefin (10:1; n/n), 20 °C, 2 h | C6: α = 45.3%, S = 73.8% C8: α = 44.9%, S = 96.5% C10: α = 34.1%, S = 89.6% C12: α = 35.2%, S = 80.3% (for 6% wt. cat., 80 °C, 1 h; α = 99.4%, S = 99.7%) | [50] |
SiO2 [tms(p)4N][Cl-SnCl4] e | Condensation of isobutene and formaldehyde | 4% mol of SnCl4, isobutene:formaldehyde (1:0.1; n/n), chloroform 26 mL, 60 °C, 2 h | α = 76%, S = 94%, Y f = 71.4%, TON g = 2.63⋅10−3 s−1 | [51] |
SiO2 [p(p-SO2Cl)im][OTf] h | Synthesis of bis(indolyl)methanes | 143 mg cat., aldehyde 0.3 mmol, indole 0.5 mmol, MeCN 3 mL, rt, 1.5–9 h | Yields for: bezaldehyde 97%, p-nitrobenzaldehyde 97%, p-chlorobenzaldehyde 90%, p-acetoxybenzaldehyde 64%, p-methoxybenzaldehyde 97%, hydrocinnamaldehyde 98% | [52] |
SiO2 [p(p-SO2Cl)im][OTf] | Esterification of acetic or decanoic acid with alcohols | Mole ratio of carboxylic acid to ionic liquid: 350, alcohol 20 mmol, carboxylic acid, 10 mmol, 100 °C, 8 h | Yields for various alcohols:
| [53] |
SiO2 [p(p-SO2OH)im][OTf] i | Nitration of aromatic compounds | Mole ratio of aromatic compound:ionic liquid: 20, mole ratio of aromatic compound:nitric acid: 1:3, 80 °C, 4 h | Conversions for R-groups in aromatic ring: H 61.6%, Me 85.8%, Cl 10.4%, Br 22.2% | [53] |
SiO2 [p(p-SO2Cl)im][OTf] | Addition of indole to vinyl ketones | 171 mg cat., vinyl ketone 0.6 mmol, indole 0.3 mmol, Et2O 0.2 mL, rt, 1.5–9 h | Yields for various ketones: 1-penten-3-one 92%, 2 2-cyclopentenone 88%, 3-penten-2-one 90%, benzalacetone 72%, dibenzylideneacetone 93% | [54] |
SiO2 [tespmim][Cl-AlCl3] | Production of alkylated gasoline | 0.5 g cat., iC4/C4 = 20, 80 °C, 90 min | α = 97%, SC8 = 59.7% | [55] |
SiO2 [tespmim][Cl-AlCl3] | Trimerization of isobutene | 30% wt. cat., isobutane:isobutene molar ratio 10:1, 25 °C, 600 h−1 | α = 91.4%, SC12 = 79.4% | [56] |
SiO2 [tespmim][Cl-FeCl3] j | Friedel–Crafts reaction between benzene and benzyl chloride | 0.05 g cat., benzene:benzyl chloride molar ratio 10:1, benzyl chloride 0.32 g, 80 °C, 45 min | α = 100%, S = 100%, 10 cycles | [57] |
SiO2 [(tesp)2im][Cl-InCl3] k | Friedel–Crafts reaction between benzene and benzyl chloride | 0.05 g cat., benzene:benzyl chloride molar ratio 10:1, benzyl chloride 0.32 g, 80 °C, 15 min | α = 100%, S = 100%, 6 cycles | [58] |
SiO2 [tespmim][Cl-GaCl3] l | Diels–Alder cycloaddition of cyclopentadiene to various dienophiles | 5% mol of GaCl3, cyclopentadiene:dienophile (12:8; n/n), 25 °C, 5–30 min | Methyl acrylate: α = 99%, endo:exo ratio: 95:5, 4 cycle; ethyl acrylate: α = 99%, endo:exo ratio: 93:7; diethyl maleate: α = 99%, endo:exo ratio: 93:7; methacrolein: α = 100%, endo:exo ratio: 80:20; benzoquinone: α = 83%; maleic anhydride: α = 89% | [59] |
SiO2 [tespmim][Cl] m | Cycloaddition of CO2 to styrene oxide | 0.5% mol cat., 0.1% mol ZnBr2, styrene oxide 0.13 mol, 100 °C, PCO2 = 1 MPa, 6 h, 700 rpm | α = 83%, Y = 72% | [60] |
SiO2-Zn [tespmim][Cl] | Cycloaddition of CO2 to propylene oxide | S/C = 200 (PO mol per cat. mol), VPO = 8 mL, PCO2 = 1.25 MPa, 100 °C, 8 h | MCM-41: α = 33%, S = 98% MSN: α = 76%, S = 97% BMMs: α = 77%, S = 98% | [61] |
Catalyst | Reaction Type | Reaction Conditions | Reaction Parameters | Lit. |
---|---|---|---|---|
SiO2 [p(b-SO3H)im][OTf] a | Estrification of oleic acid and methanol | 0.2 mmol IL in cat., oleic acid 17.7 mmol, methanol 531.05 mmol, 100 °C, 4 h | α = 84%, 3 cycles | [62] |
SiO2 [p(b-SO3H)im][OTf] | Transestrification of glicerol trioleate and methanol | 0.2 mmol IL in cat., glicerol trioleate 17.7 mmol, methanol 531.05 mmol, 100 °C, 4 h | α = 30%, Smethyl oleate = 36% | [62] |
SiO2 [tesp(b-SO3H)im][Cl] b | Hydrolysis of cellulose | 0.02 mmol H+ in cat., cellulose 0.185 mmol, 2 mL H2O, 190 °C 3 h | YTRS = 48.1%, Yglucose = 21.9%, 4 cycles | [63] |
SiO2 [p(p-SO3H)im][OTf] c | Dehydration of fructose | 0.175 mmol IL in cat., fructose 0.35 mmol, DMSO 2.0 g, MW: 200 W, 4 min | α = 100%, Y = 70.1% (5-hydroxymethylfurfural) | [64] |
SiO2 [tmsp(p-SO3H)im][I] d | Biginelli reaction | 0.8% mol cat., aldehyde 1 mmol, ethyl/methyl-acetoacetate 1 mmol, urea 1.5 mmol, 75 °C, 50–90 min | Yields for aldehydes with Ar groups:
| [65] |
SiO2 [tmsp(p-SO3H)im][I] | Esterification of acetic acid with various alcohols | 5% mol cat., alcohol 2 mmol, acetic acid 4 mmol, 60–70 °C, 12–24 h | Yields for alcohols: PhCH2OH 95%, PhCH(OH)CH3 86%, PhCH(OH)CH2CH3 85%, PhCH2CH2OH 88%, CH3CH2OH 93%, C8H17OH 93%, C9H19OH 92%, C10H21OH 92% | [66] |
SiO2 [tesp(p-SO3H)im][OTf] e | Self-condensation of pentanal | 10% wt. cat, 120 °C, 6 h | α = 77.4%, Y = 69.4%, S = 89.6%, TON = 230.5 | [67] |
SiO2 [tesp(p-SO3H)bim][Cl] f | Synthesis of fatty acid methyl esters | 3% wt. cat., castor/jatropha/neem oil:methanol 1:12 molar ratio, 70 °C, 6–7 h | Castor oil Y = 94.9% Jatropha oil Y = 95.7% Neem oil Y = 94.4% | [68] |
SiO2 [tesp(p-SO3H)bim][Cl] | Synthesis of 1-amidoalkyl naphthols | 80 mg cat., aldehyde 20 mmol, 2-naphthol 20 mmol, acetamide 24 mmol, 100 °C, 7–10 h | Yields for benzaldehydes with R group: H 90%, 3-NO2 95%, 4-OH 87%, 4-OMe 89%, 2-Cl 92%, 4-Cl 93%, 4-NO2 89% | [69] |
SiO2 [tespmim][HSO4] g | Bayer–Villiger oxidation of cyclic ketones | 0.4 g cat., ketone 1 mmol, 68% H2O2(aq.) 3 mmol, dichloromethane 4 mL, 50 °C, 5–15 h | cyclobutanone: α = 100%, Y = 96%; cyclopentanone: α = 98%, Y = 75%; cyclohexanone: α = 86%, Y = 64%; 2-adamantanone: α = 95%, Y = 89%; 1-indanone: α = 81%, Y = 78%; 1-tetralone: α = 78%, Y = 77% | [70] |
SiO2 [tespmim][HSO4] | Esterification of acetic acid and butanol | 4% wt. cat., 96℃, butanol 0.12 mol, acetic acid 0.10 mol, cyclohexane 6 mL, 3 h | α = 99.4%, 6 cycles | [71] |
SiO2 [tespmim][HSO4] | Synthesis of 1-(benzothiazolylamino) phenylmethyl-2-naphthols | 150 mg cat., aldehyde 1 mmol, 2-aminobenzothiazole 1 mmol, 2-naphthol 1 mmol, 110 °C, 3–5 h | Yields for various aryl aldehydes with R-groups: H 93%, 2-Cl 89%, 4-Cl 92%, 3-Br 93%, 4-Br 91%, 3-Me 93%, 2-OMe 90%, 3-OMe 92%, 4-OMe 93%, 2-NO2 90%, 3-NO2, 92%, 4-NO2 91% | [72] |
SiO2 [tespmim][HSO4] | Formylation of amines | 0.8% mol cat., amine 1 mmol, formic acid 2 mmol, 60 °C, 1–15 h | Yields and TOF for amines: aniline 94%, 1428 h−1; 4-methoxy aniline 97%, 7275 h−1; benzyl amine 93%, 465 h−1 | [73] |
SiO2 [tespmim][HSO4] | Knoevenagel–Michael cyclization for polyhydroquinolines synthesis | 2% mol cat., aldehyde 1 mmol, dimedone 1 mmol, enaminone 1.2 mmol, NH4OAc 1.5 mmol, H2O 3 mL, 45 °C, 2–3 h | Yields for enaminone-COOMe with aldehydes with Ar-group: C6H5 90%, 4-C6H5 93%, 2-C6H5 92%, 4-OMeC6H5 88%, 2-MeC6H5 90% | [74] |
SiO2 [tespmim][HSO4] | Synthesis of 3,4-dihydropyrano[c] chromenes | 0.15 g cat., 4-hydroxycoumarin 1 mmol, malononitrile 1 mmol, Ar-aldehyde 1 mmol, 100˚C, 30 min | Yields for aldehydes with Ar-groups: C6H5 94%, 4-ClC6H4 95%, 3-ClC6H4 93%, 4-BrC6H4 94%, 2,4-(Cl)2C6H3 90%, 3-O2NC6H4 93%, 4-O2NC6H4 90%, 2-O2NC6H4 89%, 4-MeC6H4 94%, 3,4,5-(CH3O)3C6H2 89%, 4-HO-C6H4 93% | [75] |
SiO2 [tespmim][HSO4] | Synthesis of pyrano[3,2-b]indole derivatives | 10% mol cat., 3-hydroxypyrrole 1 mol, benzaldehyde, 1 mol, malononitrile 1 mol, acetonitrille 8 mL, 80 °C, 6–8 h | Yields for aldehydes with Ar groups: 4-CH3OC6H4 84%, C6H5 90%, 4-CH3C6H4 85%, 4-BrC6H4 90%, 2-BrC6H4 86%, 4-ClC6H4 90%, 2-ClC6H4 86%, 4-CNC6H4 90%, 4-NO2C6H4 85%, 2-NO2C6H4 88% | [76] |
SiO2 [tespmim][HSO4] | Synthesis of pyrano[2,3-b]pyrrole derivatives | 10% mol cat., 2-hydroxypyrrole 1 mol, benzaldehyde 1 mol, malonoitrile 1 mol, acetonitrille 4 mL, 60 °C, 2–8 h | Yields for aldehydes with Ar groups: 4-CH3OC6H4 76%, C6H5 90%, 4-CH3C6H4 82%, 4-BrC6H4 90%, 2-BrC6H4 88%, 4-ClC6H4 90%, 2-ClC6H4 86%, 4-CNC6H4 73%, 2-CNC6H4 70%, 4-NO2C6H4 64%, 2-NO2C6H4 62% | [77] |
SiO2 [tespmim][HSO4] | Synthesis of benzo[f]chromene compounds | 15% mol cat., 2-naphthol 1 mol, benzaldehyde 1 mol, triethyl orthobenzoate 1 mol, acetonitrille 4 mL, 65 °C, 4–8 h | Yields for benzaldehydes with 4-group: H 85%,Br 85%, Cl 88%, NO2 80%, Me 88%, OMe 90%, OH 84% | [78] |
SiO2 [tespmim][HSO4] | Synthesis of 2,9-dihydro-9-methyl-2-oxo-4-aryl-1H-pyrido[2, 3-b]indole-3-carbonitrile compounds | 15% mol cat., 1-methyl-1H-indol-2-ol 1 mol, (triethoxymethyl)arene 1 mol, cyanoacetamide 1 mol, DMF 6 mL, 100 °C, 2–7 h | Yields for (triethoxymethyl)arene with groups: 4-OMe 73%, H 65%, 4-Me 65%, 4-Br 61%, 2-Br 56%, 4-Cl 61%, 2-Cl 55%, 4-F 53% | [79] |
SiO2 [tespmim][HSO4] | Synthesis of acenaphtho[1,2b]pyrroles. | 10% mol cat., silyl enol of acenaphthylen-1(2H)-one 1 mol, 2,4-dimethoxybenzaldehyde 1 mol, isocyanocyclohexane 1 mol, DMF 50 mL, reflux, 10 h | Y = 97% | [80] |
SiO2 [tespmim][HSO4] | Synthesis of 5-Amino-7-aryl-6-cyano-4H-pyrano[3,2-b]pyrroles | 10% mol cat., 3-hydroxypyrrole 1 mol, aldehyde 1 mol, malononitrile 1 mol, acetonitrille 4 mL, 50 °C, 1–8 h | Yields for aldehydes with Ar groups: 4-CH3OC6H4 62%, C6H5 89%, 4-CH3C6H4 80%, 4-BrC6H4 91%, 2-BrC6H4 89%, 4-ClC6H4 88%, 2-ClC6H4 88%, 4-CNC6H4 70%, 2-CNC6H4 67%, 4-NO2C6H4 61%, 2-NO2C6H4 69% | [81] |
SiO2 [tespmim][H2PW12O40] h | Oxidation of dibenzothiophene | 0.01 g cat., O/S molar ratio: 3:1 (H2O2 0.8 mmol), 60 °C, 40 min | α = 100%, 4 cycles | [82] |
SiO2 [p(p-SO3H)im][HSO4] i | Esterification of acetate acid and n-butanol | 6% wt. cat., n-butanol:acetic acid (2:1, n/n), 94 °C, 3 h | Y = 99.5% | [83] |
SiO2 [tesp(b-SO3H)im][HSO4] j | Synthesis of amidoalkyl naphtols | 80 mg cat., aldehyde:2-naphtol:acetamide (2:2:2.4; n/n/n), 85 °C, 5–15 min | Yields and TOF for different aldehydes with R-groups: Ph 90%, 6.43 min−1; 4-Cl–C6H4 89%, 3.18 min−1; 2,4-Cl2–C6H3 86%, 3.84 min−1; 4-Br–C6H4 88%, 3.15 min−1; 3-NO2–C6H4 92%, 6.59 min−1; 4-NO2–C6H4 93%, 6.65 min−1; 3-MeO–C6H4 86%, 3.07 min−1; 4-MeO–C6H4 80%, 1.91 min−1; 4-Me–C6H4 87%, 3.11 min−1 | [84] |
SiO2 [tesp(b-SO3H)im][HSO4] | Thioacetalization of carbonyl compounds | 5% mol cat., 4– methoxybenzaldehyde with thiophenol, rt, 5 h | Y = 96%, 6 cycles | [85] |
SiO2 [tesp(b-SO3H)im][HSO4] | Acetalization of benzaldehyde or furfural with diols | 4% wt. cat., benzaldehyde 70 mmol, ethanediol 126 mmol, cyclohexane 8 mL, reflux, 1.5–3 h | Yields:
| [86] |
SiO2 [tesp(p-SO3H)im][HSO4] | Synthesis of 2H-indazolo[1,2-b]phthalazine-triones | 30 mg cat., benzaldehyde 1 mmol, dimedone 1 mmol, phthalhydrazide 1 mmol, 80 °C, 10 min | Y = 94%, 8 cycles | [87] |
SiO2 [tesp(b-SO3H)im][HSO4] | Synthesis of polyoxymethylene dimethyl ethers | 4% wt. cat., molar ratio of methylal to trioxane 3, 105 °C, 1 h | α = 92%, S = 52%, 6 cycles | [88] |
SiO2 [tesp(p-SO3H)im][HSO4] k | Lignin depolymerization | 0.5 g cat., dealkaline lignin 2% wt., 30 mL H2O:C2H5OH (1:5, v/v), 200 °C, 1 h | Yields for THF soluble products 90%, | [89] |
SiO2 [p(p-SO3H)im][HSO4] | Esterification of acetic acid and n-butanol | 8% wt. cat., acetic acid 4.8 g, n-butanol 7.12 g, cyclohexane 8 mL, 89 °C, 3 h | Y = 99.2%, S = 100%, 7 cycles; yields for other alcohols: C6H13 99.4%, C2H5 84.1%, C6H5CH2 98.5% | [90] |
SiO2 [tesp(p-SO3H)a][HSO4] l | Biodiesel synthesis | 0.05 g cat., rapeseed oil 5 g, methanol 2.33 g, 70 °C, 9 h | Y = 99%, 6 cycles | [91] |
SiO2 [tesp(p-SO3H)a][HSO4] | Acetalization of benzaldehyde and 1,2-ethanediol | 0.05 g cat., benzaldehyde 0.1 mol, 1,2-ethanediol 0.15 mol, 25 °C, 12 h | Y = 98% | [91] |
SiO2 [tespim][H2PW12O40] m | Oxidations of alkenes | 0.05 g cat., alkene 5 mmol, hydrogen peroxide (30%) 5 mmol, acetonitrile 4.5 mL, 60 °C, 4 h | Conversion, selectivity and TOF for alkenes: cyclooctene 90%, 99%, 162 h−1; 1-octene 34%, 99%, 61 h−1; norbornene 85%, 99%, 153 h−1; limonene 76%, 29%, 137 h−1 | [92] |
SiO2 [p(p-SO3H)im] [H2PW12O40] n | Esterification of palmitic acid | 15% wt. cat., methanol:palmitic acid molar ratio 9, 65 °C, 8 h | Y = 88.1%, 5 cycles | [93] |
Catalyst | Reaction Type | Reaction Conditions | Technological Parameters | Lit. |
---|---|---|---|---|
SiO2⋅Fe3O4 [tmspmim][Cl-AlCl3] a | Synthesis of β-keto enol ethers | 0.27 g cat., 5,5-dimethylcyclohexane-1,3-dione 1 mmol, alcohol 3 mL, rt, 50–95 min | Yields for alcohols: methanol 94%, ethanol 93%, n-butanol 89%, n-pentanol 87%, 2-propanol 88%, cyclohexanol 86% | [94] |
SiO2⋅Fe3O4 [tmspmim][Cl-ZnCl2] b | Synthesis of benzoxanthenes | 15 mg cat., benzaldehyde 1 mmol, 2-naphthol 1 mmol, dimedone 1 mmol, sonication, 80 °C, 30 min | Yields for benzaldehydes with R-groups: H 96%, 4-Me 84%, 2-OH 81%, 4-F 81%, 4-Cl 72%, 4-Br 76%, 2-F 70%, 2-Cl 75%, 2-Br 79%, 2-NO2 90% | [95] |
SiO2⋅Fe3O4 [tmspmim][Cl-ZnCl2] | Synthesis of pyrroles | 15 mg cat., aniline 1 mmol, acetonylacetone 1.2 mmol, sonication, 30–90 min | Yields for anilines with R-groups: H 91%, 4-I 98%, 4-OH 95%, 2-OH, 5-Me 78%, 3,5-Cl 77% | [95] |
SiO2⋅Fe3O4 [tmspmim][HSO4] c | Synthesis of 1,8-dioxodecahydro-acridines | cyclic diketones: amines:aldehydes: catalyst (2:1:1:0.01), 80 °C, 10–30 min | Yields 87–97% | [96] |
SiO2⋅Fe3O4 [tmspim][HSO4] d | Synthesis of 3-thiocyanato-1H-indole | 5 mg cat., indole:H2O2:KSCN (1:3:3; n/n), water:ethanol (1:4; v/v), rt | Y = 95%; for various substrates 88–98% | [97] |
SiO2⋅Fe3O4 [tmsptetrazole-SO3H][Cl] e | Synthesis of | 0.2 g cat., arylcyanamide 1 mmol, NaOCN 1 mmol, H2O 10 mL, reflux | Yields for arylcyanamide with R-groups: 3-Br 90%, 4-Cl 89%, 4-Me 92%, 4-OMe 93% | [98] |
SiO2⋅Fe3O4 [tmspim][HSO4] | 1-carbamoyl-1-phenylureas | 50 mg cat., benzaldehyde 1 mmol, acetic anhydride 5 mmol, rt, 10–120 min | Yields for benzaldehydes with R-groups: H 91%, 4-Cl 95%, 4-Me 93%, 4-OH 91%, 2-OH 97%, 4-MeO 90%, 2-MeO 87%, 4-COOH 90%, 4-CN 88%, 4-NO2 98% | [99] |
SiO2⋅Fe3O4 [tmspdabco(SO3H)] [OTf]2 f | Acetylation of aldehydes with acetic anhydride | 50 mg cat., isatin 0.5 mmol, indole 1 mmol, H2O 2 mL, 90 °C, 2 h | Y = 85–96%, 8 cycles | [100] |
SiO2⋅Fe3O4 [tespmim][H2PW12O40] g | Synthesis of 3,3-di(indolyl)indolin-2-ones | 0.1 mg cat., hydrazine hydrate 2 mmol, ethyl acetoacetate 2 mmol, aryl aldehydes 1 mmol, ammonium acetate 3 mmol, water 15 mL, rt, 30 min. | Yields for different Ar-aldehydes: H 96%, Cl 95%, F 97%, NO2 98%, OMe 92%, Me 93%, OH 90%, CN 95% | [101] |
SiO2⋅Fe3O4 [tesp(b-SO3H)im][HSO4] h | Synthesis of tetrahydrodipyrazolo-pyridines | 55 mg cat., aldehyde 2 mmol, 2-naphthol 2 mmol, dimedone 2.4 mmol, 90 °C, 35–65 min | Yields for aldehydes with Ar groups: C5H6 89%, 4-MeC6H4 86%, 4-OMeC6H4 84%, 4-ClC6H4 91%, 3-ClC6H4 84%, 4-BrC6H4 90%, 3-BrC6H4 88%, 4-NO2C6H4 93%, 3-NO2C6H4 90%, 2-NO2C6H4 85% | [102] |
SiO2⋅Fe3O4 [tesp(b-SO3H)im][HSO4] | Synthesis of benzoxanthenes | 50 mg cat., isatin 1 mmol, 1,3-dimethyl-2-amino uracil 1 mmol, barbituric acid 1 mmol, H2O, 1 mL, rt, 4–8 h | Y = 81–90%, 5 cycles | [103] |
SiO2⋅Fe3O4 [tmsp(p-SO3H)im][HSO4] i | Synthesis of spirooxindoles | 0.2 g cat., oleic acid 10 mmol, alcohol 60 mmol, 373K, 4 h | Methanol: Y = 89.6% Ethanol: Y = 93.5% n-propanol: Y = 92% n-butanol: Y = 91.5% | [104] |
SiO2⋅Fe3O4 [tesp(p-SO3H)im][HSO4] | Biodiesel production from oleic acid | 10.8% wt. cat., methanol:oleic acid molar ratio 6, 110 °C, 4~h | α = 92.9%, 8 cycles | [105] |
SiO2⋅Fe3O4 [tesp(Ph-SO3H)3P][Cl] j | Biodiesel production from oleic acid | 0.06 g cat., benzaldehyde 30 mmol, ethylene glycol 90 mmol, cyclohexane 185 mmol, reflux, 2 h | Yields for: benzaldehyde 97% (5 cycles), propionaldehyde 96%, butanone 95%, cyclohexanone 94% | [106] |
SiO2⋅Fe3O4 [Cl][diammonium] [HSO4] k | Acetalization of aldehyde or ketone with ethylene glycol | 0.048 cat., dimedone 1 mmol, benzaldehyde 1 mmol, 6-amino-1,3-dimethyluracil 1 mmol, 120 °C, 15–30 min | Yields for various benzaldehydes with R-group: H 94%, 3-Br 92%, 4-Br 90%, 2-Cl 88%, 4-Cl 96%, 4-Me 93%, 4-OMe 94%, 4-OH 81% | [107] |
SiO2⋅Fe3O4 [tesp2pyr][HSO4] l | Synthesis of pyrimido[4,5-b]quinolines. | 200 mg cat., aromatic amine 1 mmol, NaNO2 2.5 mmol, NaI 2.5 mmol, rt, 12–15 min | Yields for aromatic amines: C6H5NH2 73%, 4-H2NC6H4COOH 95%, 4-NO2C6H4NH2 83%, 4-BrC6H4NH2 78%, 4-ClC6H4NH2 82%, 4-MeC6H4NH2 62% | [108] |
SiO2⋅CoFe2O4 [p(b-SO3H)im] [OTf] m | Diazotization–iodination of the aromatic amines | 1:30 equimolar amount of oleic acid and the catalyst, alcohol 17.02 g, 100 °C, 4 h | CH3: α = 75%, C4H9: α = 40%, C6H13:α = 20%, C8H17:α = 16% | [109] |
SiO2⋅Fe3O4 [tmsptetrazole-SO3H][HSO4] n | Esterification of oleic acid with straight-chain alcohols | 20 mg cat., benzaldehyde 1 mmol, 2-thiobarbituric acid 2 mmol, acetate ammonium 1 mmol, H2O 5 mL, rt, 35–60 min | Yields for benzaldehydes with R-groups: H 89%, 4-Cl 91%, 4-NO2 95%, 4-Me 87%, 4-OMe 84%, 2-NO2 93%, 2-OH 82%, 2-OMe 85%, 2–80%, 3-OMe 90% | [110] |
SiO2⋅Fe3O4 [OH-etNH3][b-SO3] o | Synthesis of pyrimidine derivatives | Aldehyde:malononitrile: thiophenol:catalyst (1/2/1/0.012; n/n/n/n), 50 °C, 5–20 min | Y = 81–91%; 5 cycles (benzaldehyde, malononitrile and thiophenol) | [111] |
SiO2⋅Fe3O4 [tmspdabco][Cl] p | Synthesis of 2-amino-3,5-dicarbonitrile-6-thio-pyridines | Aldehyde, ethyl cyanoacetate, H2O-polyethylene glycol | 8 cycles, high yields | [112] |
SiO2⋅Fe3O4 [tespmim][Cl] r | Knoevenagel condensation | 0.0007 g cat., aromatic aldehyde 1 mmol, anilines 1 mmol, thioglycolic acid 1 mmol, 70 °C, 55–70 min |
| [113] |
SiO2⋅Fe3O4 [tespmim][Cl] | Synthesis of 1,3-thiazolidin-4-ones | 20% mol cat., 6-amino-N,N-dimethyuracil 1 mmol, 3-(2- methyl-1H-indol-3-yl)-3-oxopropanenitrile 1 mmol, arylaldehydes 1 mmol, DMF 10 mL, 120 °C, 55–120 min | Yields for aldehydes with Ar-groups: 4-FC6H4 90% (3 cycles), 4-ClC6H4 90%, 4-BrC6H4 85%, 4-CNC6H4 90%, 4-CF3C6H4 90%, C6H5 80%, 3-ClC6H4 90%, 3-OMeC6H4 75% | [114] |
SiO2⋅Fe3O4 [tespmim][Cl] | Synthesis of indole-substituted pyrido[2,3-d]pyrimidines | 1% mol cat., epoxide 10 mmol, PCO2 = 1 Mpa, 140 °C, 4–12 h | Styrene oxide Y = 93% (11 cycles), propylene oxide Y = 99%, epichlorohydrin Y= 99% | [115] |
SiO2⋅Fe3O4 [tespmim][Cl] | Cycloaddition of CO2 to epoxides | 0.05 g cat., aromatic aldehyde 2 mmol, ethyl acetoacetate 2 mmol, urea/thiourea 3 mmol, 100 °C, 25–40min | Yields for aldehydes:
| [116] |
SiO2⋅Fe3O4 [tespmim][Cl] | Synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones | 7 mg cat., aniline 1 mmol), formic acid 3 mmol, rt, 5–10 min | Yields for anilines with R-groups: H 99% (5 cycles), 4-Me 98%, 4-OMe 98%, 4-Cl-90%, 4-NO2 98% | [117] |
SiO2⋅Fe3O4 [tesptriazinium][Cl] s | N-formylation | 0.02 g cat., aromatic aldehyde 1 mmol, malononitrile 1 mmol, 5-hydroxy-2-hydroxymethyl-4H-pyran-4-one (kojic acid) 1 mmol H2O 5 mL, reflux, 30–45 min | Yields for benzaldehydes with R-groups: H 94%, 2,3-Cl2 94%, 2,6-Cl2 97%, 4-NO2 98%, 3-NO2 97%, 4-OH 85% | [118] |
SiO2⋅Fe3O4 [tesampmim][Cl] t | of amines | 10 mg cat., benzylalcohol 1 mmol, anhydride 2 mmol, rt, 20–60 min | Yields for various benzylalcoholes with R-groups: 4-Br 96% (9 cycles), 4-OMe 94%, 4-F 94%, i-C3H7 93% | [119] |
SiO2⋅Fe3O4 [tmsp(alanine)im][Cl] u | Synthesis of 4H-dihydropyrano | 0.001 g cat., arylaldehyde 2.5 mol, arylamine 2.5 mol cyclohexanon 3 mol, EtOH 20 mL, sonication (70 W) | Yields and selectivity (anti:syn) for anilinę+ benzaldehydes with R-groups: H 92%, 99:1; 2-Cl 91%, 97:3; 4-Me 88%, 99:1; 4-Cl 92%, 99:1; 4-Br 92%, 99:1; 4-OMe 89%, 99:1; 2-OMe 86%, 99:1 | [120] |
SiO2⋅Fe3O4 [tespdeaim][PF6] w | [3,2-b]pyran- 3-carbonitrile | 25 mg cat., aldehyde or ketone 2 mmol, malonitrile 2 mmol, water 10 mL, 30 °C, 1 h | α for aldehydes/ketones: cyclohexanone >99%, furfural >99%, benzaldehyde >99%, 4-nitrobenzaldehyde 91.6%, 4-hydroxybenzaldehyde 89.4%, 2-hydroxybenzaldehyde 80.3%, 2-methylpropanal 92% | [121] |
Fe3-xTixO4-SiO2 [TrpEt3][I] x | Derivatives | 0.12 g cat., anilines 1 mmol, dialkyl acetylenedicarboxylates 1 mmol, terminal alkynes or acetophenones 1.2 mmol, 100 °C, 15–18 h | Methyl 4-propylquinoline2-carboxylate: Y = 75% ethyl 6-hydroxy4-propylquinoline-2-carboxylate: Y = 92% | [122] |
Fe3-xTixO4-SiO2 [TrpEt3][I] | Acetylation of alcohols | 0.12 g cat., anilines 1 mmol, dialkyl acetylenedicarboxylates 2.2 mmol, 100 °C, 10–22 h | Ethyl 4-(4-bromophenyl)benzo quinoline-2-carboxylate: Y = 77% dimethyl 8-nitroquinoline2,4-dicarboxylate: Y = 82% | [122] |
Catalyst | Reaction Type | Reaction Conditions | Reaction Parameters | Lit. |
---|---|---|---|---|
SiO2/Rh [tespbim][BF4] a/(tppti) b | Hydroformylation of 1-hexene | CO/H2(1:1; v/v), Rh/P (1:10, n/n), 100 °C, 5 h | α = 33%, S = 2.4 (n/i-heptanal ratio), TOF = 65 min−1 | [124,125,126] |
SiO2/Ni [tesp(p-SO3H)im][OTf] c | Hydrogenation of n-valeraldehyde | 4.5 g cat., n-valeraldehyde 30 mL, PH2 = 3 MPa, 200 °C 8 h | α = 100%, S = 98.6% | [127] |
SiO2/PbS [tespmim][Cl] d | Dehydrogenation of formic acid | 0.0007 g cat., HCOOH/HCOONa 9.00 mmol, 8:1; n/n, H2O 2.5 mL, 40 °C, 750 rpm | Y = 97% (formic acid decomposition), SH2 = 78%, TOF = 604 h−1 | [128] |
SiO2/Pd [bvim][Br] e | Suzuki coupling | 1% mol. cat. phenylboronic acid:aryl halide (1.1:1; n/n), H2O/EtOH (1.2 mL; 1:1; v/v), K2CO3 (0.6 mol), 50 °C, 19 h | Yields for aryl bromides with R-groups: 4-CHO 81%, 4-OMe 89%, 3-OMe 85%, 4-NO2 80%, 2-CHO 95%, 4-COCH3 88%, 3-COCH3 70%, 4-COOH 88%, 2-CH3 86%, 2-CN 88%, 3,5-(CF3)2 89%, H 78%, 1-naphthyl 85%) | [129] |
SiO2/POSS f/Pd [tesppim][Cl] g/[tespmim][Cl] | Suzuki coupling | 0.07% mol. cat. phenylboronic acid:aryl halide (1.1:1; n/n), H2O/EtOH (1.2 mL; 1:1; v/v), K2CO3 (0.6 mol), 50 °C, 19 h | Yields and TOF for aryl bromides with R-groups: 4-CHO 99%, 1429 h−1;4-OMe 95%, 1327 h−1; 3-OMe 75%, 1071 h−1; 4-NO2 99%, 1429 h−1; 4-COCH3 99%, 1429 h−1; 3-COCH3 99%,1429 h−1; 3-CH3 99%, 1414 h−1; 4-CH3 93%, 1329 h−1; 4-CN 99%, 1429 h−1 | [130] |
SiO2/POSS/Pd [tesppim][Cl]/[tespmim][Cl] | Heck reaction | 0.07% mol. cat. aryl halide, 0.5 mmol, methyl acrylate 0.75 mmol, triethylamine 1 mmol, DMF 1 mL, 120 °C, 3 h | Yields and TOF for aryl iodides with R-groups: H >99%, 476 h−1; 4-CH3 >99%, 476 h−1; 4-COCH3 99%, 471 h−1; 4-OCH3 99%, 471 h−1; 3-OCH3 99%, 471 h−1; 4-NO2 >99%, 476 h−1; 2-C4H3S 91%, 433 h−1; 4-CHO >99%, 286 h−1 | [130] |
SiO2/Pd [bvim][Br] | Suzuki coupling | 0.1% mol. cat. phenylboronic acid:aryl halide (45.2:40; n/n mmol), 0.33 M EtOH (121.2 mL), K2CO3 (48 mmol), 50 °C, 1.5 mLmin−1, 36 h | Yields for different aryl bromides (H 96%, CH3 96%, CHO 98%) TON = 3800 | [131] |
SiO2/Proline [bvim][NTf2] h | Asymmetric aldol reaction | 5% mol cat., aldehyde 1 mmol, cyclohexanone 5 mmol, 1.2 mmol H2O, rt, 2.5 h | Yields and enantiomeric excess (ee) for aldehydes: 4-NO2Ph Y = 99%, ee = 98%; 4-ClPh Y = 92%, ee = 99%; 4-BrPh Y = 95%, ee = 97%, 4-CNPh Y = 99%, ee = 92% | [132] |
SiO2/CALB i [tespmim][BF4] j | Diacylglycerol production | 5% wt. cat., corn oil 4.4 g, glycerol 0.23 g, tert-pentanol 17 mL, 50 °C, 12 h | α = 70.94%, 5 cycles | [133] |
SiO2/PPL k [tmspmim][BF4] l | Triacetin hydrolysis | 6.83 g of glyceryl triacetate, pH = 7, 45 °C, 10 min | 5 cycles | [134] |
SiO2⋅Fe3O4/CRL m [tespmim][Cl] | Production of trans-free plastic fats | Palm stearin or liquid rice bran oil, 45 °C, 48 h | 4 cycles | [135] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolny, A.; Chrobok, A. Silica-Based Supported Ionic Liquid-like Phases as Heterogeneous Catalysts. Molecules 2022, 27, 5900. https://doi.org/10.3390/molecules27185900
Wolny A, Chrobok A. Silica-Based Supported Ionic Liquid-like Phases as Heterogeneous Catalysts. Molecules. 2022; 27(18):5900. https://doi.org/10.3390/molecules27185900
Chicago/Turabian StyleWolny, Anna, and Anna Chrobok. 2022. "Silica-Based Supported Ionic Liquid-like Phases as Heterogeneous Catalysts" Molecules 27, no. 18: 5900. https://doi.org/10.3390/molecules27185900
APA StyleWolny, A., & Chrobok, A. (2022). Silica-Based Supported Ionic Liquid-like Phases as Heterogeneous Catalysts. Molecules, 27(18), 5900. https://doi.org/10.3390/molecules27185900