Homocouplings of Sodium Arenesulfinates: Selective Access to Symmetric Diaryl Sulfides and Diaryl Disulfides
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Typical Procedure for Symmetric Diaryl Sulfides 2
3.2. Typical Procedure for Symmetric Diaryl Sisulfides 3
3.3. Gram-Scale Reaction of Sodium Benzenesulfinate to Diphenylsulfide
3.4. Gram-Scale Reaction of Sodium Benzenesulfinate to 1,2-Diphenyldisulfane
3.5. Characterization Data for Homo-Coupling Products of Sodium Arylsulfinates
3.5.1. Characterization Data for the Products of Diaryl sulfides
3.5.2. Characterization Data for the Products of Diaryl Disulfides
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pasquini, S.; Mugnaini, C.; Tintori, C.; Botta, M.; Trejos, A.; Arvela, R.K.; Larhed, M.; Witvrouw, M.; Michiels, M.; Christ, F.; et al. Investigations on the 4-Quinolone-3-carboxylic Acid Motif. 1. Synthesis and Structure−Activity Relationship of a Class of Human Immunodeficiency Virus type 1 Integrase Inhibitors. J. Med. Chem. 2008, 51, 5125. [Google Scholar] [CrossRef] [PubMed]
- Beletskaya, I.P.; Ananikov, V.P. Transition-Metal-Catalyzed C−S, C−Se, and C−Te Bond Formation via Cross-Coupling and Atom-Economic Addition Reactions. Chem. Rev. 2011, 111, 1596. [Google Scholar] [CrossRef] [PubMed]
- Brigg, S.; Pribut, N.; Basson, A.E.; Avgenikos, M.; Venter, R.; Blackie, M.A.; van Otterlo, W.A.L.; Pelly, S.C. Novel indole sulfides as potent HIV-1 NNRTIs. Bioorg. Med. Chem. Lett. 2016, 26, 1580. [Google Scholar] [CrossRef] [PubMed]
- Srogl, J.; Hývl, J.; Révészb, Á.; Schröder, D. Mechanistic insights into a copper–disulfide interaction in oxidation of imines by disulfides. Chem. Commun. 2009, 3463. [Google Scholar] [CrossRef] [PubMed]
- Ge, W.; Wei, Y. Iodine-catalyzed oxidative system for 3-sulfenylation of indoles with disulfides using DMSO as oxidant under ambient conditions in dimethyl carbonate. Green Chem. 2012, 14, 2066. [Google Scholar] [CrossRef]
- Lee, M.H.; Yang, Z.; Lim, C.W.; Lee, Y.H.; Dongbang, S.; Kang, C.; Kim, J.S. Disulfide-Cleavage-Triggered Chemosensors and Their Biological Applications. Chem. Rev. 2013, 113, 5071. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Tang, B.; Liang, S.; Jiang, X. Sulfur Containing Scaffolds in Drugs: Synthesis and Application in Medicinal Chemistry. Curr. Top. Med. Chem. 2016, 16, 1200. [Google Scholar] [CrossRef]
- Ke, F.; Qu, Y.; Jiang, Z.; Li, Z.; Wu, D.; Zhou, X. An Efficient Copper-Catalyzed Carbon−Sulfur Bond Formation Protocol in Water. Org. Lett. 2011, 13, 454. [Google Scholar] [CrossRef]
- García, N.; García-García, P.; Fernández-Rodríguez, M.A.; Rubio, R.; Pedrosa, M.R.; Arnáiz, F.J.; Sanz, R. Pinacol as a New Green Reducing Agent: Molybdenum- Catalyzed Chemoselective Reduction of Sulfoxides and Nitroaromatics. Adv. Synth. Catal. 2012, 354, 321. [Google Scholar] [CrossRef]
- Zhao, P.; Yin, H.; Gao, H.; Xi, C. Cu-Catalyzed Synthesis of Diaryl Thioethers and S-Cycles by Reaction of Aryl Iodides with Carbon Disulfide in the Presence of DBU. J. Org. Chem. 2013, 78, 5001. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Kim, K.T.; Jeon, H.B. Deoxygenation of Sulfoxides to Sulfides with Thionyl Chloride and Triphenylphosphine: Competition with the Pummerer Reaction. J. Org. Chem. 2013, 78, 6328. [Google Scholar] [CrossRef]
- García, N.; García-García, P.; Fernández-Rodríguez, M.A.; García, D.; Pedrosa, M.R.; Arnáiz, F.J.; Sanz, R. An unprecedented use for glycerol: Chemoselective reducing agent for sulfoxides. Green Chem. 2013, 15, 999. [Google Scholar] [CrossRef]
- Mitsudome, T.; Takahashi, Y.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Hydrogenation of Sulfoxides to Sulfides under Mild Conditions Using Ruthenium Nanoparticle Catalysts. Angew. Chem. Int. Ed. 2014, 53, 8348. [Google Scholar] [CrossRef]
- Touchy, A.S.; Siddiki, S.M.A.H.; Onodera, W.; Kon, K.; Shimizu, K. Hydrodeoxygenation of sulfoxides to sulfides by a Pt and MoOx co-loaded TiO2 catalyst. Green Chem. 2016, 18, 2554. [Google Scholar] [CrossRef]
- Wu, R.; Huang, K.; Qiu, G.; Liu, J.-B. Synthesis of Thioethers from Sulfonyl Chlorides, Sodium Sulfinates, and Sulfonyl Hydrazides. Synthesis 2019, 51, 3567. [Google Scholar] [CrossRef]
- Barba, F.; Ranz, F.; Batanero, B. Electrochemical transformation of diazonium salts into diaryl disulfides. Tetrahedron Lett. 2009, 50, 6798. [Google Scholar] [CrossRef]
- Taniguchi, N. Copper-catalyzed chalcogenation of aryl iodides via reduction of chalcogen elements by aluminum or magnesium. Tetrahedron 2012, 68, 10510. [Google Scholar] [CrossRef]
- Xiao, X.; Feng, M.; Jiang, X. New Design of a Disulfurating Reagent: Facile and Straightforward Pathway to Unsymmetrical Disulfanes by Copper-Catalyzed Oxidative Cross-Coupling. Angew. Chem. Int. Ed. 2016, 55, 14121. [Google Scholar] [CrossRef]
- Abbasi, M.; Nowrouzi, N.; Borazjani, S.G. Conversion of organic halides to disulfanes using KCN and CS2. Tetrahedron Lett. 2017, 58, 4251. [Google Scholar] [CrossRef]
- Xiao, X.; Xue, J.; Jiang, X. Polysulfurating reagent design for unsymmetrical polysulfide construction. Nat. Commun. 2018, 9, 2191. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Jiang, X. Unsymmetrical polysulfidation via designed bilateral disulfurating reagents. Nat. Commun. 2020, 11, 4170. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Pratt, D.A. A Divergent Strategy for Site-Selective Radical Disulfuration of Carboxylic Acids with Trisulfide-1,1-Dioxides. Angew. Chem. Int. Ed. 2021, 60, 15598. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chen, Y.; Rao, W.; Ackermann, L.; Wang, S.-Y. Efficient preparation of unsymmetrical disulfides by nickel-catalyzed reductive coupling strategy. Nat. Commun. 2022, 13, 2588. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Peng, W.-T.; Lee, Y.-H.; Chang, Y.-L.; Chen, Y.-J.; Lai, Y.-C.; Jheng, N.-Y.; Chen, H.-Y. Use of Base Control to Provide High Selectivity between Diaryl Thioether and Diaryl Disulfide for C–S Coupling Reactions of Aryl Halides and Sulfur and a Mechanistic Study. Organometallics 2013, 32, 5514. [Google Scholar] [CrossRef]
- Kamal, A.; Srinivasulu, V.; Murty, J.N.S.R.C.; Shankaraiah, N.; Nagesh, N.; Reddy, T.S.; Rao, A.V.S. Copper Oxide Nanoparticles Supported on Graphene Oxide- Catalyzed S-Arylation: An Efficient and Ligand-Free Synthesis of Aryl Sulfides. Adv. Synth. Catal. 2013, 355, 2297. [Google Scholar] [CrossRef]
- Cai, M.; Yao, R.; Chen, L.; Zhao, H. A simple, efficient and recyclable catalytic system for carbon–sulfur coupling of aryl halides with thioacetamide. J. Mol. Catal. A Chem. 2014, 395, 349. [Google Scholar] [CrossRef]
- Firouzabadi, H.; Iranpoor, N.; Gorginpour, F.; Samadi, A. Dithiooxamide as an Effective Sulfur Surrogate for Odorless High-Yielding Carbon–Sulfur Bond Formation in Wet PEG200 as an Eco-Friendly, Safe, and Recoverable Solvent. Eur. J. Org. Chem. 2015, 2914. [Google Scholar] [CrossRef]
- Ghorbani-Choghamarani, A.; Taherinia, Z. The first report on the preparation of peptide nanofibers decorated with zirconium oxide nanoparticles applied as versatile catalyst for the amination of aryl halides and synthesis of biaryl and symmetrical sulfides. New. J. Chem. 2017, 41, 9414. [Google Scholar] [CrossRef]
- Liu, X.; Cao, Q.; Xu, W.; Zeng, M.-T.; Dong, Z.-B. Nickel-Catalyzed C–S Coupling: Synthesis of Diaryl Sulfides Starting from Phenyldithiocarbamates and Iodobenzenes. Eur. J. Org. Chem. 2017, 5795. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, X.; Dong, Z.-B. Phenyldithiocarbamates: Efficient Sulfuration Reagents in the Chan–Lam Coupling Reaction. Eur. J. Org. Chem. 2018, 815. [Google Scholar] [CrossRef]
- Dong, Z.-B.; Balkenhohl, M.; Tan, E.; Knochel, P. Synthesis of Functionalized Diaryl Sulfides by Cobalt-Catalyzed Coupling between Arylzinc Pivalates and Diaryl Disulfides. Org. Lett. 2018, 20, 7581. [Google Scholar] [CrossRef] [PubMed]
- Arguello, J.E.; Schmidt, L.C.; Penenory, A.B. “One-Pot” Two-Step Synthesis of Aryl Sulfur Compounds by Photoinduced Reactions of Thiourea Anion with Aryl Halides. Org. Lett. 2003, 5, 4133. [Google Scholar] [CrossRef] [PubMed]
- Soleiman-Beigi, M.; Mohammadi, F. A novel copper-catalyzed, one-pot synthesis of symmetric organic disulfides from alkyl and aryl halides: Potassium 5-methyl-1,3,4-oxadiazole-2-thiolate as a novel sulfur transfer reagent. Tetrahedron Lett. 2012, 53, 7028. [Google Scholar] [CrossRef]
- Li, Z.K.; Ke, F.; Deng, H.; Xu, H.L.; Xiang, H.F.; Zhou, X.G. Synthesis of disulfides and diselenides by copper-catalyzed coupling reactions in water. Org. Biomol. Chem. 2013, 11, 2943. [Google Scholar] [CrossRef]
- Soleiman-Beigi, M.; Hemmati, M. An efficient, one-pot and CuCl-catalyzed route to the synthesis of symmetric organic disulfides via domino reactions of thioacetamide and aryl (alkyl) halides. Appl. Organometal. Chem. 2013, 27, 734. [Google Scholar] [CrossRef]
- Li, X.; Du, J.; Zhang, Y.; Chang, H.; Gao, W.; Wei, W. Synthesis and nano-Pd catalyzed chemoselective oxidation of symmetrical and unsymmetrical sulfides. Org. Biomol. Chem. 2019, 17, 3048. [Google Scholar] [CrossRef]
- Olah, G.A.; Narang, S.C.; Field, L.D.; Karpeles, R. Synthetic methods and reactions. 101. Reduction of sulfonic acids and sulfonyl derivatives to disulfides with iodide in the presence of boron halides. J. Org. Chem. 1981, 46, 2408. [Google Scholar] [CrossRef]
- Zheng, Y.; Qing, F.-L.; Huang, Y.; Xu, X.-H. Tunable and Practical Synthesis of Thiosulfonates and Disulfides from Sulfonyl Chlorides in the Presence of Tetrabutylammonium Iodide. Adv. Synth. Catal. 2016, 358, 3477. [Google Scholar] [CrossRef]
- Hajipour, A.R.; Mallakpour, S.E.; Adibi, H. Selective and Efficient Oxidation of Sulfides and Thiols with Benzyltriphenylphosphonium Peroxymonosulfate in Aprotic Solvent. J. Org. Chem. 2002, 67, 8666. [Google Scholar] [CrossRef]
- Banfield, S.C.; Omori, A.T.; Leisch, H.; Hudlicky, T. Unexpected Reactivity of the Burgess Reagent with Thiols: Synthesis of Symmetrical Disulfides. J. Org. Chem. 2007, 72, 4989. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Aerobic oxidation of thiols to disulfides using iron metal–organic frameworks as solid redoxcatalysts. Chem. Commun. 2010, 46, 6476. [Google Scholar] [CrossRef] [PubMed]
- Oba, M.; Tanaka, K.; Nishiyama, K.; Ando, W. Aerobic Oxidation of Thiols to Disulfides Catalyzed by Diaryl Tellurides under Photosensitized Conditions. J. Org. Chem. 2011, 76, 4173. [Google Scholar] [CrossRef] [PubMed]
- Corma, A.; Rodenas, T.; Sabater, M.J. Aerobic oxidation of thiols to disulfides by heterogeneous gold catalysts. Chem. Sci. 2012, 3, 398. [Google Scholar] [CrossRef]
- Li, X.-B.; Li, Z.-J.; Gao, Y.-J.; Meng, Q.-Y.; Yu, S.; Weiss, R.G.; Tung, C.-H.; Wu, L.-Z. Mechanistic Insights into the Interface-Directed Transformation of Thiols into Disulfides and Molecular Hydrogen by Visible-Light Irradiation of Quantum Dots. Angew. Chem. Int. Ed. 2014, 53, 2085. [Google Scholar] [CrossRef]
- Tabrizian, E.; Amoozadeh, A.; Rahmani, S. Sulfamic acid-functionalized nano-titanium dioxide as an efficient, mild and highly recyclable solid acid nanocatalyst for chemoselective oxidation of sulfides and thiols. RSC Adv. 2016, 6, 21854. [Google Scholar] [CrossRef]
- Samanta, S.; Ray, S.; Ghosh, A.B.; Biswas, P. 3,6-Di(pyridin-2-yl)-1,2,4,5-tetrazine (pytz) mediated metal-free mild oxidation of thiols to disulfides in aqueous medium. RSC Adv. 2016, 6, 39356. [Google Scholar] [CrossRef]
- Paul, S.; Islam, S.M. Oxidative dehydrogenation of thiols to disulfides at room temperature using silica supported iron oxide as an efficient solid catalyst. RSC Adv. 2016, 6, 95753. [Google Scholar] [CrossRef]
- Laudadio, G.; Straathof, N.J.W.; Lanting, M.D.; Knoops, B.; Hessel, V.; Noël, T. An environmentally benign and selective electrochemical oxidation of sulfides and thiols in a continuous-flow microreactor. Green Chem. 2017, 19, 4061. [Google Scholar] [CrossRef]
- Ning, Y.; Ji, Q.; Liao, P.; Anderson, E.A.; Bi, X. Silver-Catalyzed Stereoselective Aminosulfonylation of Alkynes. Angew. Chem. Int. Ed. 2017, 56, 13805. [Google Scholar] [CrossRef]
- Yue, H.; Zhu, C.; Rueping, M. Cross-Coupling of Sodium Sulfinates with Aryl, Heteroaryl, and Vinyl Halides by Nickel/Photoredox Dual Catalysis. Angew. Chem. Int. Ed. 2018, 57, 1371. [Google Scholar] [CrossRef]
- Cao, L.; Luo, S.-H.; Jiang, K.; Hao, Z.-F.; Wang, B.-W.; Pang, C.-M.; Wang, Z.-Y. Disproportionate Coupling Reaction of Sodium Sulfinates Mediated by BF3·OEt2: An Approach to Symmetrical/Unsymmetrical Thiosulfonate. Org. Lett. 2018, 20, 4754. [Google Scholar] [CrossRef] [PubMed]
- Miao, T.; Li, P.; Zhang, Y.; Wang, L. A Sulfenylation Reaction: Direct Synthesis of 3-Arylsulfinylindoles from Arylsulfinic Acids and Indoles in Water. Org. Lett. 2015, 17, 832. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.-Z.; Li, H.-J.; Yang, H.-R.; Zhang, Z.-Y.; Xie, L.-J.; Wu, Y.-C. TMSOTf-Promoted Sulfinylation of Electron-Rich Aromatics with Sodium Arylsulfinates. Synlett 2020, 31, 349. [Google Scholar]
- Xiao, F.; Xie, H.; Liu, S.; Deng, G.-J. Iodine-Catalyzed Regioselective Sulfenylation of Indoles with Sodium Sulfinates. Adv. Synth. Catal. 2014, 356, 364. [Google Scholar] [CrossRef]
- Guo, S.; He, W.; Xiang, J.; Yuan, Y. Palladium-catalyzed direct thiolation of ethers with sodium sulfinates. Tetrahedron Lett. 2014, 55, 6407. [Google Scholar] [CrossRef]
- Lin, Y.-M.; Lu, G.-P.; Cai, C.; Yi, W.-B. Odorless, One-Pot Regio- and Stereoselective Iodothiolation of Alkynes with Sodium Arenesulfinates under Metal-Free Conditions in Water. Org. Lett. 2015, 17, 3310. [Google Scholar] [CrossRef]
- Wang, B.W.; Jiang, K.; Li, J.-X.; Luo, S.-H.; Wang, Z.-Y.; Jiang, H.-F. 1,1-Diphenylvinylsulfide as a Functional AIEgen Derived from the Aggregation-Caused-Quenching Molecule 1,1-Diphenylethene through Simple Thioetherification. Angew. Chem. Int. Ed. 2020, 59, 2338. [Google Scholar] [CrossRef]
- Liu, Y.; Lam, L.Y.; Ye, J.; Blanchard, N.; Ma, C. DABCO-promoted Diaryl Thioether Formation by Metal-catalyzed Coupling of Sodium Sulfinates and Aryl Iodides. Adv. Synth. Catal. 2020, 362, 2326. [Google Scholar] [CrossRef]
- Lam, L.Y.; Ma, C. Chan–Lam-Type C–S Coupling Reaction by Sodium Aryl Sulfinates and Organoboron Compounds. Org. Lett. 2021, 23, 6164. [Google Scholar] [CrossRef]
- Pinnick, H.W.; Reynolds, M.A.; McDonald, R.T., Jr.; Brewster, W.D. Reductive coupling of aromatic sulfinate salts to disulfides. J. Org. Chem. 1980, 45, 930. [Google Scholar] [CrossRef]
- Wang, J.Q.; Zhang, Y.M. The Reduction of Arylsulfonyl Chlorides and Sodium Arylsulfinates with TiCl4/Sm System. A Novel Method for the Preparation of Diaryldisulfides. Syn. Commun. 1996, 26, 135. [Google Scholar] [CrossRef]
- Firouzabadi, H.; Karimi, B. Efficient Deoxygenation of Sulfoxides to Thioethers and Reductive Coupling of Sulfonyl Chlorides to Disulfides with Tungsten Hexachloride. Synthesis 1999, 1999, 500. [Google Scholar] [CrossRef]
- Iranpoor, N.; Firouzabadi, H.; Jamalian, A. Deoxygenation of Sulfoxides and Reductive Coupling of Sulfonyl Chlorides, Sulfinates and Thiosulfonates Using Silphos [PCl3-n(SiO2)n] as a Heterogeneous Phosphine Reagent. Synlett 2005, 9, 1447. [Google Scholar] [CrossRef]
- Still, I.W.J.; Watson, I.D.G. An efficient synthetic route to aryl thiocyanates from arenesulfinates. Synth. Commun. 2001, 31, 1355. [Google Scholar] [CrossRef]
- Emmett, E.J.; Hayter, B.R.; Willis, M.C. Palladium-Catalyzed Synthesis of Ammonium Sulfinates from Aryl Halides and a Sulfur Dioxide Surrogate: A Gas- and Reductant-Free Process. Angew. Chem. Int. Ed. 2014, 53, 10204. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, J.; Chen, J.; Cao, F.; Hou, Y.; Yang, Y.; Deng, X.; Yang, J.; Wu, L.; Shao, X.; et al. Dechalcogenization of Aryl Dichalcogenides to Synthesize Aryl Chalcogenides via Copper Catalysis. ACS Catal. 2020, 10, 2707. [Google Scholar] [CrossRef]
- Li, Y.-M.; Nie, C.-P.; Wang, H.-P.; Verpoort, F.; Duan, C.-Y. A Highly Efficient Method for the Copper-Catalyzed Selective Synthesis of Diaryl Chalcogenides from Easily Available Chalcogen Sources. Eur. J. Org. Chem. 2011, 2011, 7331–7338. [Google Scholar] [CrossRef]
- Li, X.-K.; Yuan, T.-J.; Chen, J.-M. Efficient Copper(I)-Catalyzed S-Arylation of KSCN with Aryl Halides in PEG-400. Chin. J. Chem. 2012, 30, 651–655. [Google Scholar] [CrossRef]
- Carpino, L.A.; Gao, H.S.; Ti, G.S.; Segev, D. Thioxanthene Dioxide Based Amino-Protecting Groups Sensitive to Pyridine Bases and Dipolar Aprotic Solvents. J. Org. Chem. 1989, 54, 5887–5897. [Google Scholar] [CrossRef]
- Zhu, Y.-C.; Li, Y.; Zhang, B.-C.; Yang, Y.-N.; Wang, X.-S. Palladium-Catalyzed Enantioselective C-H Olefination of Diaryl Sulfoxides via Parallel Kinetic Resolution and Desymmetrization. Angew. Chem. Int. Ed. 2018, 57, 5129–5133. [Google Scholar] [CrossRef] [PubMed]
- Hajipour, A.-R.; Karimzadeh, M.; Azizi, G. Highly Efficient and Magnetically Separable Nano-CuFe2O4 Catalyzed S-Arylation of Thiourea by Aryl/Heteroaryl Halides. Chin. Chem. Lett. 2014, 25, 1382–1386. [Google Scholar] [CrossRef]
- García-López, J.-A.; Çetin, M.; Greaney, M.F. Synthesis of Hindered Biaryls via Aryne Addition and in Situ Dimerization. Org. Lett. 2015, 17, 2649–2651. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Wang, H.; Wang, C.-P.; Wan, J.-P.; Wen, C.-P. Bio-Based Green Solvent Mediated Disufide Synthesis via Thiol Couplings Free of Catalyst and Additive. RSC Adv. 2013, 3, 21369–21372. [Google Scholar] [CrossRef]
- Murahashi, S.I.; Zhang, D.Z.; Iida, H.; Miyawaki, T.; Uenaka, M.; Uenaka, K.; Meguro, K. Flavin-Catalyzed Aerobic Oxidation of Sulfides and Thiols with Formic Acid/Triethylamine. Chem. Commun. 2014, 50, 10295–10298. [Google Scholar] [CrossRef] [PubMed]
- Ruano, J.L.G.; Parra, A.; Alemán, J. Efficient Synthesis of Disulfides by Air Oxidation of Thiols under Sonication. Green Chem. 2008, 10, 706–711. [Google Scholar] [CrossRef]
- Chai, P.J.; Li, Y.S.; Tan, C.X. An Efficient and Convenient Method for Preparation of Disulfides from Thiols Using Air as Oxidant Catalyzed by Co-Salophen. Chin. Chem. Lett. 2011, 22, 1403–1406. [Google Scholar] [CrossRef]
- Wang, L.; Clive, D.L. [[(tert-Butyl)dimethylsilyl]oxy]methyl Group for Sulfur Protection. Org. Lett. 2011, 42, 1734–1737. [Google Scholar] [CrossRef]
Entry | Solvent (mL) | Catalyst (mol%) | T (°C) | Yield [b] (%) |
---|---|---|---|---|
1 | DMF (1.0) | Pd(OAc)2 (2.5) | 130 | 28 |
2 | DMSO (1.0) | Pd(OAc)2 (2.5) | 130 | trace |
3 | NMP (1.0) | Pd(OAc)2 (2.5) | 130 | 47 |
4 | NMP (1.0) | CuI (2.5) | 130 | N.D. [c] |
5 | NMP (1.0) | Ni(OAc)2 (2.5) | 130 | N.D. [c] |
6 | NMP (1.0) | FeCl3 (2.5) | 130 | trace |
7 | NMP (1.0) | Pd(OAc)2 (2.5) | 150 | 60 |
8 | NMP (1.0) | Pd(OAc)2 (2.5) | 170 | 52 |
9 | NMP (1.0) | Pd(OAc)2 (2.0) | 150 | 89 |
10 | NMP (1.0) | Pd(OAc)2 (1.5) | 150 | 80 |
11 | NMP (1.0) | Pd(OAc)2 (0.5) | 150 | 71 |
12 [d] | NMP (1.0) | Pd(OAc)2 (2.0) | 150 | 0 |
Entry | Concentration of HCl (mol/L) | HCl (equiv.) | Fe (equiv.) | Yield [b] (%) |
---|---|---|---|---|
1 | 1 | 4.0 | 2.0 | 34 |
2 | 4 | 4.0 | 2.0 | 60 |
3 | 8 | 4.0 | 2.0 | 78 |
4 | 12 | 4.0 | 2.0 | 96 |
5 | 12 | 2.0 | 2.0 | 71 |
6 | 12 | 6.0 | 2.0 | 90 |
7 | 12 | 4.0 | 1.5 | 81 |
8 | 12 | 4.0 | 2.5 | 93 |
9 | 12 | 4.0 | 2.0 | 96 [c] |
10 [d] | 12 | 4.0 | 2.0 | 59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.-Z.; Wei, W.-L.; Niu, Y.-L.; Li, X.; Wang, M.; Gao, W.-C. Homocouplings of Sodium Arenesulfinates: Selective Access to Symmetric Diaryl Sulfides and Diaryl Disulfides. Molecules 2022, 27, 6232. https://doi.org/10.3390/molecules27196232
Yu X-Z, Wei W-L, Niu Y-L, Li X, Wang M, Gao W-C. Homocouplings of Sodium Arenesulfinates: Selective Access to Symmetric Diaryl Sulfides and Diaryl Disulfides. Molecules. 2022; 27(19):6232. https://doi.org/10.3390/molecules27196232
Chicago/Turabian StyleYu, Xin-Zhang, Wen-Long Wei, Yu-Lan Niu, Xing Li, Ming Wang, and Wen-Chao Gao. 2022. "Homocouplings of Sodium Arenesulfinates: Selective Access to Symmetric Diaryl Sulfides and Diaryl Disulfides" Molecules 27, no. 19: 6232. https://doi.org/10.3390/molecules27196232
APA StyleYu, X. -Z., Wei, W. -L., Niu, Y. -L., Li, X., Wang, M., & Gao, W. -C. (2022). Homocouplings of Sodium Arenesulfinates: Selective Access to Symmetric Diaryl Sulfides and Diaryl Disulfides. Molecules, 27(19), 6232. https://doi.org/10.3390/molecules27196232