Water as a Probe for Standardization of Near-Infrared Spectra by Mutual–Individual Factor Analysis
Abstract
:1. Introduction
2. Theory and Algorithm
2.1. Continuous Wavelet Transform
2.2. Mutual–Individual Factor Analysis
3. Data Description
4. Results and Discussion
4.1. Spectral Analysis and Resolution Enhancement
4.2. Mutual–Individual Factor Analysis
4.3. Standardization of the Spectra
4.4. Validation of the Standardized Spectra
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Dong, J.; Davis, A.P. Molecular Recognition Mediated by Hydrogen Bonding in Aqueous Media. Angew. Chem. Int. Ed. 2021, 60, 8035–8048. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, A.; Park, W.; Kwon, O. Hydrogen-Bond Dynamics and Energetics of Biological Water. ChemPlusChem 2020, 85, 2657–2665. [Google Scholar] [CrossRef] [PubMed]
- Breynaert, E.; Houlleberghs, M.; Radhakrishnan, S.; Grübel, G.; Taulelle, F.; Martens, J.A. Water as a Tuneable Solvent: A Perspective. Chem. Soc. Rev. 2020, 49, 2557–2569. [Google Scholar] [CrossRef]
- Ball, P. Water—An Enduring Mystery. Nature 2008, 452, 291–292. [Google Scholar] [CrossRef] [PubMed]
- Dereka, B.; Yu, Q.; Lewis, N.H.C.; Carpenter, W.B.; Bowman, J.M.; Tokmakoff, A. Crossover from Hydrogen to Chemical Bonding. Science 2021, 371, 160–164. [Google Scholar] [CrossRef]
- Tsenkova, R. Aquaphotomics: Dynamic Spectroscopy of Aqueous and Biological Systems Describes Peculiarities of Water. J. Near Infrared Spectrosc. 2009, 17, 303–313. [Google Scholar] [CrossRef]
- Shao, X.; Kang, J.; Cai, W. Quantitative Determination by Temperature Dependent Near-Infrared Spectra. Talanta 2010, 82, 1017–1021. [Google Scholar] [CrossRef]
- Kang, J.; Cai, W.; Shao, X. Quantitative Determination by Temperature Dependent Near-Infrared Spectra: A Further Study. Talanta 2011, 85, 420–424. [Google Scholar] [CrossRef]
- Romanenko, A.V.; Rashchenko, S.V.; Goryainov, S.V.; Likhacheva, A.Y.; Korsakov, A.V. In Situ Raman Study of Liquid Water at High Pressure. Appl. Spectrosc. 2018, 72, 847–852. [Google Scholar] [CrossRef]
- Muncan, J.; Tsenkova, R. Aquaphotomics—From Innovative Knowledge to Integrative Platform in Science and Technology. Molecules 2019, 24, 2742. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.; Cui, X.; Liu, Y.; Xia, Z.; Cai, W. Understanding the Molecular Interaction in Solutions by Chemometric Resolution of Near−Infrared Spectra. ChemistrySelect 2017, 2, 10027–10032. [Google Scholar] [CrossRef]
- Dong, Q.; Yu, C.; Li, L.; Nie, L.; Li, D.; Zang, H. Near-Infrared Spectroscopic Study of Molecular Interaction in Ethanol–Water Mixtures. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 222, 117183. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Yu, C.; Li, L.; Nie, L.; Zhang, H.; Zang, H. Analysis of Hydration Water around Human Serum Albumin Using Near-Infrared Spectroscopy. Int. J. Biol. Macromol. 2019, 138, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ma, L.; Cai, W.; Shao, X. Interaction between Tau and Water during the Induced Aggregation Revealed by Near-Infrared Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 230, 118046. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, L.; Yang, C.; Sun, Z.; Xu, X.; Li, L.; Zang, H. Research on the Structure of Peanut Allergen Protein Ara H1 Based on Aquaphotomics. Front. Nutr. 2021, 8, 696355. [Google Scholar] [CrossRef]
- Bázár, G.; Romvári, R.; Szabó, A.; Somogyi, T.; Éles, V.; Tsenkova, R. NIR Detection of Honey Adulteration Reveals Differences in Water Spectral Pattern. Food Chem. 2016, 194, 873–880. [Google Scholar] [CrossRef]
- Cui, X.; Yu, X.; Cai, W.; Shao, X. Water as a Probe for Serum–Based Diagnosis by Temperature-Dependent near–Infrared Spectroscopy. Talanta 2019, 204, 359–366. [Google Scholar] [CrossRef]
- Muncan, J.; Tei, K.; Tsenkova, R. Real-Time Monitoring of Yogurt Fermentation Process by Aquaphotomics Near-Infrared Spectroscopy. Sensors 2020, 21, 177. [Google Scholar] [CrossRef]
- Goto, N.; Bazar, G.; Kovacs, Z.; Kunisada, M.; Morita, H.; Kizaki, S.; Sugiyama, H.; Tsenkova, R.; Nishigori, C. Detection of UV-Induced Cyclobutane Pyrimidine Dimers by Near-Infrared Spectroscopy and Aquaphotomics. Sci. Rep. 2015, 5, 11808. [Google Scholar] [CrossRef]
- Mura, S.; Cappai, C.; Greppi, G.F.; Barzaghi, S.; Stellari, A.; Cattaneo, T.M.P. Vibrational Spectroscopy and Aquaphotomics Holistic Approach to Determine Chemical Compounds Related to Sustainability in Soil Profiles. Comput. Electron. Agric. 2019, 159, 92–96. [Google Scholar] [CrossRef]
- Cui, X.; Tang, M.; Wang, M.; Zhu, T. Water as a Probe for PH Measurement in Individual Particles Using Micro-Raman Spectroscopy. Anal. Chim. Acta 2021, 1186, 339089. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, C. Near Infrared Spectroscopy: A Mature Analytical Technique with New Perspectives—A Review. Anal. Chim. Acta 2018, 1026, 8–36. [Google Scholar] [CrossRef] [PubMed]
- Tsenkova, R.; Munćan, J.; Pollner, B.; Kovacs, Z. Essentials of Aquaphotomics and Its Chemometrics Approaches. Front. Chem. 2018, 6, 363. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Sun, Y.; Cai, W.; Shao, X. Chemometric Methods for Extracting Information from Temperature-Dependent Near-Infrared Spectra. Sci. China Chem. 2019, 62, 583–591. [Google Scholar] [CrossRef]
- Gowen, A.A.; Amigo, J.M.; Tsenkova, R. Characterisation of Hydrogen Bond Perturbations in Aqueous Systems Using Aquaphotomics and Multivariate Curve Resolution–-Alternating Least Squares. Anal. Chim. Acta 2013, 759, 8–20. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, J.; Cai, W.; Shao, X. Chemometric Algorithms for Analyzing High Dimensional Temperature Dependent near Infrared Spectra. Chemom. Intell. Lab. Syst. 2017, 170, 109–117. [Google Scholar] [CrossRef]
- Shan, R.; Zhao, Y.; Fan, M.; Liu, X.; Cai, W.; Shao, X. Multilevel Analysis of Temperature Dependent Near-Infrared Spectra. Talanta 2015, 131, 170–174. [Google Scholar] [CrossRef]
- Cui, X.; Liu, X.; Yu, X.; Cai, W.; Shao, X. Water Can Be a Probe for Sensing Glucose in Aqueous Solutions by Temperature Dependent near Infrared Spectra. Anal. Chim. Acta 2017, 957, 47–54. [Google Scholar] [CrossRef]
- Shao, X.; Cui, X.; Yu, X.; Cai, W. Mutual Factor Analysis for Quantitative Analysis by Temperature Dependent near Infrared Spectra. Talanta 2018, 183, 142–148. [Google Scholar] [CrossRef]
- Feudale, R.N.; Woody, N.A.; Tan, H.; Myles, A.J.; Brown, S.D.; Ferré, J. Transfer of Multivariate Calibration Models: A Review. Chemom. Intell. Lab. Syst. 2002, 64, 181–192. [Google Scholar] [CrossRef]
- Bouveresse, E.; Hartmann, C.; Massart, D.L.; Last, I.R.; Prebble, K.A. Standardization of Near-Infrared Spectrometric Instruments. Anal. Chem. 1996, 68, 982–990. [Google Scholar] [CrossRef]
- Kunz, M.R.; Kalivas, J.H.; Andries, E. Model Updating for Spectral Calibration Maintenance and Transfer Using 1-Norm Variants of Tikhonov Regularization. Anal. Chem. 2010, 82, 3642–3649. [Google Scholar] [CrossRef] [PubMed]
- Nikzad-Langerodi, R.; Zellinger, W.; Lughofer, E.; Saminger-Platz, S. Domain-Invariant Partial-Least-Squares Regression. Anal. Chem. 2018, 90, 6693–6701. [Google Scholar] [CrossRef]
- Wang, Y.; Veltkamp, D.J.; Kowalski, B.R. Multivariate Instrument Standardization. Anal. Chem. 1991, 63, 2750–2756. [Google Scholar] [CrossRef]
- Du, W.; Chen, Z.-P.; Zhong, L.-J.; Wang, S.-X.; Yu, R.-Q.; Nordon, A.; Littlejohn, D.; Holden, M. Maintaining the Predictive Abilities of Multivariate Calibration Models by Spectral Space Transformation. Anal. Chim. Acta 2011, 690, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cai, W.; Shao, X. Standardization of near Infrared Spectra Measured on Multi-Instrument. Anal. Chim. Acta 2014, 836, 18–23. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, C.; Cui, X.; Cai, W.; Shao, X. A Two-Level Strategy for Standardization of near Infrared Spectra by Multi-Level Simultaneous Component Analysis. Anal. Chim. Acta 2019, 1050, 25–31. [Google Scholar] [CrossRef]
- Shao, X.-G.; Leung, A.K.-M.; Chau, F.-T. Wavelet: A New Trend in Chemistry. Acc. Chem. Res. 2003, 36, 276–283. [Google Scholar] [CrossRef]
- Shao, X.; Ma, C. A General Approach to Derivative Calculation Using Wavelet Transform. Chemom. Intell. Lab. Syst. 2003, 69, 157–165. [Google Scholar] [CrossRef]
- Kennard, R.W.; Stone, L.A. Computer Aided Design of Experiments. Technometrics 1969, 11, 137–148. [Google Scholar] [CrossRef]
- Shao, X.; Cui, X.; Wang, M.; Cai, W. High Order Derivative to Investigate the Complexity of the near Infrared Spectra of Aqueous Solutions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 213, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Guo, L.; Huang, Y.; Yuan, H. (Eds.) Sense the Real Change: Proceedings of the 20th International Conference on Near Infrared Spectroscopy; Springer Nature: Singapore, 2022; ISBN 978-981-19488-3-1. [Google Scholar]
- Grabska, J.; Beć, K.B.; Ishigaki, M.; Huck, C.W.; Ozaki, Y. NIR Spectra Simulations by Anharmonic DFT-Saturated and Unsaturated Long-Chain Fatty Acids. J. Phys. Chem. B 2018, 122, 6931–6944. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Dhital, S.; Zhao, C.; Ye, F.; Chen, J.; Zhao, G. Dietary Fiber-Gluten Protein Interaction in Wheat Flour Dough: Analysis, Consequences and Proposed Mechanisms. Food Hydrocoll. 2021, 111, 106203. [Google Scholar] [CrossRef]
Calibration Spectra | Validation Spectra | RMSEP |
---|---|---|
m5 | m5 | 0.1419 |
mp5 | 0.1667 | |
mp6 | 0.2608 | |
mp5–m5 (MIFA) | 0.1435 | |
mp5–m5 (PDS) | 0.1592 | |
mp5–m5 (SST) | 0.1573 | |
mp6–m5 (MIFA) | 0.1424 | |
mp6–m5 (PDS) | 0.1519 | |
mp6–m5 (SST) | 0.1493 | |
mp5 | mp5 | 0.1527 |
m5 | 0.1786 | |
mp6 | 0.1669 | |
m5–mp5 (MIFA) | 0.1601 | |
m5–mp5 (PDS) | 0.1642 | |
m5–mp5 (SST) | 0.1639 | |
mp6–mp5 (MIFA) | 0.1546 | |
mp6–mp5 (PDS) | 0.1593 | |
mp6–mp5 (SST) | 0.1572 | |
mp6 | mp6 | 0.1523 |
m5 | 0.1981 | |
mp5 | 0.1909 | |
m5–mp6 (MIFA) | 0.1609 | |
m5–mp6 (PDS) | 0.1564 | |
m5–mp6 (SST) | 0.1551 | |
mp5–mp6 (MIFA) | 0.1546 | |
mp5–mp6 (PDS) | 0.1634 | |
mp5–mp6 (SST) | 0.1586 |
Calibration Spectra 1,2 | Validation Spectra | RMSEP |
---|---|---|
A1 | A1 | 0.6091 |
A2 | 0.8028 | |
A3 | 0.9866 | |
A2–A1 (MIFA) | 0.6824 | |
A2–A1 (PDS) | 0.6987 | |
A2–A1 (SST) | 0.6752 | |
A3–A1 (MIFA) | 0.7154 | |
A3–A1 (PDS) | 0.7089 | |
A3–A1 (SST) | 0.7066 | |
A2 | A2 | 0.7475 |
A1 | 0.8538 | |
A3 | 0.9274 | |
A1–A2 (MIFA) | 0.8049 | |
A1–A2 (PDS) | 0.8122 | |
A1–A2 (SST) | 0.799 | |
A3–A2 (MIFA) | 0.8106 | |
A3–A2 (PDS) | 0.8324 | |
A3–A2 (SST) | 0.8075 | |
A3 | A3 | 0.7044 |
A1 | 0.8316 | |
A2 | 1.1068 | |
A1–A3 (MIFA) | 0.7993 | |
A1–A3 (PDS) | 0.8237 | |
A1–A3 (SST) | 0.8033 | |
A2–A3 (MIFA) | 0.8196 | |
A2–A3 (PDS) | 0.8169 | |
A2–A3 (SST) | 0.8127 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X. Water as a Probe for Standardization of Near-Infrared Spectra by Mutual–Individual Factor Analysis. Molecules 2022, 27, 6069. https://doi.org/10.3390/molecules27186069
Cui X. Water as a Probe for Standardization of Near-Infrared Spectra by Mutual–Individual Factor Analysis. Molecules. 2022; 27(18):6069. https://doi.org/10.3390/molecules27186069
Chicago/Turabian StyleCui, Xiaoyu. 2022. "Water as a Probe for Standardization of Near-Infrared Spectra by Mutual–Individual Factor Analysis" Molecules 27, no. 18: 6069. https://doi.org/10.3390/molecules27186069
APA StyleCui, X. (2022). Water as a Probe for Standardization of Near-Infrared Spectra by Mutual–Individual Factor Analysis. Molecules, 27(18), 6069. https://doi.org/10.3390/molecules27186069