Antioxidant and Hypoglycemic Activity of Sequentially Extracted Fractions from Pingguoli Pear Fermentation Broth and Identification of Bioactive Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Content of Each Extracted Fraction
2.2. In Vitro Antioxidant Activities of Each Extracted Fraction
2.3. Hypoglycemic Activities of Each Extracted Fraction
2.3.1. α-Amylase and α-Glucosidase Inhibitory Activities
2.3.2. Glucose Consumption in HepG2 Cells and IR-HepG2 Cells
2.4. LC–MS Analysis of EAF
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of Extracted Fractions
3.3. In Vitro Antioxidant Activity Assay
3.4. Determination of Hypoglycemic Activity
3.4.1. Inhibitory Activities of α-Amylase and α-Glucosidase
3.4.2. Cell Culture and Cell Viability Assay
3.4.3. Induction of the Insulin-Resistance Model
3.4.4. Glucose Consumption Assay
3.5. Compound Analysis of the Extraction Phase
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sivamaruthi, B.S.; Kesika, P.; Prasanth, M.I.; Chaiyasut, C. A Mini Review on Antidiabetic Properties of Fermented Foods. Nutrients 2018, 10, 1973. [Google Scholar] [CrossRef] [PubMed]
- Eddouks, M.; Bidi, A.; El Bouhali, B.; Hajji, L.; Zeggwagh, N.A. Antidiabetic plants improving insulin sensitivity. J. Pharm. Pharmacol. 2014, 66, 1197–1214. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Islam, M.R.; Shohag, S.; Hossain, M.E.; Rahaman, M.S.; Islam, F.; Ahmed, M.; Mitra, S.; Khandaker, M.U.; Idris, A.M.; et al. The Multifunctional Role of Herbal Products in the Management of Diabetes and Obesity: A Comprehensive Review. Molecules 2022, 27, 1713. [Google Scholar] [CrossRef] [PubMed]
- Papoutisis, K.; Zhang, J.; Bowyer, M.C.; Brunton, N. Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chem. 2021, 338, 128119. [Google Scholar] [CrossRef]
- Chung, M.Y.; Choi, H.K.; Hwang, J.T. AMPK Activity: A Primary Target for Diabetes Prevention with Therapeutic Phytochemicals. Nutrients 2021, 13, 4050. [Google Scholar] [CrossRef]
- Semwal, D.K.; Kumar, A.; Aswal, S.; Chauhan, A.; Semwal, R.B. Protective and therapeutic effects of natural products against diabetes mellitus via regenerating pancreatic beta-cells and restoring their dysfunction. Phytother. Res. 2021, 35, 1218–1229. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.Y.; Lansky, E.; Kang, S.S.; Yang, M. A review of pears (Pyrus spp.), ancient functional food for modern times. BMC Complement. Med. Ther. 2021, 21, 219. [Google Scholar] [CrossRef] [PubMed]
- Kolniak-Ostek, J.; Klopotowska, D.; Rutkowski, K.P.; Skorupinska, A.; Kruczynska, D.E. Bioactive Compounds and Health-Promoting Properties of Pear (Pyrus communis L.) Fruits. Molecules 2020, 25, 4444. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.C.L.; Sarkar, D.; Pinto, M.D.S.; Ankolekar, C.; Greene, D.; Shetty, K. Type 2 diabetes relevant bioactive potential of freshly harvested and long-term stored pears using in vitro assay models. J. Food Biochem. 2013, 37, 677–686. [Google Scholar] [CrossRef]
- Xiang, T.; He, X.; Pan, W. Experimental study on hypoglycemic effect of Psidium Guajava L. and Pyrus Betulaefolia Bge. Pharm. Today 2016, 26, 145–148. [Google Scholar]
- Wang, T.; Li, X.; Zhou, B.; Li, H.; Zeng, J.; Gao, W. Anti-diabetic activity in type 2 diabetic mice and α-glucosidase inhibitory, antioxidant and anti-inflammatory potential of chemically profiled pear peel and pulp extracts (Pyrus spp.). J. Funct. Foods 2015, 13, 276–288. [Google Scholar] [CrossRef]
- Zhao, Y.S.; Eweys, A.S.; Zhang, J.Y.; Zhu, Y.; Bai, J.; Darwesh, O.M.; Zhang, H.B.; Xiao, X. Fermentation Affects the Antioxidant Activity of Plant-Based Food Material through the Release and Production of Bioactive Components. Antioxidants 2021, 10, 2004. [Google Scholar] [CrossRef] [PubMed]
- Ankolekar, C.; Pinto, M.; Greene, D.; Shetty, K. In vitro bioassay based screening of antihyperglycemia and antihypertensive activities of Lactobacillus acidophilus fermented pear juice. Innov. Food Sci. Emerg. 2012, 13, 221–230. [Google Scholar] [CrossRef]
- Ma, J.N.; Wang, S.L.; Zhang, K.; Wu, Z.G.; Hattori, M.; Chen, G.L.; Ma, C.M. Chemical components and antioxidant activity of the peels of commercial apple-shaped pear (fruit of Pyrus pyrifolia cv. pingguoli). J. Food Sci. 2012, 77, C1097–C1102. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yin, Y.; Chen, S.; Bi, Y.; Ge, Y. Chemical composition of cuticular waxes during fruit development of Pingguoli pear and their potential role on early events of Alternaria alternata infection. Funct. Plant Biol. 2014, 41, 313–320. [Google Scholar] [CrossRef]
- Fan, H.; Sha, R.; Fang, S.; Xue, S.; Chen, Y.; Huang, J.; Cui, Y.; Mao, J. Browning and antioxidant activity of apple-pear Jiaosu during fermentation. Food Sci. 2020, 41, 116–123. [Google Scholar]
- Vittaya, L.; Charoendat, U.; Ui-eng, J.; Leesakul, N. Effect of extraction solvents on phenolic compounds and flavonoids from Pongame oiltree (Derris indica [Lamk.] Bennet) aerial parts and their growth inhibition of aquatic pathogenic bacteria. Agr. Nat. Resour. 2022, 56, 577–590. [Google Scholar]
- Dorosh, O.; Rodrigues, F.; Delerue-Matos, C.; Moreira, M.M. Increasing the added value of vine-canes as a sustainable source of phenolic compounds: A review. Sci. Total Environ. 2022, 830, 154600. [Google Scholar] [CrossRef]
- Hamid, A.A.; Aiyelaagbe, O.O.; Usman, L.A.; Ameen, O.M.; Lawal, A. Antioxidants: Its medicinal and pharmacological applications. Afr. J. Pure Appl. Chem. 2010, 4, 142–151. [Google Scholar]
- Nasri, H.; Shirzad, H.; Baradaran, A.; Rafieian-Kopaei, M. Antioxidant plants and diabetes mellitus. J. Res. Med. Sci. 2015, 20, 491–502. [Google Scholar]
- Zhong, O.; Hu, J.; Wang, J.; Tan, Y.; Hu, L.; Lei, X. Antioxidant for treatment of diabetic complications: A meta-analysis and systematic review. J. Biochem. Mol. Toxicol. 2022, 36, e23038. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Krueger, C.B.; Lastra, G. Over-nutrition, obesity and insulin resistance in the development of beta-cell dysfunction. Curr. Diabetes Rev. 2012, 8, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.; Moreira, N.C.S.; Sakamoto-Hojo, E.T. Mechanisms underlying the pathophysiology of type 2 diabetes: From risk factors to oxidative stress, metabolic dysfunction, and hyperglycemia. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2022, 874–875, 503437. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, D.; Trouillas, P.; Calliste, C.; Marsal, P.; Lazzaroni, R.; Duroux, J.L. Density functional theory study of the conformational, electronic, and antioxidant properties of natural chalcones. J. Phys. Chem. A 2007, 111, 1138–1145. [Google Scholar] [CrossRef]
- Ahmed, A.S.; Nakamura, N.; Meselhy, M.R.; Makhboul, M.A.; El-Emary, N.; Hattori, M. Phenolic constituents from Grevillea robusta. Phytochemistry 2000, 53, 149–154. [Google Scholar] [CrossRef]
- Ekeuku, S.O.; Pang, K.L.; Chin, K.Y. Effects of Caffeic Acid and Its Derivatives on Bone: A Systematic Review. Drug Des. Dev. Ther. 2021, 15, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Shanak, S.; Bassalat, N.; Albzoor, R.; Kadan, S.; Zaid, H. In Vitro and In Silico Evaluation for the Inhibitory Action of O. basilicum Methanol Extract on α-Glucosidase and α-Amylase. Evid. Based Complement. Alternat. Med. 2021, 2021, 5515775. [Google Scholar] [CrossRef] [PubMed]
- Jung, U.J.; Lee, M.K.; Park, Y.B.; Jeon, S.M.; Choi, M.S. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J. Pharmacol. Exp. Ther. 2006, 318, 476–483. [Google Scholar] [CrossRef]
- Bogaki, T.; Ozeki, K. High-yield production of ethyl α-D-glucoside in shochu brewing and evaluation of its functionality. J. Biol. Macromol. 2015, 15, 41–50. [Google Scholar] [CrossRef]
- Yin, P.; Xie, S.; Zhuang, Z.; Fang, H.; Tian, L.; Liu, Y.; Niu, J. Chlorogenic acid improves health in juvenile largemouth bass (Micropterus salmoides) fed high-fat diets: Involvement of lipid metabolism, antioxidant ability, inflammatory response, and intestinal integrity. Aquaculture 2021, 545, 737169. [Google Scholar] [CrossRef]
- Ma, Y.; Gao, M.; Liu, D. Chlorogenic acid improves high fat diet-induced hepatic steatosis and insulin resistance in mice. Pharm. Res. 2015, 32, 1200–1209. [Google Scholar] [CrossRef]
- Gao, J.; He, X.; Ma, Y.; Zhao, X.; Hou, X.; Hao, E.; Deng, J.; Bai, G. Chlorogenic Acid Targeting of the AKT PH Domain Activates AKT/GSK3beta/FOXO1 Signaling and Improves Glucose Metabolism. Nutrients 2018, 10, 1366. [Google Scholar] [CrossRef]
- Chen, L.; Teng, H.; Cao, H. Chlorogenic acid and caffeic acid from Sonchus oleraceus Linn synergistically attenuate insulin resistance and modulate glucose uptake in HepG2 cells. Food Chem. Toxicol. 2019, 127, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.C.; Lee, D.; Jo, M.S.; Lee, K.H.; Lee, Y.H.; Kang, K.S.; Yamabe, N.; Kim, K.H. Inhibitory Effect of 1,5-Dimethyl Citrate from Sea Buckthorn (Hippophae rhamnoides) on Lipopolysaccharide-Induced Inflammatory Response in RAW 264.7 Mouse Macrophages. Foods 2020, 9, 269. [Google Scholar] [CrossRef] [PubMed]
- Pinteus, S.; Silva, J.; Alves, C.; Horta, A.; Fino, N.; Rodrigues, A.I.; Mendes, S.; Pedrosa, R. Cytoprotective effect of seaweeds with high antioxidant activity from the Peniche coast (Portugal). Food Chem. 2017, 218, 591–599. [Google Scholar] [CrossRef]
- Arnao, B.M.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Kandsi, F.; Conte, R.; Marghich, M.; Lafdil, F.Z.; Alajmi, M.F.; Bouhrim, M.; Mechchate, H.; Hano, C.; Aziz, M.; Gseyra, N. Phytochemical Analysis, Antispasmodic, Myorelaxant, and Antioxidant Effect of Dysphania ambrosioides (L.) Mosyakin and Clemants Flower Hydroethanolic Extracts and Its Chloroform and Ethyl Acetate Fractions. Molecules 2021, 26, 7300. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, C.; Zhang, B.; Huang, Q. The inhibitory effects of flavonoids on α-amylase and α-glucosidase. Crit. Rev. Food Sci. Nutr. 2020, 60, 695–708. [Google Scholar] [CrossRef]
- Kim, Y.M.; Jeong, Y.K.; Wang, M.H.; Lee, W.Y.; Rhee, H.I. Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition 2005, 21, 756–761. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
Extracted Fraction | PEF | CF | EAF | NF | WF |
---|---|---|---|---|---|
Extract content (mg/mL Pingguoli pear fermentation broth) | 5.36 ± 1.28 | 6.42 ± 1.08 | 1.36 ± 0.23 | 23.58 ± 2.79 | 573.23 ± 41.16 |
Fractions | IC50 (mg/mL) | ||
---|---|---|---|
DPPH | ABTS | FRAP | |
PEF | 16.642 ± 2.342 b | 27.583 ± 4.312 b | 7.176 ± 1.014 a |
CF | 3.205 ± 0.471 c | 3.160 ± 0.495 c | 1.824 ± 0.042 b |
EAF | 0.238 ± 0.052 d | 0.293 ± 0.032 d | 0.193 ± 0.022 c |
NF | 4.100 ± 0.639 c | 2.421 ± 0.458 c | 1.706 ± 0.095 b |
WF | 55.076 ± 3.753 a | 252.122 ± 28.601 a | 8.235 ± 0.743 a |
Ascorbic acid | 0.004 ± 0.001 e | 0.064 ± 0.017 e | 0.073 ± 0.006 d |
Parameter | Fraction | Acarbose | ||||
---|---|---|---|---|---|---|
PEF | CF | EAF | NF | WF | ||
α-Amylase inhibition (IC50, mg/mL) | 2.95 ± 0.33 d | 8.04 ± 0.75 c | 0.34 ± 0.04 e | 25.41 ± 3.94 b | 174.57 ± 11.32 a | 0.19 ± 0.01 f |
α-Glucosidase inhibition (IC50, mg/mL) | 7.89 ± 0.34 b | 3.15 ± 0.31 c | 0.95 ± 0.19 e | 3.62 ± 0.27 c | 248.58 ± 19.63 a | 1.35 ± 0.07 d |
Sample | BC * | SC # | Met | IR Model & | PEF | CF | EAF | NF | WF |
---|---|---|---|---|---|---|---|---|---|
Maximum nontoxic concentration (µg/mL) | — | — | 258.3 | — | 133.0 | 2.5 | 18.0 | 628.0 | 28660 |
Relative cell viability (%) | 100.0 ± 4.3 | 98.2 ± 2.4 | 97.3 ± 3.8 | 99.0 ± 5.4 | 101.4 ± 3.5 | 98.5 ± 4.7 | 99.2 ± 2.3 | 99.7 ± 5.4 | 98.1 ± 1.4 |
No. | Compound Name | Formula | Category | Mw | RT (min) | Relative Concentration (μg/mL) |
---|---|---|---|---|---|---|
1 | d-(+)-Galactose | C6H12O6 | Organooxygen compounds | 180.1 | 0.781 | 858.0 |
2 | 3’-C-Glucosylisoliquiritigenin | C21H22O9 | Linear 1,3-diarylpropanoids | 418.1 | 7.208 | 591.9 |
3 | Robustaside D | C21H22O10 | Saccharolipids | 434.1 | 6.662 | 244.2 |
4 | Caffeic acid | C9H8O4 | Cinnamic acids and derivatives | 180.0 | 6.001 | 227.3 |
5 | Ethyl α-d-glucopyranoside | C8H16O6 | Organooxygen compounds | 208.1 | 1.316 | 201.9 |
6 | α-Methyl d-mannoside | C7H14O6 | Organooxygen compounds | 194.1 | 0.843 | 187.3 |
7 | Chlorogenic acid | C16H18O9 | Organooxygen compounds | 354.1 | 5.692 | 182.2 |
8 | Dimethyl citrate | C8H12O7 | Carboxylic acids and derivatives | 220.1 | 4.556 | 180.1 |
9 | l-Iditol | C6H14O6 | Organooxygen compounds | 182.1 | 0.763 | 129.0 |
10 | α,α-Trehalose | C12 H22 O11 | Organooxygen compounds | 342.1 | 0.796 | 112.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, J.; Hu, Y.; Si, Q.; Gu, Y.; Xiao, Z.; Ge, Q.; Sha, R. Antioxidant and Hypoglycemic Activity of Sequentially Extracted Fractions from Pingguoli Pear Fermentation Broth and Identification of Bioactive Compounds. Molecules 2022, 27, 6077. https://doi.org/10.3390/molecules27186077
Dai J, Hu Y, Si Q, Gu Y, Xiao Z, Ge Q, Sha R. Antioxidant and Hypoglycemic Activity of Sequentially Extracted Fractions from Pingguoli Pear Fermentation Broth and Identification of Bioactive Compounds. Molecules. 2022; 27(18):6077. https://doi.org/10.3390/molecules27186077
Chicago/Turabian StyleDai, Jing, Yu Hu, Qi Si, Yifei Gu, Zhuqian Xiao, Qin Ge, and Ruyi Sha. 2022. "Antioxidant and Hypoglycemic Activity of Sequentially Extracted Fractions from Pingguoli Pear Fermentation Broth and Identification of Bioactive Compounds" Molecules 27, no. 18: 6077. https://doi.org/10.3390/molecules27186077
APA StyleDai, J., Hu, Y., Si, Q., Gu, Y., Xiao, Z., Ge, Q., & Sha, R. (2022). Antioxidant and Hypoglycemic Activity of Sequentially Extracted Fractions from Pingguoli Pear Fermentation Broth and Identification of Bioactive Compounds. Molecules, 27(18), 6077. https://doi.org/10.3390/molecules27186077