New Thiazole Acetic Acid Derivatives: A Study to Screen Cardiovascular Activity Using Isolated Rat Hearts and Blood Vessels
Abstract
:1. Introduction
2. Results
2.1. Effects of New Synthetic Derivatives of Thiazole Acetic Acid on Developed Tension (gm) in Isolated Rat Heart
2.2. Effects of New Synthetic Derivatives of Thiazole Acetic Acid on Heart Rate in Isolated Rat Heart
2.3. Effects of New Synthetic Derivatives of Thiazole Acetic Acid on Developed Tension in Isolated Rat Heart in Presence of Either Adrenaline or Acetylcholine
2.4. Effects of New Synthetic Derivatives of Thiazole Acetic Acid on Heart Rate in Isolated Rat Heart in Presence of Either Adr or Ach
2.5. Effects of New Synthetic Derivatives of Thiazole Acetic Acid on Contractile Response (%) in Isolated Blood Vessel and in the Presence of Prazosin (Praz)
3. Discussion
4. Materials and Methods
4.1. Chemicals and Drugs
4.2. Synthesis of Thiazole Acetic Acid Derivatives
4.3. Experimental Animals
4.4. Treatment Protocol
4.5. Experimental Procedure
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Salas-Salvadó, J.; Becerra-Tomás, N.; García-Gavilán, J.F.; Bulló, M. Mediterranean Diet and Cardiovascular Disease Prevention: What Do We Know? Prog. Cardiovasc. Dis. 2018, 61, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Archundia Herrera, M.C.; Subhan, F.B.; Chan, C.B. Dietary Patterns and Cardiovascular Disease Risk in People with Type 2 Diabetes. Curr. Obes. Rep. 2017, 6, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Teo, K.K.; Rafiq, T. Cardiovascular Risk Factors and Prevention: A Perspective From Developing Countries. Can. J. Cardiol. 2021, 37, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Steiner, L.; Fraser, S.; Maraj, D.; Persaud, N. Associations between essential medicines and health outcomes for cardiovascular disease. BMC Cardiovasc. Disord. 2021, 21, 151. [Google Scholar] [CrossRef]
- Laurent, S. Antihypertensive drugs. Pharm. Res. 2017, 124, 116–125. [Google Scholar] [CrossRef]
- Cheng, H.; Harris, R.C. Potential side effects of renin inhibitors--mechanisms based on comparison with other renin-angiotensin blockers. Expert Opin. Drug Saf. 2006, 5, 631–641. [Google Scholar] [CrossRef]
- Auer, J.; Sinzinger, H.; Franklin, B.; Berent, R. Muscle- and skeletal-related side-effects of statins: Tip of the iceberg? Eur. J. Prev Cardiol. 2016, 23, 88–110. [Google Scholar] [CrossRef]
- Fotopoulou, T.; Iliodromitis, E.K.; Koufaki, M.; Tsotinis, A.; Zoga, A.; Gizas, V.; Pyriochou, A.; Papapetropoulos, A.; Andreadou, I.; Kremastinos, D.T. Design and synthesis of nitrate esters of aromatic heterocyclic compounds as pharmacological preconditioning agents. Bioorg. Med. Chem. 2008, 16, 4523–4531. [Google Scholar] [CrossRef]
- Jampilek, J. Heterocycles in Medicinal Chemistry. Molecules 2019, 24, 3839. [Google Scholar] [CrossRef]
- Nayak, S.; Gaonkar, S.L. A Review on Recent Synthetic Strategies and Pharmacological Importance of 1,3-Thiazole Derivatives. Mini Rev. Med. Chem. 2019, 19, 215–238. [Google Scholar] [CrossRef]
- Sharma, P.C.; Bansal, K.K.; Sharma, A.; Sharma, D.; Deep, A. Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur. J. Med. Chem. 2020, 188, 112016. [Google Scholar] [CrossRef] [PubMed]
- Svirčev, M.; Popsavin, M.; Pavić, A.; Vasiljević, B.; Rodić, M.V.; Djokić, S.; Kesić, J.; Srećo Zelenović, B.; Popsavin, V.; Kojić, V. Design, synthesis, and biological evaluation of thiazole bioisosteres of goniofufurone through in vitro antiproliferative activity and in vivo toxicity. Bioorg. Chem. 2022, 121, 105691. [Google Scholar] [CrossRef]
- Dahal, S.; Cheng, R.; Cheung, P.K.; Been, T.; Malty, R.; Geng, M.; Manianis, S.; Shkreta, L.; Jahanshahi, S.; Toutant, J.; et al. The Thiazole-5-Carboxamide GPS491 Inhibits HIV-1, Adenovirus, and Coronavirus Replication by Altering RNA Processing/Accumulation. Viruses 2021, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Raveesha, R.; Kumar, K.Y.; Raghu, M.S.; Prasad, S.B.B.; Alsalme, A.; Krishnaiah, P.; Prashanth, M.K. Synthesis, molecular docking, antimicrobial, antioxidant and anticonvulsant assessment of novel S and C-linker thiazole derivatives. Chem. Phys. Lett. 2022, 791, 139408. [Google Scholar] [CrossRef]
- Almatary, A.M.; Elmorsy, M.A.; El Husseiny, W.M.; Selim, K.B.; El-Sayed, M.A. Design, synthesis, and molecular modeling of heterocyclic bioisostere as potent PDE4 inhibitors. Arch. Pharm. 2018, 351, e1700403. [Google Scholar] [CrossRef]
- Gao, J.; Yuan, G.; Xu, Z.; Lan, L.; Xin, W. Chenodeoxycholic and deoxycholic acids induced positive inotropic and negative chronotropic effects on rat heart. Naunyn Schmiedebergs Arch. Pharmacol. 2021, 394, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, Y.; Gao, J.; Jing, Y.; Xin, W. Berberine Mediated Positive Inotropic Effects on Rat Hearts via a Ca2+-Dependent Mechanism. Front. Pharmacol. 2020, 11, 821. [Google Scholar] [CrossRef] [PubMed]
- Gartz, A.; Pawlik, E.; Eckhardt, J.; Ritz-Timme, S.; Huhn, R.; Mayer, F. Effects of cocaine and levamisole (as adulterant) on the isolated perfused Langendorff heart. Int. J. Legal. Med. 2020, 134, 1741–1752. [Google Scholar] [CrossRef]
- Morini, G.; Poli, E.; Comini, M.; Menozzi, A.; Pozzoli, C. Benzisothiazoles and beta-adrenoceptors: Synthesis and pharmacological investigation of novel propanolamine and oxypropanolamine derivatives in isolated rat tissues. Arch. Pharm. Res. 2005, 28, 1317–1323. [Google Scholar] [CrossRef]
- Hekmat, A.S.; Farjam, M.; Javanmardi, K.; Behrouz, S.; Zerenezhad, E.; Rad, M.N.S. Design, Synthesis and In Vivo Cardiovascular Evaluation of Some Novel Aryloxy Propanol Amino Acid Derivatives. ChemistrySelect 2021, 6, 13595–13600. [Google Scholar] [CrossRef]
- Soltani Rad, M.N.; Behrouz, S.; Zarenezhad, E.; Moslemin, M.H.; Zarenezhad, A.; Mardkhoshnood, M.; Behrouz, M.; Rostami, S. Synthesis of fluorene and/or benzophenone O-oxime ethers containing amino acid residues and study of their cardiovascular and antibacterial effects. Med. Chem Res. 2014, 23, 3810–3822. [Google Scholar] [CrossRef]
- Alamgeer; Iman, S.; Asif, H.; Saleem, M. Evaluation of antihypertensive potential of Ficus carica fruit. Pharm. Biol. 2017, 55, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Bansal, T.; Chatterjee, E.; Singh, J.; Ray, A.; Kundu, B.; Thankamani, V.; Sengupta, S.; Sarkar, S. Arjunolic acid, a peroxisome proliferator-activated receptor α agonist, regresses cardiac fibrosis by inhibiting non-canonical TGF-β signaling. J. Biol. Chem. 2017, 292, 16440–16462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attimarad, M.; Gagawant, G. Synthesis and anti-inflammatory and analgesic activities of 2-Arylamino 4-(4-Chlorphenyl) Thiazole-5-Acetic Acids/Esters. Indian J. Pharm. Sci. 1999, 61, 152–155. [Google Scholar]
- Asdaq, S.M.; Inamdar, M.N. Pharmacodynamic interaction of garlic with hydrochlorothiazide in rats. Indian J. Pharm. Sci. 2009, 53, 127–136. [Google Scholar]
- Asdaq, S.M.; Inamdar, M.N.; Asad, M. Pharmacodynamic interaction of garlic with propranolol in ischemia-reperfusion induced myocardial damage. Pak. J. Pharm. Sci. 2010, 23, 42–47. [Google Scholar]
- Kumar, N.P.; Inamdar, M.N.; Venkataraman, B.V. Comparative interaction of few antihypertensive drugs with cyclosporine-A in rats. Indian J. Exp. Biol. 2007, 45, 638–641. [Google Scholar]
Treatment | Concentration of New Derivatives of Thiazole Acetic Acid | |||||
---|---|---|---|---|---|---|
1 nM | 10 nM | 100 nM | 1 µM | 10 µM | 100 µM | |
Normal | 2.05 ± 0.03 | |||||
SMVA 10 | 2.77 ± 0.24 * | 2.57 ± 0.39 | 2.60 ± 0.30 | 2.70 ± 0.34 | 2.57 ± 0.54 | 2.31 ± 0.41 |
SMVA 35 | 2.68 ± 0.31 | 2.79 ± 0.27 * | 2.79 ± 0.36 * | 2.86 ± 0.42 * | 2.68 ± 0.14 | 2.79 ± 0.39 * |
SMVA 40 | 3.04 ± 0.19 ** | 2.98 ± 0.21 * | 2.84 ± 0.41 * | 2.81 ± 0.28 * | 2.64 ± 0.29 | 2.72 ± 0.17 * |
SMVA 41 | 3.11 ± 0.09 *** | 3.00 ± 0.50 ** | 3.19 ± 0.22 *** | 3.00 ± 0.15 ** | 3.26 ± 0.22 *** | 3.26 ± 0.23 *** |
SMVA 42 | 3.09 ± 0.24 ** | 3.09 ± 0.25 ** | 4.00 ± 0.08 *** | 4.00 ± 0.46 *** | - | 3.03 ± 0.32 ** |
SMVA 60 | 3.12 ± 0.29 *** | 2.84 ± 0.18 * | 2.93 ± 0.61 * | 2.59 ± 0.23 | 2.22 ± 0.39 | 2.59 ± 0.20 |
Treatment | Concentration of New Derivatives of Thiazole Acetic Acid | |||||
---|---|---|---|---|---|---|
1 nM | 10 nM | 100 nM | 1 µM | 10 µM | 100 µM | |
Normal | 324.67 ± 8.12 | |||||
SMVA-10 | 236.00 ± 50.12 | 301.00 ± 33.52 | 254.00 ± 36.41 | 236.67 ± 31.96 | 249.00 ± 32.96 | 233.33 ± 30.65 |
SMVA-35 | 292.00 ± 41.23 | 290.00 ± 23.41 | 292.00 ± 28.64 | 286.67 ± 26.41 | 276.00 ± 19.65 | 263.33 ± 23.65 |
SMVA-40 | 276.00 ± 39.21 | 300.00 ± 51.97 | 280.67 ± 30.96 | 295.00 ± 19.98 | 290.00 ± 36.74 | 291.00 ± 19.98 |
SMVA-41 | 272.00 ± 26.34 | 259.50 ± 38.65 | 257.33 ± 40.31 | 254.00 ± 35.62 | 256.67 ± 23.95 | 239.00 ± 31.95 |
SMVA-42 | 243.33 ± 31.62 | 240.66 ± 20.96 | 252.00 ± 38.62 | 240.66 ± 29.64 | - | 254.66 ± 24.67 |
SMVA-60 | 242.67 ± 44.36 | 232.5 ± 36.41 | 242.33 ± 26.34 | 256.00 ± 24.65 | 220 ± 22.98 * | 236.00 ± 26.14 |
New Synthetic Compound | R’ | R | Melting Point | % Yield |
---|---|---|---|---|
SMVA-10 | C6H5 | H | 240–242 | 80 |
SMVA-35 | 2-Cl C6H4 | H | 208–210 | 81 |
SMVA-40 | 4-CH3 C6H4 | H | 248–250 | 74 |
SMVA-41 | 4-F C6H4 | H | 261–262 | 81 |
SMVA-42 | 4-Br C6H4 | H | 238–240 | 80 |
SMVA-60 | C6H5 | C2H5 | 119–120 | 55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raghunatha, P.; Inamdar, M.N.; Asdaq, S.M.B.; Almuqbil, M.; Alzahrani, A.R.; Alaqel, S.I.; Kamal, M.; Alsubaie, F.H.; Alsanie, W.F.; Alamri, A.S.; et al. New Thiazole Acetic Acid Derivatives: A Study to Screen Cardiovascular Activity Using Isolated Rat Hearts and Blood Vessels. Molecules 2022, 27, 6138. https://doi.org/10.3390/molecules27196138
Raghunatha P, Inamdar MN, Asdaq SMB, Almuqbil M, Alzahrani AR, Alaqel SI, Kamal M, Alsubaie FH, Alsanie WF, Alamri AS, et al. New Thiazole Acetic Acid Derivatives: A Study to Screen Cardiovascular Activity Using Isolated Rat Hearts and Blood Vessels. Molecules. 2022; 27(19):6138. https://doi.org/10.3390/molecules27196138
Chicago/Turabian StyleRaghunatha, P., Mohammed Naseeruddin Inamdar, Syed Mohammed Basheeruddin Asdaq, Mansour Almuqbil, Abdullah R. Alzahrani, Saleh I. Alaqel, Mehnaz Kamal, Firas Hamdan Alsubaie, Walaa F. Alsanie, Abdulhakeem S. Alamri, and et al. 2022. "New Thiazole Acetic Acid Derivatives: A Study to Screen Cardiovascular Activity Using Isolated Rat Hearts and Blood Vessels" Molecules 27, no. 19: 6138. https://doi.org/10.3390/molecules27196138
APA StyleRaghunatha, P., Inamdar, M. N., Asdaq, S. M. B., Almuqbil, M., Alzahrani, A. R., Alaqel, S. I., Kamal, M., Alsubaie, F. H., Alsanie, W. F., Alamri, A. S., Rabbani, S. I., Attimarad, M., Mohan, S., & Alhomrani, M. (2022). New Thiazole Acetic Acid Derivatives: A Study to Screen Cardiovascular Activity Using Isolated Rat Hearts and Blood Vessels. Molecules, 27(19), 6138. https://doi.org/10.3390/molecules27196138