Carbazole Derivatives as Potential Antimicrobial Agents
Abstract
:1. Introduction
2. Antibacterial and Antifungal Activities of Carbazole Derivatives
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A Review on antibiotic resistance: Alarm Bells are Ringing. Cureus 2017, 9, e1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. New Report Calls for Urgent Action to Avert Antimicrobial Resistance Crisis. Available online: https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis (accessed on 15 September 2022).
- Shinu, P.; Mouslem, A.K.A.; Nair, A.B.; Venugopala, K.N.; Attimarad, M.; Singh, V.A.; Nagaraja, S.; Alotaibi, G.; Deb, P.K. Progress report: Antimicrobial drug discovery in the resistance era. Pharmaceuticals 2022, 15, 413. [Google Scholar] [CrossRef] [PubMed]
- Mitcheltree, M.J.; Pisipati, A.; Syroegin, E.A.; Silvestre, K.J.; Klepacki, D.; Mason, J.D.; Terwilliger, D.W.; Testolin, G.; Pote, A.R.; Wu, K.J.Y.; et al. A synthetic antibiotic class overcoming bacterial multidrug resistance. Nature 2021, 599, 507–512. [Google Scholar] [CrossRef]
- Johnston, S.L.; Blasi, F.; Black, P.N.; Martin, R.J.; Farrell, D.J.; Nieman, R.B.; Investigators, T. The effect of telithromycin in acute exacerbations of asthma. N. Engl. J. Med. 2006, 354, 1589–1600. [Google Scholar] [CrossRef] [Green Version]
- Saravolatz, L.D.; Leggett, J. Gatifloxacin, gemifloxacin, and moxifloxacin: The role of 3 newer fluoroquinolones. Clin. Infect. Dis. 2003, 37, 1210–1215. [Google Scholar] [CrossRef]
- Karpecki, P.; Depaolis, M.; Hunter, J.A.; White, E.M.; Rigel, L.; Brunner, L.S.; Usner, D.W.; Paterno, M.R.; Comstock, T.L. Besifloxacin ophthalmic suspension 0.6% in patients with bacterial conjunctivitis: A multicenter, prospective, randomized, doublemasked, vehicle-controlled, 5-day efficacy and safety study. Clin. Ther. 2009, 31, 514–526. [Google Scholar] [CrossRef]
- Ellis-Grosse, E.J.; Babinchak, T.; Dartois, N.; Rose, G.; Loh, E. The efficacy and safety of tigecycline in the treatment of skin and skin-structure infections: Results of 2 double-blind phase 3 comparison studies with vancomycin-aztreonam. Clin. Infect. Dis. 2005, 41, S341–S353. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, J.; Dartois, N.; Gandjini, H.; Yan, J.L.; Korth-Bradley, J.; McGovern, P.C. Randomized phase 2 trial to evaluate the clinical efficacy of two high-dosage tigecycline regimens versus imipenemcilastatinfor treatment of hospital-acquired pneumonia. Antimicrob. Agents Chemother. 2013, 57, 1756–1762. [Google Scholar] [CrossRef] [Green Version]
- Karlowsky, J.A.; Nichol, K.; Zhanel, G.G. Telavancin: Mechanisms of action, in vitro activity, and mechanisms of resistance. Clin. Infect. Dis. 2015, 61, S58–S68. [Google Scholar] [CrossRef]
- Alt, S.; Bernasconi, A.; Sosio, M.; Brunati, C.; Donadio, S.; Maffioli, S.I. Toward single-peak dalbavancin analogs through biologyand chemistry. ACS Chem. Biol. 2019, 14, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, S.C.; Welte, T.; File, T.M., Jr.; Strauss, R.S.; Michiels, B.; Kaul, P.; Balis, D.; Arbit, D.; Amsler, K.; Noel, G.J. A randomised, double-blind trial comparing ceftobiprole medocaril with ceftriaxone with or without linezolid for the treatment of patients with community-acquired pneumonia requiring hospitalisation. Int. J. Antimicrob. Agents 2012, 39, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Lovering, A.L.; Gretes, M.C.; Safadi, S.S.; Danel, F.; de Castro, L.; Page, M.G.P.; Strynadka, N.C.J. Structural insights into the anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of ceftobiprole. J. Biol. Chem. 2012, 287, 32096–32102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graebe, C.; Glaser, C. Ueber carbazol. Justus Liebigs Ann. Chem. 1872, 163, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, D.P.; Barman, B.K.; Bose, P.K. On the constitution of murrayanine, a carbazole derivative isolated from Murraya koenigii Spreng. Tetrahedron 1965, 21, 681–685. [Google Scholar] [CrossRef]
- Głuszyńska, A. Biological potential of carbazole derivatives. Eur. J. Med. Chem. 2015, 94, 405–426. [Google Scholar] [CrossRef]
- Caruso, A.; Ceramella, J.; Iacopetta, D.; Saturnino, C.; Mauro, M.V.; Bruno, R.; Aquaro, S.; Sinicropi, M.S. Carbazole derivatives as antiviral agents: An overview. Molecules 2019, 24, 1912. [Google Scholar] [CrossRef] [Green Version]
- Caruso, A.; Iacopetta, D.; Puoci, F.; Rita Cappello, A.; Saturnino, C.; Stefania Sinicropi, M. Carbazole derivatives: A promising scenario for breast cancer treatment. Mini Rev. Med. Chem. 2016, 16, 630–643. [Google Scholar] [CrossRef]
- Knölker, H.-J.; Reddy, K.R. Isolation and synthesis of biologically active carbazole alkaloids. Chem. Rev. 2002, 102, 4303–4428. [Google Scholar] [CrossRef]
- Garbett, N.C.; Graves, D.E. Extending nature’s leads: The anticancer agent ellipticine. Curr. Med. Chem. Anticancer Agents 2004, 4, 149–172. [Google Scholar] [CrossRef]
- Ruiz-Ceja, K.A.; Chirino, Y.I. Current FDA-approved treatments for non-small cell lung cancer and potential biomarkers for its detection. Biomed. Pharmacother. 2017, 90, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Stone, R.M.; Manley, P.W.; Larson, R.A.; Capdeville, R. Midostaurin: Its odyssey from discovery to approval for treating acute myeloid leukemia and advanced systemic mastocytosis. Blood Adv. 2018, 2, 444–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutierrez, L.; Jang, M.; Zhang, T.; Akhtari, M.; Alachkar, H. Midostaurin reduces regulatory T cells markers in acute myeloid leukemia. Sci. Rep. 2018, 8, 17544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, L.D. Carvedilol and the Food and Drug Administration (FDA) approval process: The FDA paradigm and reflections on hypothesis testing. Control. Clin. Trials 1999, 20, 16–39. [Google Scholar] [CrossRef]
- Méjean, A.; Guillaume, J.-L.; Strosberg, A.D. Carazolol: A potent, selective β3-adrenoceptor agonist. Eur. J. Pharmacol. Mol. Pharmacol. 1995, 291, 359–366. [Google Scholar] [CrossRef]
- Papich, M.G. An update on nonsteroidal anti-inflammatory drugs (NSAIDs) in small animals. Vet. Clin. N. Am. Small Anim. Pract. 2008, 38, 1243–1266. [Google Scholar] [CrossRef]
- Balbisi, E. Frovatriptan succinate, a 5-HT1B/1D receptor agonist for migraine. Int. J. Clin. Pract. 2004, 58, 695–705. [Google Scholar] [CrossRef]
- Ramsewak, R.S.; Nair, M.G.; Strasburg, G.M.; DeWitt, D.L.; Nitiss, J.L. Biologically active carbazole alkaloids from Murraya koenigii. J. Agric. Food Chem. 1999, 47, 444–447. [Google Scholar] [CrossRef]
- Danish, I.A.; Prasad, K.J.R. A one pot synthesis and evaluation of 13-oxo-quino[3,4-b]carbazol-N-oxides as antimicrobial agents. Acta Pharm. 2003, 53, 287–294. [Google Scholar]
- Sangeetha, V.; Rajendra Prasad, K.J. Synthesis of isoxazolo and pyrazolino annelated carbazoles from 2-(4′-methoxy)benzylidene-1-oxo-1,2,3,4-tetrahydrocarbazoles. Asian J. Chem. 2004, 16, 1165–1170. [Google Scholar]
- Vandana, T.; Rajendra Prasad, K.J. Synthesis of 3-phenyl-4-oxopyrano[2,3-a]carbazoles (indoloisoflavones). Indian J. Chem. Sect. B 2005, 44B, 1101–1104. [Google Scholar] [CrossRef]
- Mukhlesur Rahman, M.; Gray, A.I. A benzoisofuranone derivative and carbazole alkaloids from Murraya koenigii and their antimicrobial activity. Phytochemistry 2005, 66, 1601–1606. [Google Scholar] [CrossRef]
- Surendiran, T.; Balasubramanian, S.; Sivaraj, D. Synthesis and characterization of novel isoxazolyl and pyrazolyl 2, 3, 4, 9 tetrahydro-1H-carbazoles and their antimicrobial studies. OCAIJ 2008, 4, 427–433. [Google Scholar]
- Rajakumar, P.; Sekar, K.; Shanmugaiah, V.; Mathivanan, N. Synthesis of novel carbazole based macrocyclic amides as potential antimicrobial agents. Eur. J. Med. Chem. 2009, 44, 3040–3045. [Google Scholar] [CrossRef]
- Gu, W.; Wang, S. Synthesis and antimicrobial activities of novel 1H-dibenzo[a,c]carbazoles from dehydroabietic acid. Eur. J. Med. Chem. 2010, 45, 4692–4696. [Google Scholar] [CrossRef]
- Kaplancikli, Z.A. Synthesis of some novel carbazole derivatives and evaluation of their antimicrobial activity. Marmara Pharm. J. 2011, 15, 105–109. [Google Scholar] [CrossRef]
- Bandgar, B.P.; Adsul, L.K.; Lonikar, S.V.; Chavan, H.V.; Shringare, S.N.; Patil, S.A.; Jalde, S.S.; Koti, B.A.; Dhole, N.A.; Gacche, R.N.; et al. Synthesis of novel carbazole chalcones as radical scavenger, antimicrobial and cancer chemopreventive agents. J. Enzym. Inhib. Med. Chem. 2013, 28, 593–600. [Google Scholar] [CrossRef] [Green Version]
- Lakshmi Reddy, S.V.; Naresh, K.; Raju, C.N. New sulfonamide and carbamate derivatives of 4-(oxiran-2-ylmethoxy)-9H-carbazole: Synthesis, characterization, antimicrobial and antioxidant activities. Der. Pharm. Lett. 2013, 5, 221–231. [Google Scholar]
- Adsul, L.K.; Bandgar, B.P.; Chavan, H.V.; Jalde, S.S.; Dhakane, V.D.; Shirfule, A.L. Synthesis and biological evaluation of novel series of aminopyrimidine derivatives as urease inhibitors and antimicrobial agents. J. Enzym. Inhib. Med. Chem. 2013, 28, 1316–1323. [Google Scholar] [CrossRef]
- Sharma, D.; Kumar, N.; Pathak, D. Synthesis, characterization and biological evaluation of some newer carbazole derivatives. J. Serb. Chem. Soc. 2014, 79, 125–132. [Google Scholar] [CrossRef]
- Chakraborty, B.; Chakraborty, S.; Saha, C. Antibacterial Activity of murrayaquinone A and 6-methoxy-3,7-dimethyl-2,3-dihydro-1H-carbazole-1,4(9H)-dione. Int. J. Microbiol. 2014, 2014, 540208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, W.; Qiao, C.; Wang, S.; Hao, Y.; Miao, T.T. Synthesis and biological evaluation of novel N-substituted 1H-dibenzo[a,c]carbazole derivatives of dehydroabietic acid as potential antimicrobial agents. Bioorganic Med. Chem. Lett. 2014, 24, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Hao, Y.; Zhang, G.; Wang, S.-F.; Miao, T.-T.; Zhang, K.-P. Synthesis, in vitro antimicrobial and cytotoxic activities of new carbazole derivatives of ursolic acid. Bioorganic Med. Chem. Lett. 2015, 25, 554–557. [Google Scholar] [CrossRef] [PubMed]
- Yaqub, G.; Sadiq, Z.; Hamid, A.; Fatima, A.; Ijaz, Z. Conventional-microwave mediated synthesis and in vitro antimicrobial activity of novel carbazole-efflux pump inhibitor hybrid antibacterials. J. Chem. 2017, 2017, 7243279. [Google Scholar] [CrossRef]
- Sathiya, M.; Guhanathan, S. Electrophilic and free radical bromination of biologically active bromo derivative of [b] carbazole using NBS/H2SO4. World J. Pharm. Res. 2018, 7, 291–305. [Google Scholar]
- Ochung, A.A.; Manguro, L.A.O.; Owuor, P.O.; Jondiko, I.O.; Nyunja, R.A.; Akala, H.; Mwinzi, P.; Opiyo, S.A. Bioactive carbazole alkaloids from Alysicarpus ovalifolius (Schumach). J. Korean Soc. Appl. Biol. Chem. 2015, 58, 839–846. [Google Scholar] [CrossRef]
- Ashok, D.; Ravi, S.; Ganesh, A.; Lakshmi, B.V.; Adam, S.; Murthy, S.D.S. Microwave-assisted synthesis and biological evaluation of carbazole-based chalcones, aurones and flavones. Med. Chem. Res. 2016, 25, 909–922. [Google Scholar] [CrossRef]
- Addla, D.; Wen, S.-Q.; Gao, W.-W.; Maddili, S.K.; Zhang, L.; Zhou, C.-H. Design, synthesis, and biological evaluation of novel carbazole aminothiazoles as potential dna-targeting antimicrobial agents. Med. Chem. Commun. 2016, 7, 1988–1994. [Google Scholar] [CrossRef]
- Reddy, P.N.; Padmaja, P.; Reddy, B.R.; Rambabu, G.; Kumar, M.P. synthesis, molecular docking, antiproliferative, and antimicrobial activity of novel pyrano[3,2-c]carbazole derivatives. Med. Chem. Res. 2016, 25, 2093–2103. [Google Scholar] [CrossRef]
- Clausen, J.D.; Kjellerup, L.; Cohrt, K.O.; Hansen, J.B.; Dalby-Brown, W.; Winther, A.-M.L. Elucidation of antimicrobial activity and mechanism of action by n-substituted carbazole derivatives. Bioorganic Med. Chem. Lett. 2017, 27, 4564–4570. [Google Scholar] [CrossRef]
- Jasass, R.S.; Alshehrei, F.; Farghaly, T.A. Microwave-assisted synthesis of antimicrobial agents containing carbazole and thiazole moieties. J. Heterocycl. Chem. 2018, 55, 2099–2106. [Google Scholar] [CrossRef]
- Zhang, Y.; Tangadanchu, V.K.R.; Cheng, Y.; Yang, R.-G.; Lin, J.-M.; Zhou, C.-H. Potential antimicrobial isopropanol-conjugated carbazole azoles as dual targeting inhibitors of Enterococcus Faecalis. ACS Med. Chem. Lett. 2018, 9, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, M.S.; Chandrasekaran, B.; Palkar, M.B.; Kanhed, A.M.; Kajee, A.; Mlisana, K.P.; Singh, P.; Ghai, M.; Cleopus Mahlalela, M.; Karpoormath, R. Synthesis and biological evaluation of novel carbazole hybrids as promising antimicrobial agents. Chem. Biodivers. 2020, 17, e1900550. [Google Scholar] [CrossRef] [PubMed]
- Meriç, Ç.; Kanbur, S.; Baycan, F. Side chain functional carbazole-fluorene electroactive polymers: Optical, electrochemical properties, antimicrobial activity and thin film morphologies. J. Appl. Polym. Sci. 2021, 138, 50325. [Google Scholar] [CrossRef]
- Lin, S.; Liu, J.; Li, H.; Liu, Y.; Chen, Y.; Luo, J.; Liu, S. Development of highly potent carbazole amphiphiles as membrane-targeting antimicrobials for treating gram-positive bacterial infections. J. Med. Chem. 2020, 63, 9284–9299. [Google Scholar] [CrossRef]
- Bordei Telehoiu, A.T.; Nuță, D.C.; Căproiu, M.T.; Dumitrascu, F.; Zarafu, I.; Ioniță, P.; Bădiceanu, C.D.; Avram, S.; Chifiriuc, M.C.; Bleotu, C.; et al. Design, synthesis and in vitro characterization of novel antimicrobial agents based on 6-chloro-9h-carbazol derivatives and 1,3,4-oxadiazole scaffolds. Molecules 2020, 25, 266. [Google Scholar] [CrossRef] [Green Version]
- Hegden, P.R.; Emmanuel, B.D.; Beevi, J.; Dharan, S.S. In Silico Design, synthesis and biological evaluation of novel carbazole derivatives. J. Pharm. Chem. Res. 2021, 13, 8–18. [Google Scholar]
- Xue, Y.-J.; Li, M.-Y.; Jin, X.-J.; Zheng, C.-J.; Piao, H.-R. Design, synthesis and evaluation of carbazole derivatives as potential antimicrobial agents. J. Enzym. Inhib. Med. Chem. 2021, 36, 296–307. [Google Scholar] [CrossRef]
- Zawadzka, K.; Felczak, A.; Głowacka, I.E.; Piotrowska, D.G.; Lisowska, K. Evaluation of the antimicrobial potential and toxicity of a newly synthesised 4-(4-(benzylamino)butoxy)-9h-carbazole. Int. J. Mol. Sci. 2021, 22, 12796. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, S.A.; Patil, S.A.; Ble-González, E.A.; Isbel, S.R.; Hampton, S.M.; Bugarin, A. Carbazole Derivatives as Potential Antimicrobial Agents. Molecules 2022, 27, 6575. https://doi.org/10.3390/molecules27196575
Patil SA, Patil SA, Ble-González EA, Isbel SR, Hampton SM, Bugarin A. Carbazole Derivatives as Potential Antimicrobial Agents. Molecules. 2022; 27(19):6575. https://doi.org/10.3390/molecules27196575
Chicago/Turabian StylePatil, Siddappa A., Shivaputra A. Patil, Ever A. Ble-González, Stephen R. Isbel, Sydney M. Hampton, and Alejandro Bugarin. 2022. "Carbazole Derivatives as Potential Antimicrobial Agents" Molecules 27, no. 19: 6575. https://doi.org/10.3390/molecules27196575
APA StylePatil, S. A., Patil, S. A., Ble-González, E. A., Isbel, S. R., Hampton, S. M., & Bugarin, A. (2022). Carbazole Derivatives as Potential Antimicrobial Agents. Molecules, 27(19), 6575. https://doi.org/10.3390/molecules27196575