13C-NMR Chemical Shifts in 1,3-Benzazoles as a Tautomeric Ratio Criterion
Abstract
:1. Introduction
2. Electronic Effects of Heteroatoms on Aromatic Rings
2.1. Influence of Benzene Ring Substituents in the 13C NMR Chemical Shifts
2.2. Effect of Heteroatoms on 13C-NMR of Benzazoles
3. Estimation of the Anular Tautomerism on Benzimidazol
4. Tautomers and Mesomers in 1- and 2-Substituted Benzimidazoles
4.1. Effects of the Contribution of Mesomeric Structures in 1-Substituted Benzimidazoles
4.2. Effects of the Contribution of Tautomers in 2-Substituted Benzimidazoles
Compound | C2 | C3a | C4 | C5 | C6 | C7 | C7a | Solvent | Ref. |
---|---|---|---|---|---|---|---|---|---|
7 (R = Me) | 151.3 151.2 | 138.3 143.5 | 114.4 117.8 | 122.2 120.7 | 122.2 121.2 | 114.4 110.5 | 138.3 134.3 | CDCl3 DMSOd6 | [38] [33] |
7 (R = Et) | 157.4 | 139.4 | 114.7 | 122.7 | 122.7 | 114.7 | 139.4 | DMSOd6 | [33] |
7 (R = nPr) | 155.6 | 138.7 | 114.6 | 122.0 | 122.0 | 114.6 | 138.7 | CDCl3 | [33,39] |
7 (R = iPr) | 142.3 | 135.4 | 118.9 | 120.9 | 121.7 | 110.8 | 134.4 | DMSOd6 | [33] |
7 (R = Bn) | 151.8 | 133.2 | 114.0 | 125.8 | 125.8 | 114.0 | 133.2 | CDCl3 | [40] |
7 (R = Ph) | 151.8 | 144.4 | 119.4 | 123.0 | 122.2 | 111.8 | 135.5 | DMSOd6 | [31] |
8 (R = Me) | 147.7 | 143.5 | 122.1 | 123.8 | 122.1 | 112.1 | 126.6 | CDCl3 | [41] |
8 (R = Ph) | 147.7 | 143.9 | 122.3 | 126.5 | 123.8 | 112.0 | 133.9 | CDCl3 | [39] |
9 | 144.9 | 136.6 | 116.3 | 124.8 | 124.8 | 116.3 | 136.6 | DMSOd6 |
5. Iminothiol-Thioamide Tautomerism and Mesomers in 1,3-Benzoheterazolidine-2-thiones
5.1. Tautomers and Mesomers in Benzothiazolidine Tione
5.2. C4/C7 13C NMR Chemical Shifts of 1,3-Benzoheterazolidine-2-tiones in Iminothiol-Thioamide Tautomerism and Benzimidazolidine-2-selone Mesomerism
5.3. Mesomerism in N1-acyl-1,3-benzoheterazolidine-2-thiones
5.4. Tautomeric Equilibrium in Omeprazole
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elguero, J. Una Aproximación a la Tautomería de los Heterociclos Aromáticos. Rev. Soc. Quíim. Perú. 2020, 86, 452–476. [Google Scholar] [CrossRef]
- Guasch, L.; Yapamudiyansel, W.; Peach, M.L.; Kelley, J.A.; Barchi, J.J.; Nicklaus, M.C. Experimental and Chemoinformatics Study of Tautomerism in a Database of Commercially Available Screening Samples. J. Chem. Inf. Model. 2016, 56, 2149–2161. [Google Scholar] [CrossRef]
- Proj, M.; Sosič, I.; Gobec, S. Synthesis and NMR spectroscopic assignment of chlorinated benzimidazole-2-thione derivatives. Tetrahedron Lett. 2019, 60, 151078. [Google Scholar] [CrossRef]
- Nieto, C.I.; Cabildo, P.; García, M.A.; Claramunt, R.M.; Alkorta, I.; Elguero, J. An experimental and theoretical NMR study of NH-benzimidazoles in solution and in the solid state: Proton transfer and tautomerism. Beilstein J. Org. Chem. 2014, 10, 1620–1629. [Google Scholar] [CrossRef] [PubMed]
- García, M.A.; Claramunt, R.M.; Solcân, T.; Milata, V.; Alkorta, I.; Elguero, J. 13C and 15N NMR spectra of aminobenzimidazoles in solution and in the solid state. Magn. Reson. Chem. 2009, 47, 100–104. [Google Scholar] [CrossRef]
- Claramunt, R.M.; López, C.; Alkorta, I.; Elguero, J.; Yang, R.; Schulman, S. The tautomerism of Omeprazole in solution: A 1H and 13C NMR study. Magn. Reson Chem. 2004, 42, 712–714. [Google Scholar] [CrossRef]
- Larina, L.I. Chapter Five, Tautomerism and Structure of Azoles: Nuclear Magnetic Resonance Spectroscopy. In Advances in Heterocyclic Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 233–321. [Google Scholar]
- Form, G.R.; Raper, E.S.; Downie, T.C. The Crystal and Molecular Structure of 2-Mercaptobenzimidazole. Acta Crystallogr. 1976, B32, 345–348. [Google Scholar] [CrossRef]
- Khan, H.; Badshah, A.; Shaheen, F.; Gieck, C.; Qureshi, R.A. 1-Methyl-1H-benzimidazole-2(3H)-thione. Acta Crystallogr. Sect. E. Struct. Rep. Online 2008, 6, o1141. [Google Scholar] [CrossRef]
- Palomo-Molina, J.; García-Báez, E.V.; Contreras, R.; Pineda-Urbina, K.; Ramos-Organillo, A. Aminosilanes derived from 1H-benzimidazole-2(3H)-thione. Acta Cryst. Struct. Chem. 2015, C71, 788–792. [Google Scholar] [CrossRef]
- Balestrero, R.S.; Forkey, D.M.; Russell, J.G. Iminol-Thioamide Tautomerism of 2-mercaptobenzazoles and 1-methyl-2-mercaptoimidazoles. Magn. Reson. Chem. 1986, 24, 651–655. [Google Scholar] [CrossRef]
- Pandey, M.; Muthu, S.; Gowda, N.N.M. Quantum mechanical and spectroscopic (FT-IR, FT-Raman,1H,13C NMR, UV-Vis) studies, NBO, NLO, HOMO, LUMO and Fukui function analysis of 5-Methoxy-1H-benzo[d]imidazole-2(3H)-thione by DFT studies. J. Mol. Struct. 2017, 1130, 511–521. [Google Scholar] [CrossRef]
- Zhang, P.; Terefenko, E.; Kern, J.; Fensome, A.; Trybulski, E.; Unwalla, R.; Wrobel, J.; Lockhead, S.; Zhu, Y.; Cohen, J.; et al. 5-(3-Cyclopentyl-2-thioxo-2,3-dihydro-1H-benzimidazol-5-yl)-1-methyl-1H-pyrrole-2-carbonitrile: A novel, highly potent, selective, and orally active non-steroidal progesterone receptor agonist. Bioorg. Med. Chem. 2007, 15, 6556–6564. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Tatsuta, M.; Kataoka, M.; Yasoshima, K.; Shogase, Y.; Shimazaki, M.; Yura, T.; Li, Y.; Yamamoto, N.; Gupta, J.B.; et al. Benzimidazole derivatives as novel nonpeptide luteinizing hormone-releasing hormone (LHRH) antagonists. Part 1: Benzimidazole-5-sulfonamides. Bioorg. Med. Chem. Lett. 2005, 15, 799–803. [Google Scholar] [CrossRef] [PubMed]
- Tatsuta, M.; Kataoka, M.; Yasoshima, K.; Sakakibara, S.; Shogase, Y.; Shimazaki, M.; Yura, T.; Li, Y.; Yamamoto, N.; Gupta, J.; et al. Benzimidazoles as non-peptide luteinizing hormone-releasing hormone (LHRH) antagonists. Part 3: Discovery of 1-(1H-benzimidazol-5-yl)-3-tert-butylurea derivatives. Bioorg. Med. Chem. Lett. 2005, 15, 2265–2269. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, J.M.; Loyns, C.R. Synthesis of novel 1-, 1,4- and 1,7-substituted 2-mercapto- and 2-methylmercapto- benzimidazoles: Acyclic analogues of the HIV-1 RT inhibitor, TIBO. Tetrahedron 1995, 51, 11515–11530. [Google Scholar] [CrossRef]
- Hwu, J.R.; Singha, R.; Hong, S.C.; Chang, Y.H.; Das, A.R.; Vliegen, I.; De Clercq, E.; Neyts, J. Synthesis of new benzimidazole–coumarin conjugates as anti-hepatitis C virus agents. Antivir. Res. 2008, 77, 157–162. [Google Scholar] [CrossRef]
- Mavrova, A.T.; Vuchev, K.; Anichina, K.; Vassilev, N. Synthesis, antitrichinnellosis and antiprotozoal activity of some novel thieno [2,3-d]pyrimidin-4(3H)-ones containing benzimidazole ring. Eur. J. Med. Chem. 2010, 45, 5856–5861. [Google Scholar] [CrossRef]
- Pérez-Villanueva, J.; Hernández-Campos, A.; Yépez-Mulia, L.; Méndez-Cuesta, C.; Méndez-Lucio, O.; Hernández-Luis, F.; Castillo, R. Synthesis and antiprotozoal activity of novel 2-{[2-(1H-imidazol-1-yl)ethyl]sulfanyl}-1H-benzimidazole derivatives. Bioorg. Med. Chem. Lett. 2013, 23, 4221–4224. [Google Scholar] [CrossRef]
- Desai, K.G.; Desai, K.R. Green route for the heterocyclization of 2-mercaptobenzimidazole into β-lactum segment derivatives containing –CONH– bridge with benzimidazole: Screening in vitro antimicrobial activity with various microorganisms. Bioorg. Med. Chem. 2006, 14, 8271–8279. [Google Scholar] [CrossRef]
- Márquez-Navarro, A.; Nogueda-Torres, B.; Hernández-Campos, A.; Soria-Arteche, O.; Castillo, R.; Rodríguez-Morales, S.; Yépez-Mulia, L.; Hernández-Luis, F. Anthelmintic activity of benzimidazole derivatives against Toxocara canis second-stage larvae and Hymenolepis nana adults. Acta Trop. 2009, 109, 232–235. [Google Scholar] [CrossRef]
- Kazimierczuk, Z.; Andrzejewska, M.; Kaustova, J.; Klimešova, V. Synthesis and antimycobacterial activity of 2-substituted halogenobenzimidazoles. Eur. J. Med. Chem. 2005, 40, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Kankala, S.; Kankala, R.K.; Gundepaka, P.; Thota, N.; Nerella, S.; Gangula, M.R.; Guguloth, H.; Kagga, M.; Vadde, R.; Vasam, C.S. Regioselective synthesis of isoxazole–mercaptobenzimidazole hybrids and their in vivo analgesic and anti-inflammatory activity studies. Bioorg. Med. Chem. Lett. 2013, 23, 1306–1309. [Google Scholar] [CrossRef] [PubMed]
- Shingalapur, R.V.; Hosamani, K.M.; Keri, R.S.; Hugar, M.H. Derivatives of benzimidazole pharmacophore: Synthesis, anticonvulsant, antidiabetic and DNA cleavage studies. Eur. J. Med. Chem. 2010, 45, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Pretsch, E.; Clerc, T.; Seibl, J.; Simon, W. Tablas Para la Determinación Estructural por Métodos Espectroscópicos; Herrera-Fernández, A., Martínez-Alvarez, R., Eds.; Springer-Verlag Ibérica: Barcelona, Spain, 1998; pp. 83–84, 93–94, 96. [Google Scholar]
- Takahiro, I.; Toshiaki, M. A Novel Practical Synthesis of Benzothiazoles via Pd-Catalyzed Thiol Cross-Coupling. Org. Lett. 2007, 9, 3687–3689. [Google Scholar]
- Khaksar, S.; Heydari, A.; Tajbakhsh, M.; Vahdat, S.M. Lewis acid catalyst free synthesis of benzimidazoles and formamidines in 1,1,1,3,3,3-hexafluoro-2-propanol. J. Fluor. Chem. 2010, 131, 1377–1381. [Google Scholar] [CrossRef]
- Alkorta, I.; Sánchez-Sanz, G.; Trujillo, T.; Elguero, J.; Claramunt, R.M. A theoretical study of the parent NH-benzazoles (benzimidazoles, indazoles and benzotriazoles): Geometries, energies, acidity and basicity, NMR properties and molecular electrostatic potentials. ARKIVOC 2012, 2, 85–106. [Google Scholar] [CrossRef]
- Graham, T.H.; Liu, W.; Shen, D.M. A Method for the Reductive Scission of Heterocyclic Thioethers. Org. Lett. 2011, 13, 6232–6235. [Google Scholar] [CrossRef]
- Ceniceros-Gómez, A.E.; Ramos-Organillo, A.; Hernández-Díaz, J.; Nieto-Martínez, J.; Contreras, R.; Castillo-Blum, S.E. NMR Study of the Coordinating Behavior of 2,6-bis(Benzimidazol-2’-yl)pyridine. Heteroat. Chem. 2000, 11, 392–398. [Google Scholar] [CrossRef]
- Sierra-Zenteno, A.; Galán-Vidal, C.A.; Tapia-Benavides, R. Acid-base equilibrium studies of 2-(aminomethyl)benzimidazole in aqueous solution. Rev. Soc. Quím. Méx. 2002, 46, 125–130. [Google Scholar]
- Koseki, D.; Aoto, E.; Shoji, T.; Watanabe, K.; In, Y.; Kita, Y.; Doh, T. Efficient N-arylation of azole compounds utilizing selective aryl-transfer TMP-iodonium(III) reagents. Tetrahedron Lett. 2019, 60, 1281–1286. [Google Scholar] [CrossRef]
- Saha, M.; Das, A.R. I2/TBHP promoted oxidative C–N bond formation at room temperature: Divergent access of 2-substituted benzimidazoles involving ring distortion. Tetrahedron Lett. 2018, 59, 2520–2525. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Tang, Y.; Zuo, L.; Tang, D.Y.; Zhang, J.; Xu, Z.G. Facile One-Pot Synthesis of Benzimidazole and Quinoxalin-2(1H)-one Scaffolds via Two-Component Coupling Reaction, Deprotection and Intermolecular cyclization. Synlett 2014, 25, 2518–2520. [Google Scholar] [CrossRef]
- She, J.; Jiang, Z.; Wang, Y. One-Pot Synthesis of Functionalized Benzimidazoles and 1H-Pyrimidines via Cascade Reactions of o-Aminoanilines or Naphthalene-1,8-diamine with Alkynes and p-Tolylsulfonyl Azide. Synlet 2009, 12, 2023–2027. [Google Scholar] [CrossRef]
- Krawzyk, S.; Gdaniec, M.; Saczewski, F. 1H-Benzimidazol-3-ium-2-carboxylate dehydrate. Acta Cryst. 2005, E61, o4185–o4187. [Google Scholar]
- Yao, X.J.; Qian Yuan, Q. 1H-Benzimidazol-3-ium-2-carboxylate dihydrate. Acta Cryst. 2011, E67, o1399. [Google Scholar] [CrossRef]
- Mahajabeena, P.; Chadha, A. A novel green route for the synthesis of N-phenylacetamides, benzimidazoles and acridinediones using Candida parapsilosis ATCC 7330. RSC Adv. 2013, 3, 21972–21980. [Google Scholar] [CrossRef]
- Majumdar, S.; Chakraborty, A.; Bhattacharjee, S.; Debnath, S.; Maiti, D.K. Silica-ferric chloride (SiO2–FeCl3) catalyzed selective synthesis of 2-substituted benzimidazole through Csp2Csp3 bond cleavage of β-ketoester/amide. Tetrahedron Lett. 2016, 57, 4595–4598. [Google Scholar] [CrossRef]
- Dos Santos, A.; El Kaim, L.; Grimaud, L. Metal-free aerobic oxidation of benzazole derivatives. Org. Biomol. Chem. 2013, 11, 3282–3287. [Google Scholar] [CrossRef]
- Marko, J.A.; Durham, A.; Bretz, S.L.; Liu, W. Electrochemical benzylic oxidation of C–H bonds. Chem. Commun. 2019, 55, 937–940. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Venkataraghavan, R.; Kasturi, T.R. Contribution to the Infrared Spectra of Organosulphur Compounds. Can. J. Chem. 1964, 42, 36–42. [Google Scholar] [CrossRef]
- Elguero, J.; Marzin, C.; Katritsky, A.R.; Linda, P. The Tautomerism of Heterocycles; Academic Press Inc.: New York, NY, USA, 1976; p. 397. [Google Scholar]
- Groth, P. Crystal Structure of Some Benzoxazoline Derivatives. Acta Chem. Scand. 1973, 27, 945–969. [Google Scholar] [CrossRef]
- Chesick, J.P.; Donohue, J. The molecular and crystal structure of 2-mercaptobenzothiazole. Acta Crystallogr. 1971, B27, 1441–1444. [Google Scholar] [CrossRef]
- Prusiner, P.; Sundaralingam, M. Crystal and Molecular Structure of 2-thio-1-(b-D-ribofuranosyl)-3H-benzimidazole. Acta Crystallogr. 1973, B29, 2328–2334. [Google Scholar] [CrossRef]
- Faure, R.; Vincent, E.J.; Assef, G.; Kister, J. Effets de Substituants en Série Diazolique et Diazinique-1,3—Etude par Résonance Magnétique Nucléaire du Carbone-13. Metzg. J. Magn. Reson. Chem. 1977, 9, 688–694. [Google Scholar] [CrossRef]
- Faure, R.; Elguero, J.; Vincent, E.J.; Lazaro, R. Etudes d’Hétérocycles Pentagonaux Polyhétéroatomiques par RMN du 13C. Effets de Substituant, de la Benzocondensation et Etude de la Tautomèrie Prototropique en Série Benzothiazolique. Magn. Reson. Chem. 1978, 11, 617–627. [Google Scholar]
- Cumper, C.W.N.; Pickering, G.D. Electric dipole moments of some imidazolin-2(3H)-ones, benzimidazol-2(3H)-ones, and analogous thiones. J. Chem. Soc. Perkin Trans. 1972, 2, 2045–2048. [Google Scholar] [CrossRef]
- Vasava, M.S.; Rathwa, S.K.; Jethava, D.J.; Acharya, P.T.; Patela, D.B.; Patel, H.D. Benzimidazole: A milestone in the field of medicinal chemistry. Mini-Rev. Med. Chem. 2020, 20, 532–565. [Google Scholar] [CrossRef]
- Ziemkowska, W.; Skałkowska, J.; Ochal, Z.; Cyranski, M.K.; Dobrzycki, L.; Madura, I.; Zachara, J. Role of Lewis bases in reactions of aluminum and gallium trialkyls with 2-mercaptobenzoxazole. J. Organomet. Chem. 2015, 776, 1–6. [Google Scholar] [CrossRef]
- Bethge, L.; Venkatrao, D.; Seitz, O. New cyanine dyes as base surrogates in PNA: Forced intercalation probes (FIT-probes) for homogeneous SNP detection. Bioorg. Med. Chem. 2008, 16, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Ramos, R.O.A.; Mojica, S.J.P.; Valcárcel, G.J.A.; Obledo, B.F.; Macías, H.C.E.; Sumaya, M.M.T.; Martínez, M.F.J.; Gómez, S.Z.; Ramos-Organillo, A. Synthesis of novel amides with antiradical capacity from 2-mercaptobenzimidazole and cinnamic acids: Evaluation through donor-acceptor maps and QSAR. J. Mol. Struct. 2021, 1223, 128917. [Google Scholar]
- Geng, X.; Liu, S.; Wang, W.; Qu, J.; Wang, B. tert-Amino Effect-Promoted Rearrangement of Aryl Isothiocyanate: A Versatile Approach to Benzimidazothiazepines and Benzimidazothioethers. J. Org. Chem. 2020, 85, 12635–12643. [Google Scholar] [CrossRef] [PubMed]
- Colacio, E.; Romerosa, A.; Ruiz, J.; Román, P.; Gutíerrez-Zorrilla, J.M.; Vegas, A.; Martínez-Ripoll, M. Gold(I) phosphine complexes: Mercaptooxopurine base interactions. Molecular and crystal structure of (8-mercaptotheophyllinato-S)(triphenylphosphine)gold(I). Inorg. Chem. 1991, 30, 3743–3749. [Google Scholar] [CrossRef]
- Vicente, J.; Chicote, M.T.; González-Herrero, P.; Jones, P.G. Complexes with S-donor ligands. Part 2. Synthesis of anionic bis(thiolato)gold(I) complexes. Crystal structure of [N(PPh3)2][Au(SR)2](R = benzoxazol-2-yl). J. Chem. Soc. Dalton Trans. 1994, 21, 3183–3187. [Google Scholar] [CrossRef]
- Aguilar, C.H. Síntesis y Reactividad de Benzoderivados-2-tiona y Benzoderivados-2-methylmercapto con el BH3-THF. Bachelor’s Thesis, Universidad Veracruzana, Posa Rica, Veracruz, México, 1996. [Google Scholar]
- Palmer, J.H.; Parkin, G. 2-Seleno-1-alkylbenzimidazoles and their diselenides: Synthesis and structural characterization of a 2-seleno-1-methylbenzimidazole complex of mercury. Polyhedron 2013, 52, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Braun, S.; Botzki, A.; Salmen, S.; Textor, C.; Bernhardt, G.; Dove, S.; Buschauer, A. Design of benzimidazole- and benzoxazole-2-thione derivatives as inhibitors of bacterial hyaluronan lyase. Eur. J. Med. Chem. 2011, 46, 4419–4429. [Google Scholar] [CrossRef] [PubMed]
- El Ashry, E.S.H.; El Kilany, Y.; Nariman, M.; Nahas, N.M.; Barakat, A.; Al-Qurashi, N.; Hazem, A.; Ghabbour, H.A.; Fun, H.K. Synthesis and Crystal Structures of Benzimidazole-2-thione Derivatives by Alkylation Reactions. Molecules 2016, 21, 12. [Google Scholar] [CrossRef] [PubMed]
- Obledo-Benicio, F.; Magaña-Vergara, N.E.; Pineda-Urbina, K.; Perez, D.J.; Romero-Chavez, M.M.; Mojica-Sanchez, J.P.; Ramos-Rodríguez, O.R.; Ramos-Organillo, A. Structural analysis of intramolecular 1,5-type O/OandS/Ointeractions in diethyl 2-oxo and diethyl 2-thioxo-1H benzo[d]imidazole-1,3(2H)-dicarboxylate: Experimental and theoretical study. J. Mol. Struct. 2020, 1209, 127929. [Google Scholar] [CrossRef]
δ-13C | ||||||
---|---|---|---|---|---|---|
Comp. | C1a | C1 | C2 | C3 | C4 | C4a |
1 (X = O) | 124.2 | 120.6 | 122.6 | 127.0 | 111.6 | 156.2 |
2 (X = S) | 134.9 | 121.9 | 124.6 | 127.0 | 122.9 | 138.5 |
3 (X = NH) | 122.6 | 120.0 | 118.4 | 125.4 | 110.8 | 139.6 |
Comp. | C2 | C3a | C4 | C5 | C6 | C7 | C7a | Solv. | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 (X = O) | 152.6 | 140.1 | 120.5 | 125.4 | 124.4 | 110.8 | 150.5 | CDCl3 | [25] |
2 (X = S) | 153.8 | 153.2 | 121.8 | 126.1 | 125.4 | 123.6 | 133.6 | CDCl3 | [25,26] |
140.5 | 137.1 | 115.3 | 121.3 | 121.3 | 115.3 | 137.1 | CDCl3 | [25,27] | |
141.1 | 137.4 | 114.8 | 122.7 | 122.1 | 114.8 | 137.4 | CD3OD | [28] | |
3 (X = NH) | 141.9 | 138.4 | 115.3 | 121.7 | 121.7 | 115.3 | 138.4 | DMSOd6 | [4] |
141.6 | 143.4 | 118.7 | 121.2 | 120.1 | 110.9 | 133.7 | HMPAd18 | [4] | |
142.6 | 143.0 | 119.9 | 122.1 | 123.0 | 112.2 | 136.1 | Solid | [4] | |
4 (X = NMe) | 143.9 | 143.7 | 120.4 | 123.1 | 122.2 | 109.5 | 134.7 | CDCl3 | [29] |
144.5 | 143.3 | 119.2 | 122.3 | 121.1 | 110.1 | 134.5 | DMSOd6 | [4] |
Comp. | C2 | C3a | C4 | C5 | C6 | C7 | C7a |
---|---|---|---|---|---|---|---|
3a/3b | 142.5 | 139.0 | 116.3 | 122.3 | 122.3 | 116.3 | 139.0 |
[3c/3d]+ | 143.6 | 133.8 | 118.3 | 130.0 | 130.0 | 118.3 | 133.8 |
[3d/3f]− Na+ | 153.1 | 146.9 | 116.4 | 116.7 | 116.7 | 116.4 | 146.9 |
[3d/3f]− Li+ | 153.5 | 147.0 | 116.8 | 117.0 | 117.0 | 116.8 | 147.0 |
Comp. | C2 | C3a | C4 | C5 | C6 | C7 | C7a | Solvent | Ref. |
---|---|---|---|---|---|---|---|---|---|
4 | 143.9 144.5 | 143.7 143.3 | 120.4 119.2 | 123.1 122.1 | 122.2 121.3 | 109.5 110.1 | 134.7 134.5 | CDCl3 DMSOd6 | [29] [4] |
5 | 144.0 151.6 | 142.2 143.8 | 120.6 119.0 | 123.6 122.1 | 122.7 121.2 | 110.4 116.5 | 133.7 134.8 | CDCl3 DMSOd6 | [32] [33] |
6 | 143.9 | 141.4 | 120.6 | 126.0 | 125.1 | 115.5 | 131.4 | CDCl3 | [34] |
Comp. | C2 | C4 | C5 | C6 | C7 | C7a | C3a | Solv. | Ref. | % Npr |
---|---|---|---|---|---|---|---|---|---|---|
10 | 180.8 181.8 | 110.2 113.2 | 124.5 119.2 | 125.4 121.6 | 110.5 106.7 | 148.8 151.0 | 130.3 145.4 | CDCl3 DMSOd6 | [51] | 93.7 68.0 |
11 | 189.7 | 112.3 | 124.0 | 127.0 | 121.6 | 141.2 | 129.3 | DMSOd6 | 77.0 | |
12 | 167.9 | 109.6 | 122.3 | 122.3 | 109.6 | 132.7 | 132.7 | DMSOd6 | 100 | |
13 | 168.3 | 118.3 | 123.4 | 123.4 | 110.1 | 132.6 | 130.8 | DMSOd6 | 8.4 | |
14 | 165.7 165.2 | 118.3 118.1 | 123.7 124.0 | 124.2 124.5 | 109.8 110.0 | 151.9 151.4 | 141.9 141.4 | CDCl3 DMSOd6 | [52] | 8.4 10.5 |
15 | 170.7 167.9 | 122.0 121.7 | 125.4 124.3 | 127.4 126.3 | 123.3 120.9 | 136.1 134.5 | 154.4 152.8 | CD3OD DMSOd6 | [52] | 0.0 2.4 |
16 | 151.9 151.2 152.3 | 113.7 113.6 117.8 | 121.7 121.2 121.9 | 121.7 121.2 121.9 | 113.7 113.6 110.9 | 139.5 139.7 136.4 | 139.5 139.7 144.5 | CDCl3 DMSOd6 (27 °C) DMF-d7 (−65 °C) | [53] | 56.8 57.9 13.7 |
17 | 153.2 152.6 | 118.0 117.4 | 121.8 121.2 | 121.8 121.2 | 108.3 109.2 | 136.8 136.9 | 143.3 142.9 | CDCl3 DMSOd6 | [54] | 11.6 17.9 |
Comp. | C2 | C3a | C4 | C5 | C6 | C7 | C7a | Solvent | Ref. | N4pr% |
---|---|---|---|---|---|---|---|---|---|---|
18 | 162.8 | 132.1 | 110.0 | 123.3 | 122.6 | 110.0 | 133.7 | DMSOd6 | [58] | 95.8 |
19 | 160.3 | 133.0 | 114.4 | 121.1 | 122.8 | 109.9 | 133.8 | DMSOd6 | [58] | 50.5 |
20 | 142.6 | 144.3 | 110.5 | 123.0 | 124.4 | 120.4 | 137.3 | CD2Cl2 | [58] | 90.5 |
21 | 145.6 | 145.3 | 114.1 | 121.8 | 121.9 | 118.8 | 136.8 | CD2Cl2 | [58] | 52.7 |
Comp. | C2 | C3a | C4 | C5 | C6 | C7 | C7a | Solvent | Npr% | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
22 | 178.8 | 129.5 | 115.8 | 125.5 | 126.0 | 109.7 | 145.9 | DMSOd6 | 34.7 | [58] |
23 | 168.9 | 129.8 | 114.3 | 122.3 | 124.3 | 108.5 | 130.1 | DMSOd6 | 50.5 | [60] |
24 | 169.4 | 130.9 | 115.0 | 123.3 | 125.2 | 109.4 | 131.0 | DMSOd6 | 43.1 | [60] |
25 | 168.1 | 129.5 | 113.2 | 125.1 | 125.1 | 113.2 | 129.5 | CDCl3 | 62.1 | [61] |
Claramunt et al. | C2 | C3a | C4 | C5 | C6 | C7 | C7a | Solvent | Npr% |
---|---|---|---|---|---|---|---|---|---|
26a = 26b | 155.4 | 146.0 | 101.1 | 157.4 | 115.3 | 113.1 | 129.9 | THF-d8 | 63 |
26c = 26d | 153.5 | 140.2 | 121.6 | 114.2 | 158.2 | 94.0 | 136.5 | THF-d8 | 37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Báez, E.V.; Padilla-Martínez, I.I.; Cruz, A.; Rosales-Hernández, M.C. 13C-NMR Chemical Shifts in 1,3-Benzazoles as a Tautomeric Ratio Criterion. Molecules 2022, 27, 6268. https://doi.org/10.3390/molecules27196268
García-Báez EV, Padilla-Martínez II, Cruz A, Rosales-Hernández MC. 13C-NMR Chemical Shifts in 1,3-Benzazoles as a Tautomeric Ratio Criterion. Molecules. 2022; 27(19):6268. https://doi.org/10.3390/molecules27196268
Chicago/Turabian StyleGarcía-Báez, Efrén V., Itzia I. Padilla-Martínez, Alejandro Cruz, and Martha C. Rosales-Hernández. 2022. "13C-NMR Chemical Shifts in 1,3-Benzazoles as a Tautomeric Ratio Criterion" Molecules 27, no. 19: 6268. https://doi.org/10.3390/molecules27196268
APA StyleGarcía-Báez, E. V., Padilla-Martínez, I. I., Cruz, A., & Rosales-Hernández, M. C. (2022). 13C-NMR Chemical Shifts in 1,3-Benzazoles as a Tautomeric Ratio Criterion. Molecules, 27(19), 6268. https://doi.org/10.3390/molecules27196268