Simultaneous Preconcentration of Triazole Fungicide Residues Using In-Situ Coacervative Extraction Based on a Double-Solvent Supramolecular System Prior to High Performance Liquid Chromatographic Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of In Situ Extraction (IS-CAE) Procedure
2.2. Analytical Performance of the Proposed Extraction Method
2.3. Real Sample Analysis
2.4. Comparison of the Proposed in Situ Coacervative Extraction (IS-CAE) Method with Other Previous Extraction Methods
3. Experimental Methods
3.1. Chemicals and Reagents
3.2. Instrumentations
3.3. In-Situ Coacervative Extraction (IS-CAE) Procedure
3.4. Sample Preparation
3.4.1. Water Samples
3.4.2. Fruit Juice Samples
3.4.3. Soy Milk Samples
3.5. Calculation of Enrichment Factor (EF), Relative Recovery (RR), and Matrix Effect (ME)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hassan, M.; Uzcan, F.; Alshana, U.; Soylak, M. Switchable-hydrophilicity solvent liquid–liquid microextraction prior to magnetic nanoparticle-based dispersive solid-phase microextraction for spectrophotometric determination of erythrosine in food and other samples. Food Chem. 2021, 348, 129053. [Google Scholar] [CrossRef] [PubMed]
- Pochivalov, A.; Davletbaeva, P.; Cherkashina, K.; Lezov, A.; Vakh, C.; Bulatov, A. Surfactant-mediated microextraction approach using switchable hydrophilicity solvent: HPLC-UV determination of Sudan dyes in solid food samples. J. Mol. Liq. 2018, 271, 807–814. [Google Scholar] [CrossRef]
- Tang, W.; An, Y.; Row, K.H. Recoverable deep eutectic solvent-based aniline organic pollutant separation technology using choline salt as adsorbent. J. Mol. Liq. 2020, 306, 112910. [Google Scholar] [CrossRef]
- Tang, W.; Row, K.H. Design and evaluation of polarity controlled and recyclable deep eutectic solvent based biphasic system for the polarity driven extraction and separation of compounds. J. Clean. Prod. 2020, 268, 122306. [Google Scholar] [CrossRef]
- Cai, Z.-H.; Wang, J.-D.; Wang, L.-T.; Zhang, S.; Yan, X.-Y.; Wang, Y.-Q.; Zhao, P.-Q.; Fu, L.-N.; Zhao, C.-J.; Yang, Q.; et al. Green efficient octanoic acid based supramolecular solvents for extracting active ingredients from Zanthoxylum bungeanum Maxim. Peels, J. Clean. Prod. 2022, 331, 129731. [Google Scholar] [CrossRef]
- Torres-Valenzuela, L.S.; Ballesteros-Gómez, A.; Rubio, S. Supramolecular solvent extraction of bioactives from coffee cherry pulp. J. Food Eng. 2020, 278, 109933. [Google Scholar] [CrossRef]
- Seebunrueng, K.; Phosiri, P.; Apitanagotinon, R.; Srijaranai, S. A new environment-friendly supramolecular solvent-based liquid phase microextraction coupled to high performance liquid chromatography for simultaneous determination of six phenoxy acid herbicides in water and rice samples. Microchem. J. 2020, 152, 104418. [Google Scholar] [CrossRef]
- Ballesteros-Gomez, A.; Sicilia, M.D.; Rubio, S. Supramolecular solvents in the extraction of organic compounds. A review. Anal. Chim. Acta 2010, 677, 108–130. [Google Scholar] [CrossRef] [PubMed]
- Zohrabi, P.; Shamsipur, M.; Hashemi, M.; Hashemi, B. Liquid-phase micro-extraction of organophosphorus pesticides using supramolecular solvent as a carrier for ferrofluid. Talanta 2016, 160, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, M.; Chen, B.; Hu, B. Hydroxyl-containing porous organic framework coated stir bar sorption extraction combined with high performance liquid chromatography-diode array detector for analysis of triazole fungicides in grape and cabbage samples. J. Chromatogr. A 2020, 1633, 461628. [Google Scholar] [CrossRef]
- De Albuquerque, N.C.P.; Carrão, D.B.; Habenschus, M.D.; de Oliveira, A.R.M. Metabolism studies of chiral pesticides: A critical review. J. Pharm. Biomed. 2018, 147, 89–109. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Li, J.; Chankvetadze, B.; Cheng, Y.; Xu, J.; Liu, X.; Li, Y.; Chen, X.; Bertucci, C.; Tedesco, D.; et al. Chiral triazole fungicide difenoconazole: Absolute stereochemistry, stereoselective bioactivity, aquatic toxicity, and environmental behavior in vegetables and soil. Environ. Sci. Technol. 2013, 47, 3386–3394. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Li, L.; Huang, X.; Zheng, S.; Xu, D.; Xu, X.; Zhang, Y.; Lin, H. Determination of triazole pesticides in aqueous solution based on magnetic graphene oxide functionalized MOF-199 as solid phase extraction sorbents. Microporous Mesoporous Mater. 2018, 270, 258–264. [Google Scholar] [CrossRef]
- Akramipour, R.; Fattahi, N.; Golpayegani, M.R. Sensitive determination of methotrexate in plasma of children with acute leukemia using double-solvent supramolecular system as a novel extractant for dispersive liquid-liquid microextraction. J. Chromatogr. B 2021, 1171, 122628. [Google Scholar] [CrossRef] [PubMed]
- Surapong, N.; Santaladchaiyakit, Y.; Burakham, R. A water-compatible magnetic dual-template molecularly imprinted polymer fabricated from a ternary biobased deep eutectic solvent for the selective enrichment of organophosphorus in fruits and vegetables. Food Chem. 2022, 384, 132475. [Google Scholar] [CrossRef]
- Boontongto, T.; Burakham, R. Eco-friendly fabrication of a magnetic dual-template molecularly imprinted polymer for the selective enrichment of organophosphorus pesticides for fruits and vegetables. Anal. Chim. Acta 2021, 1186, 339128. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, J.; Zhao, H.; Cao, Y.; Liu, W. Supramolecular solvent-based vortex-mixed microextraction: Determination of chiral triazole fungicide in beer samples. Chirality 2018, 30, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Xie, X.; Huang, Y.; Chen, J.; Liu, Y.; Zhang, Y.; Mai, X.; Deng, J.; Fan, H.; Zhang, W. Enantioseparation and determination of triazole fungicides in vegetables and fruits by aqueous two-phase extraction coupled with online heart-cutting two-dimensional liquid chromatography. Food Chem. 2019, 301, 125265. [Google Scholar] [CrossRef] [PubMed]
- Farajzadeh, M.A.; Kiavar, L.; Pezhhanfar, S. Development of a method based on dispersive liquid–liquid microextraction followed by partial vaporization of the extract for ultra–preconcentration of some pesticide residues in fruit juices. J. Chromatogr. A 2021, 1653, 462427. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Huang, X.; Zhang, Y.; Wang, M.; Xue, H.; Wang, X.; Jia, L. Cyclodextrin-based dispersive liquid–liquid microextraction for the determination of fungicides in water, juice, and vinegar samples via HPLC. Food Chem. 2022, 367, 130664. [Google Scholar] [CrossRef] [PubMed]
Analyte | Linear Range (μg L−1) | R2 | LOD (μg L−1) | LOQ (μg L−1) | Intra-Day Precision (n = 3), RSD (%) | Inter-Day Precision (n = 3 × 3), RSD (%) | EF (Cex/Co) | ||
---|---|---|---|---|---|---|---|---|---|
tR | Peak Area | tR | Peak Area | ||||||
Myclobutanil | 3–1000 | 0.9999 | 1.0 | 3.0 | 1.89 | 2.50 | 1.96 | 3.42 | 74.82 |
Triadimefon | 3–1000 | 0.9995 | 0.3 | 1.0 | 1.98 | 4.84 | 1.99 | 4.84 | 103.50 |
Tebuconazole | 3–1000 | 0.9995 | 0.3 | 1.0 | 1.03 | 3.89 | 1.04 | 4.62 | 317.49 |
Hexaconazole | 3–1000 | 0.9998 | 0.3 | 1.0 | 0.56 | 2.70 | 0.65 | 3.13 | 137.33 |
Diniconazole | 3–1000 | 0.9995 | 1.0 | 3.0 | 0.61 | 3.52 | 0.75 | 4.95 | 73.81 |
Sample | Myclobutanil | Triadimefon | Tebuconazole | Hexaconazole | Diniconazole |
---|---|---|---|---|---|
Water I | 78.83 | 77.95 | 71.31 | 82.18 | 82.89 |
Water II | 87.78 | 71.37 | 79.63 | 84.38 | 86.63 |
Grape juice | 75.00 | 75.00 | 83.33 | 75.00 | 100.00 |
Soy milk I | 71.12 | 49.94 | 155.59 | 73.45 | 155.53 |
Soy milk II | 72.25 | 48.83 | 152.14 | 77.72 | 145.55 |
Soy milk III | 75.15 | 49.98 | 145.54 | 78.83 | 147.72 |
Method | Analyte/ Sample | Linear Range | Limit of Detection (LOD) | %Recovery | Enrichment Factor (EF) | Reference |
---|---|---|---|---|---|---|
SVME | Triadimefon and triadimenol/beer samples | 0.5–50 µg L−1 for triadimenol and 1.0–100 µg L−1 for triadimefon | 0.24–0.99 µg L−1 | 84–100 | - | [17] |
ATPS | Triazole fungicides/vegetable samples | 0.100–30 µg mL−1 | 0.03113–0.3525 µg mL−1 | 71.57–107.8 | - | [18] |
SBSE | Triazole fungicides/grape and cabbage samples | 0.1–500 µg L−1 | 0.022–0.071 µg L−1 | 80.7–111 | 49–57 | [10] |
VA-DLLME | Triazole fungicide, herbicide, pesticide and insecticide/fruit juice samples | 149–500,000 ng L−1 | 45–78 ng L−1 | 55–89 | 1382–2246 | [19] |
CD-DLLME | Triazole and strobilurin fungicides/ water, juice, and vinegar samples | 1–100 µg L−1 | 0.3 µg L−1 | 83.0–103.2 | 124 | [20] |
IS-CAE | Triazole fungicides | 3–1000 µg L−1 | 0.3–1.0 µg L−1 | 77–117 | 73–318 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buppasang, R.; Palasak, J.; Kachangoon, R.; Ponhong, K.; Teshima, N.; Burakham, R.; Srijaranai, S.; Vichapong, J. Simultaneous Preconcentration of Triazole Fungicide Residues Using In-Situ Coacervative Extraction Based on a Double-Solvent Supramolecular System Prior to High Performance Liquid Chromatographic Analysis. Molecules 2022, 27, 6273. https://doi.org/10.3390/molecules27196273
Buppasang R, Palasak J, Kachangoon R, Ponhong K, Teshima N, Burakham R, Srijaranai S, Vichapong J. Simultaneous Preconcentration of Triazole Fungicide Residues Using In-Situ Coacervative Extraction Based on a Double-Solvent Supramolecular System Prior to High Performance Liquid Chromatographic Analysis. Molecules. 2022; 27(19):6273. https://doi.org/10.3390/molecules27196273
Chicago/Turabian StyleBuppasang, Rachaya, Jaruwan Palasak, Rawikan Kachangoon, Kraingkrai Ponhong, Norio Teshima, Rodjana Burakham, Supalax Srijaranai, and Jitlada Vichapong. 2022. "Simultaneous Preconcentration of Triazole Fungicide Residues Using In-Situ Coacervative Extraction Based on a Double-Solvent Supramolecular System Prior to High Performance Liquid Chromatographic Analysis" Molecules 27, no. 19: 6273. https://doi.org/10.3390/molecules27196273
APA StyleBuppasang, R., Palasak, J., Kachangoon, R., Ponhong, K., Teshima, N., Burakham, R., Srijaranai, S., & Vichapong, J. (2022). Simultaneous Preconcentration of Triazole Fungicide Residues Using In-Situ Coacervative Extraction Based on a Double-Solvent Supramolecular System Prior to High Performance Liquid Chromatographic Analysis. Molecules, 27(19), 6273. https://doi.org/10.3390/molecules27196273