Dissipation, Processing Factors and Dietary Risk Assessment for Flupyradifurone Residues in Ginseng
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Sample Preparation
2.2. Validation Results of Analytical Method
2.3. Dissipation of FPF and Its Metabolites in Ginseng Plants, Soil, and Ginseng
2.4. Terminal Residues of FPF, DFA and 6-CNA in Ginseng Plants, Soil, and Ginseng
2.5. Effect of Processing on Residue Levels in Fresh Ginseng
2.6. Dietary Rrisk Assessment of FPF in Dried Ginseng
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Field Experiments
3.3. Processing of Fresh Ginseng
3.4. Sample Preparation
3.5. Instrumental
3.6. Analytical Method Validation
3.7. Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Yanan, L.; Dongyue, Z.; Min, L.; Chenyun, H.; Yong, L.; Wanlong, D. Investigation of Pests and Diseases Occurrence and Pesticides Application in Main Producing Areas of Panax ginseng. Chin. Agric. Sci. Bull. 2014, 30, 294–298. [Google Scholar]
- Nauen, R.; Jeschke, P.; Velten, R.; Beck, M.E.; Ebbinghaus-Kintscher, U.; Thielert, W.; Wolfel, K.; Haas, M.; Kunz, K.; Raupach, G. Flupyradifurone: A brief profile of a new butenolide insecticide. Pest Manag. Sci. 2015, 71, 850–862. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Wang, C.; Dong, S.; Li, X.; Nieh, J.C. The pesticide flupyradifurone impairs olfactory learning in Asian honey bees (Apis cerana) exposed as larvae or as adults. Sci. Rep. 2017, 7, 17772. [Google Scholar] [CrossRef] [PubMed]
- Hesselbach, H.; Scheiner, R.J.S.R. Effects of the novel pesticide flupyradifurone (Sivanto) on honeybee taste and cognition. Sci. Rep. 2018, 8, 4954. [Google Scholar] [CrossRef]
- Hesselbach, H.; Scheiner, R. The novel pesticide flupyradifurone (Sivanto) affects honeybee motor abilities. Ecotoxicology 2019, 28, 354–366. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Conclusion on the peer review of the pesticide risk assessment of the active substance flupyradifurone. EFSA J. 2016, 13, 4020. [Google Scholar]
- EFSA (European Food Safety Authority). Setting of new maximum residue levels for flupyradifurone in strawberries, blackberries and raspberries. EFSA J. 2016, 14, 4423. [Google Scholar]
- ICAMA (Institute Control of Agrochemicals, Ministry of Agriculture, P.R. China). National Food Safety Standard-Maximum Residue Limits for Pesticides in Food. Available online: http://202.127.42.84/tbt-sps/mrlsdb/mrlsdb.do (accessed on 13 April 2021).
- JMPR (Joint FAO/WHO Meeting on Pesticide Residues). Flupyradifurone (Report). Available online: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Report2017/5.18_FLUPYRADIFURONE__285_.pdf (accessed on 8 September 2019).
- IUPAC (International Union of Pure and Applied Chemistry). Pesticides Properties Data Base. Available online: http://sitem.herts.ac.uk/aeru/ppdb/en/index.htm (accessed on 13 October 2020).
- Dal Bello, F.; Medana, C.; Guarino, B.; Dioni, A.; Fabbri, D.; Calza, P. Investigation of sulfoxaflor, flupyradifurone and their transformation products in plant-based food matrices. Food Control 2022, 132, 108537. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Wu, X.; Dong, F.; Xu, J.; Zheng, Y. Simultaneous determination of flupyradifurone and its two metabolites in fruits, vegetables, and grains by a modified quick, easy, cheap, effective, rugged, and safe method using ultra high performance liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2016, 39, 1090–1098. [Google Scholar] [CrossRef]
- Fang, N.; Lu, Z.; Zhang, Z.; Hou, Z.; Liang, S.; Wang, B.; Lu, Z. Determination of the Novel Insecticide Flupyradifurone and Its Two Metabolites in Traditional Chinese Herbal Medicines Using Modified QuEChERS and High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Int. J. Anal. Chem. 2020, 2020, 8812797. [Google Scholar] [CrossRef]
- Zhang, P.; Ren, C.; Sun, H.; Min, L. Sorption, desorption and degradation of neonicotinoids in four agricultural soils and their effects on soil microorganisms. Sci. Total Environ. 2018, 615, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Fang, N.; Lu, Z.; Zhang, Z.; Hou, Z.; Liang, S.; Wang, B.; Wang, S.; Lu, Z. Dissipation and residues of dimethyl disulfide in tomatoes and soil under greenhouse and open field conditions. J. Environ. Sci. Health. Part. B Pestic. Food Contam. Agric. Wastes 2020, 55, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Jin, F.; Cao, X.; Shao, Y.; Wang, J.; She, Y.; Qi, Y.; Zhang, C.; Li, H.; Jin, M.; et al. Residue behaviors and risk assessment of flonicamid and its metabolites in the cabbage field ecosystem. Ecotoxicol. Environ. Saf. 2018, 161, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.H.; Jee, H.S.; Lee, N.K.; Park, S.H.; Lee, N.W.; Paik, H.D. Optimization of the enzymatic production of 20(S)-ginsenoside Rg(3) from white ginseng extract using response surface methodology. New Biotechnol. 2009, 26, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.B.; Hahn, E.J.; Paek, K.Y. CO2-induced total phenolics in suspension cultures of Panax ginseng C. A. Mayer roots: Role of antioxidants and enzymes. Plant Physiol. Biochem. PPB 2005, 43, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.S.; Stephenson, K.K.; Fahey, J.W.; Parsons, T.L.; Lietman, P.S.; Andrade, A.S.; Lei, X.; Yun, H.; Soon, G.H.; Shen, P.; et al. Induction of chemoprotective phase 2 enzymes by ginseng and its components. Planta Med. 2009, 75, 1129–1133. [Google Scholar] [CrossRef]
- Guo, S.; Ce, S.; Mei, H.; Limin, Y. The Effect of the Fermented Liquid and Mycelium Extract of FX-139 on the Growth and Defense Enzymes of Ginseng callus. Chin. Biotechnol. Bull. 2015, 31, 128–133. [Google Scholar] [CrossRef]
- ICAMA (Institute Control of Agrochemicals, Ministry of Agriculture, P.R. China). Guidance on Environment Risk Assessment for Pesticide Registration. Available online: http://www.chinapesticide.org.cn/hjfxpg/9561.jhtml (accessed on 13 October 2020).
- ICAMA (Institute Control of Agrochemicals, Ministry of Agriculture, P.R. China). Manual on Processing Factor of Pesticide Residue. Available online: https://www.icama.cn/portal/homepage/index.do/ (accessed on 13 October 2020).
- Kim, J.G.; Park, H.R.; Yang, K.W.; Kim, S.S.; Kwon, C.H.; Jeong, Y.H.; Hur, J.H. Processing and reducing factors of difenoconazole during ginseng processing. Korean J. Food Sci. Technol. 2011, 43, 263–270. [Google Scholar] [CrossRef]
- Alister, C.; Araya, M.; Becerra, K.; Volosky, C.; Saavedra, J.; Kogan, M. Industrial prune processing and its effect on pesticide residue concentrations. Food Chem. 2018, 268, 264–270. [Google Scholar] [CrossRef]
- ICAMA (Institute Control of Agrochemicals, Ministry of Agriculture, P.R. China). China Pesticide Information Network. Available online: http://www.icama.org.cn/hysj/index.jhtml (accessed on 9 July 2021).
- ICAMA (Institute Control of Agrochemicals, Ministry of Agriculture, P.R. China). Diet Risk Assessment Model. Available online: http://sitem.herts.ac.uk/aeru/iupac/search_alt.htm (accessed on 19 December 2020).
- WHO (World Health Organization). Template for the Evaluation of Chronic Exposure (IEDI). Available online: https://www.who.int/foodsafety/areas_work/chemical-risks/gems-food/en/ (accessed on 25 October 2020).
- MARA (Ministry of Agriculture and Rural Affairs of the People’s Republic of China). Guideline for the Testing of Pesticide Residues in Crops (NY/T 788-2018). Available online: http://down.foodmate.net/standard/sort/5/54761.html (accessed on 25 October 2020).
- Kim, S.J.; Murthy, H.N.; Hahn, E.J.; Lee, H.L.; Paek, K.Y. Effect of processing methods on the concentrations of bioactive components of ginseng (Panax ginseng C.A. Meyer) adventitious roots. LWT Food Sci. Technol. 2008, 41, 959–964. [Google Scholar] [CrossRef]
- EU (Eupropean Commission). Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed (SANTE/11813/2017). Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf (accessed on 9 March 2019).
- Li, Y.; Xu, J.; Zhao, X.; He, H.; Zhang, C.; Zhang, Z. The dissipation behavior, household processing factor and risk assessment for cyenopyrafen residues in strawberry and mandarin fruits. Food Chem. 2021, 359, 129925. [Google Scholar] [CrossRef] [PubMed]
Year | Location | Matrix | Regression Equation | Coefficient (R2) | Half-Life (d) |
---|---|---|---|---|---|
2018 | Baishan | Soil | C = 0.6854 e−0.0524t | 0.9777 | 13.2 |
Ginseng plants | C = 16.5064 e−0.0874t | 0.9884 | 7.9 | ||
Yanji | Soil | C = 0.6833 e−0.0409t | 0.9382 | 16.9 | |
Ginseng plants | C = 17.0917 e−0.1428t | 0.9759 | 4.9 | ||
2019 | Baishan | Soil | C = 0.6918 e−0.0693t | 0.9722 | 10.0 |
Ginseng plants | C = 13.3104 e−0.1522t | 0.9816 | 4.5 | ||
Yanji | Soil | C = 0.7105 e−0.0678t | 0.9647 | 10.2 | |
Ginseng plants | C = 17.2706 e−0.1555t | 0.9889 | 4.5 |
Year | Location | Processed Fractions | Total Residues (mg kg−1) | PFs | Best Estimate | ||
---|---|---|---|---|---|---|---|
Pre-Harvest Interval (d) | Pre-Harvest interval (d) | ||||||
21 | 28 | 21 | 28 | ||||
2018 | Baishan | raw | 0.296 ± 0.025 | 0.228 ± 0.033 | / | / | / |
dried | 1.277 ± 0.019 | 0.813 ± 0.028 | 4.31 | 3.57 | 3.94 | ||
Yanji | raw | 0.414 ± 0.017 | 0.641 ± 0.042 | / | / | / | |
dried | 1.634 ± 0.109 | 2.363 ± 0.027 | 3.95 | 3.69 | 3.82 | ||
2019 | Baishan | raw | 0.461 ± 0.024 | 0.406 ± 0.019 | / | / | / |
dried | 2.269 ± 0.092 | 1.727 ± 0.105 | 4.92 | 4.25 | 4.59 | ||
Yanji | raw | 0.525 ± 0.017 | 0.452 ± 0.033 | / | / | / | |
dried | 2.298 ± 0.024 | 1.705 ± 0.107 | 4.38 | 3.77 | 4.07 |
Food Category | FI (kg day−1) a | Commodity | MRLs b (mg kg−1) | STMR b (mg kg−1) | HR b (mg kg−1) | Source of Reference Limit |
---|---|---|---|---|---|---|
Rice cereals and rice products | 0.2399 | Rice | 3 | USA | ||
Wheat cereals and wheat products | 0.1385 | Maize | 0.01 | CAC d | ||
Other cereal grains | 0.0233 | Cereal grains | 3 | CAC | ||
Potatoes | 0.0495 | Potato | 0.05 | CAC | ||
Dried beans and their products | 0.016 | Beans (dry) | 0.4 | CAC | ||
Dark-colored vegetables | 0.0915 | Tomatoes | 3 | China | ||
Light-colored vegetables | 0.1837 | Lettuce | 4 | CAC | ||
Pickles | 0.0103 | |||||
Fruits | 0.0457 | Oranges | 1 | China | ||
Nuts | 0.0039 | Pecan | 0.01 | CAC | ||
Livestock and poultries | 0.0795 | Poultry | 0.8 | CAC | ||
Milk and milk products | 0.0263 | Milk | 0.7 | CAC | ||
Egg and egg products | 0.0236 | Egg | 0.7 | CAC | ||
Fish and fish products | 0.0301 | |||||
Oilseeds and oil | 0.0327 | Cotton seed | 0.8 | CAC | ||
Animal origin oil and fat | 0.0087 | Poultry fat | 1 | CAC | ||
Sugars and starch | 0.0044 | |||||
Salt | 0.012 | |||||
Soy sauce | 0.009 | Ginseng | 1.667 1.801 | 2.413 2.394 | PHI c of 21 days PHI of 28 days | |
Total FI (kg day−1) a | 1.0286 | |||||
Total NEDI (mg) | 2.0045 | |||||
NESTI e (mg) | 1.4478 | |||||
ADI (mg/kg bw) | 0.08 | |||||
ARfD (mg/kg bw) | 0.2 | |||||
Body weiht (kg bw) | 63 | |||||
%ADI (%) | 39.77% | |||||
%ARfD (%) | 11.49% |
Codex Code | Commodity Description | STMR a (mg/kg) | G01 | G02 | G03 | G04 | G05 | G06 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diet | Intake | Diet | Intake | Diet | Intake | Diet | Intake | Diet | Intake | Diet | Intake | |||
VR 0604 | Ginseng, raw | 1.801 | 3.00 | 5.40 | 3.00 | 5.40 | 3.00 | 5.40 | 3.00 | 5.40 | 3.00 | 5.40 | 3.00 | 5.40 |
FS 0013 | Subgroup of Cherries, raw | 0.555 | 0.92 | 0.51 | 9.15 | 5.08 | 0.01 | 0.01 | 0.61 | 0.34 | 0.06 | 0.03 | 6.64 | 3.69 |
FS 0014 | Subgroup of Plums, raw (including dried plums) | 0.23 | 2.67 | 0.61 | 8.77 | 2.02 | 0.07 | 0.02 | 3.03 | 0.70 | 0.70 | 0.16 | 4.34 | 1.00 |
DF 0014 | Plums, dried (prunes) | 1.15 | 0.09 | 0.10 | 0.06 | 0.07 | 0.01 | 0.01 | 0.18 | 0.21 | 0.04 | 0.05 | 0.06 | 0.07 |
FS 2001 | Subgroup of peaches, raw (including dried apricots) | 0.39 | 8.01 | 3.12 | 5.87 | 2.29 | 0.18 | 0.07 | 8.19 | 3.19 | 1.64 | 0.64 | 22.46 | 8.76 |
Total intake (ug/person) | 9.8 | 14.9 | 5.5 | 9.8 | 6.3 | 18.9 | ||||||||
Bodyweight per region (kg bw) | 60 | 60 | 60 | 60 | 60 | 60 | ||||||||
ADI (ug/person) | 4800 | 4800 | 4800 | 4800 | 4800 | 4800 | ||||||||
%ADI | 0.2% | 0.3% | 0.1% | 0.2% | 0.1% | 0.4% | ||||||||
Codex Code | Commodity Description | STMR a(mg/kg) | G07 | G08 | G09 | G10 | G11 | G12 | ||||||
Diet | Intake | Diet | Intake | Diet | Intake | Diet | Intake | Diet | Intake | Diet | Intake | |||
VR 0604 | Ginseng, raw | 1.801 | 3.00 | 5.40 | 3.00 | 5.40 | 3.00 | 5.40 | 3.00 | 5.40 | 3.00 | 5.40 | 3.00 | 5.40 |
FS 0013 | Subgroup of Cherries, raw | 0.555 | 1.40 | 0.78 | 4.21 | 2.34 | 0.04 | 0.02 | 2.93 | 1.63 | 1.50 | 0.83 | NC | - |
FS 0014 | Subgroup of Plums, raw (including dried plums) | 0.23 | 5.55 | 1.28 | 4.37 | 1.01 | 6.08 | 1.40 | 3.66 | 0.84 | 3.93 | 0.90 | 0.46 | 0.11 |
DF 0014 | Plums, dried (prunes) | 1.15 | 0.61 | 0.70 | 0.35 | 0.40 | 0.05 | 0.06 | 0.35 | 0.40 | 0.49 | 0.56 | 0.13 | 0.15 |
FS 2001 | Subgroup of peaches, raw (including dried apricots) | 0.39 | 13.03 | 5.08 | 16.29 | 6.35 | 8.29 | 3.23 | 12.95 | 5.05 | 5.35 | 2.09 | 0.04 | 0.02 |
Total intake (ug/person) | 13.2 | 15.5 | 10.1 | 13.3 | 9.8 | 5.7 | ||||||||
Bodyweight per region (kg bw) | 60 | 60 | 55 | 60 | 60 | 60 | ||||||||
ADI (ug/person) | 4800 | 4800 | 4400 | 4800 | 4800 | 4800 | ||||||||
%ADI | 0.3% | 0.3% | 0.2% | 0.3% | 0.2% | 0.1% | ||||||||
Codex Code | Commodity Description | STMRa(mg/kg) | G13 | G14 | G15 | G16 | G17 | |||||||
Diet | Intake | Diet | Intake | Diet | Intake | Diet | Intake | Diet | Intake | |||||
VR 0604 | Ginseng, raw | 1.801 | 3.00 | 5.40 | 3.00 | 5.40 | 3.00 | 5.40 | 3.00 | 5.40 | 3.00 | 5.40 | ||
FS 0013 | Subgroup of Cherries, raw | 0.555 | 0.01 | 0.01 | 0.01 | 0.01 | 5.96 | 3.31 | 0.01 | 0.01 | NC | - | ||
FS 0014 | Subgroup of Plums, raw (including dried plums) | 0.23 | 0.07 | 0.02 | 0.02 | 0.00 | 16.65 | 3.83 | 0.01 | 0.00 | NC | - | ||
DF 0014 | Plums, dried (prunes) | 1.15 | 0.01 | 0.01 | 0.01 | 0.01 | 0.37 | 0.43 | 0.01 | 0.01 | NC | - | ||
FS 2001 | Subgroup of peaches, raw (including dried apricots) | 0.39 | 0.02 | 0.01 | 0.01 | 0.00 | 10.76 | 4.20 | 0.01 | 0.00 | NC | - | ||
Total intake (ug/person) | 5.4 | 5.4 | 17.2 | 5.4 | 5.4 | |||||||||
Bodyweight per region (kg bw) | 60 | 60 | 60 | 60 | 60 | |||||||||
ADI (ug/person) | 4800 | 4800 | 4800 | 4800 | 4800 | |||||||||
%ADI | 0.1% | 0.1% | 0.4% | 0.1% | 0.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, N.; Zhang, C.; Lu, Z.; Lu, Z.; Zhang, Z.; Wang, B.; Hou, Z.; Zhao, X. Dissipation, Processing Factors and Dietary Risk Assessment for Flupyradifurone Residues in Ginseng. Molecules 2022, 27, 5473. https://doi.org/10.3390/molecules27175473
Fang N, Zhang C, Lu Z, Lu Z, Zhang Z, Wang B, Hou Z, Zhao X. Dissipation, Processing Factors and Dietary Risk Assessment for Flupyradifurone Residues in Ginseng. Molecules. 2022; 27(17):5473. https://doi.org/10.3390/molecules27175473
Chicago/Turabian StyleFang, Nan, Changpeng Zhang, Zhongbin Lu, Zhou Lu, Zhongbei Zhang, Bo Wang, Zhiguang Hou, and Xueping Zhao. 2022. "Dissipation, Processing Factors and Dietary Risk Assessment for Flupyradifurone Residues in Ginseng" Molecules 27, no. 17: 5473. https://doi.org/10.3390/molecules27175473
APA StyleFang, N., Zhang, C., Lu, Z., Lu, Z., Zhang, Z., Wang, B., Hou, Z., & Zhao, X. (2022). Dissipation, Processing Factors and Dietary Risk Assessment for Flupyradifurone Residues in Ginseng. Molecules, 27(17), 5473. https://doi.org/10.3390/molecules27175473