β-Glucan as a Techno-Functional Ingredient in Dairy and Milk-Based Products—A Review
Abstract
:1. Introduction
2. The Characteristics of β-Glucan of Various Origins
2.1. Sources of β-Glucan
2.2. Chemical Structure
2.3. Techno-Functional Properties
3. The Use of β-Glucan in the Technology of Dairy Drinks and Fermented Milk Products
3.1. Non-Fermented Milk Drinks
3.2. Fermented Dairy Products
4. The Use of β-Glucan in Cheese and Cheese-like Products Technology
4.1. Oat and Barley β-Glucan
4.2. β-Glucan from Yeast
4.3. β-Glucan from Microorganisms
4.4. β-Glucan from Edible Mushrooms
5. The Use of β-Glucan in the Technology of Ice Cream and Frozen Desserts
5.1. Oat and Barley β-glucan
5.2. β-Glucan of Bacterial Origin
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nishantha, M.D.; Diddugoda, J.; Nie, X.; Weining, S. Beta-Glucan: An Overview of its Properties, Health Benefits, Genetic Background and Practical Applications. Sch. J. Agric. Vet. Sci. 2018, 5, 130–140. [Google Scholar] [CrossRef]
- Pillai, R.; Redmond, M.; Röding, J. Anti-Wrinkle Therapy: Significant New Findings in the Non-Invasive Cosmetic Treatment of Skin Wrinkles with Beta-Glucan. Int. J. Cosmet. Sci. 2005, 27, 292. [Google Scholar] [CrossRef]
- Bashir, K.M.I.; Choi, J.-S. Clinical and Physiological Perspectives of β-Glucans: The Past, Present, and Future. Int. J. Mol. Sci. 2017, 18, 1906. [Google Scholar] [CrossRef] [PubMed]
- El Khoury, D.; Cuda, C.; Luhovyy, B.L.; Anderson, G.H. Beta glucan: Health benefits in obesity and metabolic syndrome. J. Nutr. Metab. 2012, 2012, 851362. [Google Scholar] [CrossRef] [PubMed]
- Ciecierska, A.; Drywień, M.E.; Hamulka, J.; Sadkowski, T. Nutraceutical functions of beta-glucans in human nutrition. Rocz. Panstw. Zakl. Hig. 2019, 70, 315–324. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of a health claim related to oat beta glucan and lowering blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J. 2010, 8, 1885. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the safety of ‘yeast beta-glucans’ as a Novel Food ingredient. EFSA J. 2011, 9, 2137. [Google Scholar] [CrossRef]
- Wang, L.; Ye, F.; Li, S.; Wei, F.; Chen, J.; Zhao, G. Wheat flour enriched with oat β-glucan: A study of hydration, rheological and fermentation properties of dough. J. Cereal Sci. 2017, 75, 143–150. [Google Scholar] [CrossRef]
- Nishantha, M.D.L.C.; Zhao, X.; Jeewani, D.C.; Bian, J.; Nie, X.; Weining, S. Direct comparison of β-glucan content in wild and cultivated barley. Int. J. Food Prop. 2018, 21, 2218–2228. [Google Scholar] [CrossRef]
- Lim, J.; Inglett, G.E.; Lee, S. Response to Consumer Demand for Reduced-Fat Foods; Multi-Functional Fat Replacers. Jpn. J. Food Eng. 2010, 11, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Mamat, H.; Hill, S.E. Effect of fat types on the structural and textural properties of dough and semi-sweet biscuit. J. Food Sci. Technol. 2014, 51, 1998–2005. [Google Scholar] [CrossRef] [PubMed]
- Sapiga, V.; Polischuk, G.; Breus, N.; Osmak, T. Polyfunctional Properties of Oat β-Glucan in the Composition of Milk-Vegetable Ice Cream. Ukr. Food J. 2021, 10, 691–702. [Google Scholar] [CrossRef]
- Kamath, R.; Basak, S.; Gokhale, J. Recent trends in the development of healthy and functional cheese analogues-a review. LWT 2022, 155, 112991. [Google Scholar] [CrossRef]
- Amer, E.M.; Saber, S.; Markeb, A.A.; Elkhawaga, A.; Mekhemer, I.; Zohri, A.-N.; Abujamel, T.; Harakeh, S.; Abd-Allah, E. Enhancement of β-Glucan Biological Activity Using a Modified Acid-Base Extraction Method from Saccharomyces cerevisiae. Molecules 2021, 26, 2113. [Google Scholar] [CrossRef] [PubMed]
- Ragaee, S.M.; Campbell, G.L.; Scoles, G.J.; McLeod, J.G.; Tyler, R.T. Studies on Rye (Secale cereale L.) Lines Exhibiting a Range of Extract Viscosities. 1. Composition, Molecular Weight Distribution of Water Extracts, and Biochemical Characteristics of Purified Water-Extractable Arabinoxylan. J. Agric. Food Chem. 2001, 49, 2437–2445. [Google Scholar] [CrossRef] [PubMed]
- Anttila, H.; Sontag-Strohm, T.; Salovaara, H. Viscosity of beta-glucan in oat products. Agric. Food Sci. 2004, 13, 80–87. [Google Scholar] [CrossRef]
- Henry, R. Genetic and environmental variation in the pentosan and β-glucan contents of barley, and their relation to malting quality. J. Cereal Sci. 1986, 4, 269–277. [Google Scholar] [CrossRef]
- Henry, R.J.; Brown, A.H.D. Variation in the Carbohydrate Composition of Wild Barley (Hordeum spontaneum) Grain. Plant Breed. 1987, 98, 97–103. [Google Scholar] [CrossRef]
- Henrion, M.; Francey, C.; Lê, K.-A.; Lamothe, L. Cereal B-Glucans: The Impact of Processing and How It Affects Physiological Responses. Nutrients 2019, 11, 1729. [Google Scholar] [CrossRef]
- Rakha, A.; Åman, P.; Andersson, R. How Does the Preparation of Rye Porridge Affect Molecular Weight Distribution of Extractable Dietary Fibers? Int. J. Mol. Sci. 2011, 12, 3381–3393. [Google Scholar] [CrossRef] [Green Version]
- Kaur, R.; Sharma, M.; Ji, D.; Xu, M.; Agyei, D. Structural Features, Modification, and Functionalities of Beta-Glucan. Fibers 2019, 8, 1. [Google Scholar] [CrossRef]
- Colasuonno, P.; Marcotuli, I.; Cutillo, S.; Simeone, R.; Blanco, A.; Gadaleta, A. Effect of barley chromosomes on the β-glucan content of wheat. Genet. Resour. Crop Evol. 2020, 67, 561–567. [Google Scholar] [CrossRef]
- Phuwadolpaisarn, P. Comparison of β-Glucan Content in Milled Rice, Rice Husk and Rice Bran from Rice Cultivars Grown in Different Locations of Thailand and the Relationship between β-Glucan and Amylose Contents. Molecules 2021, 26, 6368. [Google Scholar] [CrossRef]
- Demirbas, A. β-Glucan and mineral nutrient contents of cereals grown in Turkey. Food Chem. 2005, 90, 773–777. [Google Scholar] [CrossRef]
- Jung, T.-D.; Shin, G.-H.; Kim, J.-M.; Choi, S.-I.; Lee, J.-H.; Lee, S.J.; Park, S.J.; Woo, K.S.; Oh, S.K.; Lee, O.-H. Comparative Analysis of γ-Oryzanol, β-Glucan, Total Phenolic Content and Antioxidant Activity in Fermented Rice Bran of Different Varieties. Nutrients 2017, 9, 571. [Google Scholar] [CrossRef] [PubMed]
- Niba, L.L.; Hoffman, J. Resistant starch and β-glucan levels in grain sorghum (Sorghum bicolor M.) are influenced by soaking and autoclaving. Food Chem. 2003, 81, 113–118. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, L.; Liu, M.; Guo, G.; Wu, B. Analysis of β-d-glucan biosynthetic genes in oat reveals glucan synthesis regulation by light. Ann. Bot. 2021, 127, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Burton, R.A.; Fincher, G.B. Current challenges in cell wall biology in the cereals and grasses. Front. Plant Sci. 2012, 3, 130. [Google Scholar] [CrossRef] [PubMed]
- Marcotuli, I.; Houston, K.; Schwerdt, J.G.; Waugh, R.; Fincher, G.B.; Burton, R.A.; Blanco, A.; Gadaleta, A. Genetic Diversity and Genome Wide Association Study of β-Glucan Content in Tetraploid Wheat Grains. PLoS ONE 2016, 11, e0152590. [Google Scholar] [CrossRef]
- Luo, J.; Chen, D.; Mao, X.; He, J.; Yu, B.; Cheng, L.; Zeng, D. Purified β-glucans of Different Molecular Weights Enhance Growth Performance of LPS-challenged Piglets via Improved Gut Barrier Function and Microbiota. Animals 2019, 9, 602. [Google Scholar] [CrossRef] [Green Version]
- Aboushanab, S.A.S.; Vyrova, D.V.; Selezneva, I.S.; Ibrahim, M.N.G. The potential use of β-Glucan in the industry, medicine and cosmetics. AIP Conf. Proc. 2019, 2174, 020198. [Google Scholar] [CrossRef]
- Sekar, A.; Kim, M.; Jeong, H.C.; Kim, K. Strain Selection and Optimization of Mixed Culture Conditions for Lactobacillus pentosus K1-23 with Antibacterial Activity and Aureobasidium pullulans NRRL 58012 Producing Immune-Enhancing β-Glucan. J. Microbiol. Biotechnol. 2018, 28, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Klis, F.M.; Mol, P.; Hellingwerf, K.; Brul, S. Dynamics of cell wall structure inSaccharomyces cerevisiae. FEMS Microbiol. Rev. 2002, 26, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-G.; Shim, Y.Y.; Choi, S.-O.; Park, W.-M. New Method Development for Nanoparticle Extraction of Water-Soluble β-(1→3)-d-Glucan from Edible Mushrooms, Sparassis crispa and Phellinus linteus. J. Agric. Food Chem. 2009, 57, 2147–2154. [Google Scholar] [CrossRef] [PubMed]
- Ubiparip, Z.; De Doncker, M.; Beerens, K.; Franceus, J.; Desmet, T. β-Glucan phosphorylases in carbohydrate synthesis. Appl. Microbiol. Biotechnol. 2021, 105, 4073–4087. [Google Scholar] [CrossRef] [PubMed]
- Manzi, P.; Pizzoferrato, L. Beta-glucans in edible mushrooms. Food Chem. 2000, 68, 315–318. [Google Scholar] [CrossRef]
- Manzi, P.; Gambelli, L.; Marconi, S.; Vivanti, V.; Pizzoferrato, L. Nutrients in edible mushrooms: An inter-species comparative study. Food Chem. 1999, 65, 477–482. [Google Scholar] [CrossRef]
- Lee, Y.-T.; Kim, Y.-S. Water-solubility of β-Glucans in Various Edible Mushrooms—Research Note. Prev. Nutr. Food Sci. 2005, 10, 294–297. [Google Scholar] [CrossRef]
- McCleary, B.V.; Draga, A. Measurement of β-Glucan in Mushrooms and Mycelial Products. J. AOAC Int. 2016, 99, 364–373. [Google Scholar] [CrossRef]
- Fesel, P.H.; Zuccaro, A. β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet. Biol. 2016, 90, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Bobadilla, F.; Rodriguez-Tirado, C.; Imarai, M.; Galotto, M.J.; Andersson, R. Soluble β-1,3/1,6-glucan in seaweed from the southern hemisphere and its immunomodulatory effect. Carbohydr. Polym. 2013, 92, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Iida, M.; Desamero, M.J.; Yasuda, K.; Nakashima, A.; Suzuki, K.; Chambers, J.K.; Uchida, K.; Ogawa, R.; Hachimura, S.; Nakayama, J.; et al. Effects of orally administered Euglena gracilis and its reserve polysaccharide, paramylon, on gastric dysplasia in A4gnt knockout mice. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Schulze, C.; Wetzel, M.; Reinhardt, J.; Schmidt, M.; Felten, L.; Mundt, S. Screening of microalgae for primary metabolites including β-glucans and the influence of nitrate starvation and irradiance on β-glucan production. J. Appl. Phycol. 2016, 28, 2719–2725. [Google Scholar] [CrossRef]
- Jobling, S.A.; Belobrajdic, D.P.; Bird, A.R. Wheat having high levels of beta-glucan. WIPO Patent WO 2015017901 A1, 12 February 2015. [Google Scholar]
- Synytsya, A.; Novak, M. Structural analysis of glucans. Ann. Transl. Med. 2014, 2, 17. [Google Scholar] [CrossRef]
- Cho, K.C.; White, P.J. Enzymatic analysis of β-glucan content in different oat genotypes. Cereal Chem. 1993, 70, 539–542. [Google Scholar]
- Legentil, L.; Paris, F.; Ballet, C.; Trouvelot, S.; Daire, X.; Vetvicka, V.; Ferrières, V. Molecular Interactions of β-(1→3)-Glucans with Their Receptors. Molecules 2015, 20, 9745–9766. [Google Scholar] [CrossRef]
- Okobira, T.; Miyoshi, K.; Uezu, K.; Sakurai, K.; Shinkai, S. Molecular Dynamics Studies of Side Chain Effect on the β-1,3-d-Glucan Triple Helix in Aqueous Solution. Biomacromolecules 2008, 9, 783–788. [Google Scholar] [CrossRef]
- Tupe, S.G.; Deshmukh, S.K.; Zambare, R.B.; Tripathi, A.A.; Deshpande, M.V. Biopolymers from Fungi and Their Applications. In Fungal Biopolymers and Biocomposites; Springer: Singapore, 2022; pp. 3–14. [Google Scholar] [CrossRef]
- Utama, G.L.; Dio, C.; Lembong, E.; Cahyana, Y.; Balia, R.L. Microorganism-based β-glucan production and their potential as antioxidant. Sys. Rev. Pharm. 2020, 11, 868–873. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Xu, B. A critical review on production and industrial applications of beta-glucans. Food Hydrocoll. 2016, 52, 275–288. [Google Scholar] [CrossRef]
- Suzuki, T.; Kusano, K.; Kondo, N.; Nishikawa, K.; Kuge, T.; Ohno, N. Biological Activity of High-Purity β-1,3-1,6-Glucan Derived from the Black Yeast Aureobasidium pullulans: A Literature Review. Nutrients 2021, 13, 242. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, J.; Watanabe, K.; Taira, S.; Kasubuchi, M.; Li, X.; Irie, J.; Itoh, H.; Kimura, I. Barley β-glucan improves metabolic condition via short-chain fatty acids produced by gut microbial fermentation in high fat diet fed mice. PLoS ONE 2018, 13, e0196579. [Google Scholar] [CrossRef] [PubMed]
- Barsanti, L.; Vismara, R.; Passarelli, V.; Gualtieri, P. Paramylon (β-1,3-glucan) content in wild type and WZSL mutant of Euglena gracilis. Effects of growth conditions. J. Appl. Phycol. 2001, 13, 59–65. [Google Scholar] [CrossRef]
- Tuse, D.; Marquez, L.; Hokama, L.A. Production of beta-1, 3-glucan in Euglena. U.S. Patent 5,084,386 A, 28 January 1993. [Google Scholar]
- Sobieralski, K.; Siwulski, M.; Lisiecka, J.; Jedryczka, M.; Sas-Golak, I.; Fruzynska-Jozwiak, D. Fungi-derived β-glucans as a component of functional food. Acta Sci. Pol. Hortorum Cultus. 2012, 11, 111–128. [Google Scholar]
- Camilli, G.; Tabouret, G.; Quintin, J. The Complexity of Fungal β-Glucan in Health and Disease: Effects on the Mononuclear Phagocyte System. Front. Immunol. 2018, 9, 673. [Google Scholar] [CrossRef] [PubMed]
- Borchers, A.T.; Keen, C.L.; Gershwin, M.E. Mushrooms, Tumors, and Immunity: An Update. Exp. Biol. Med. 2004, 229, 393–406. [Google Scholar] [CrossRef]
- De Graaff, P.; Govers, C.; Wichers, H.; Debets, R. Consumption of β-glucans to spice up T cell treatment of tumors: A review. Expert Opin. Biol. Ther. 2018, 18, 1023–1040. [Google Scholar] [CrossRef]
- Du, B.; Meenu, M.; Liu, H.; Xu, B. A Concise Review on the Molecular Structure and Function Relationship of β-Glucan. Int. J. Mol. Sci. 2019, 20, 4032. [Google Scholar] [CrossRef] [PubMed]
- Khanjani, M.H.; Sharifinia, M.; Ghaedi, G. β-glucan as a promising food additive and immunostimulant in aquaculture industry. Ann. Anim. Sci. 2022, 22, 817–827. [Google Scholar] [CrossRef]
- Zou, Y.; Liao, D.; Huang, H.; Li, T.; Chi, H. A systematic review and meta-analysis of beta-glucan consumption on glycemic control in hypercholesterolemic individuals. Int. J. Food Sci. Nutr. 2015, 66, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Andrzej, K.M.; Małgorzata, M.; Sabina, K.; Horbańczuk, O.K.; Rodak, E. Application of rich in β-glucan flours and preparations in bread baked from frozen dough. Food Sci. Technol. Int. 2020, 26, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, B.; Patel, T. Increased Sensory Quality and Consumer Acceptability by Fortification of Chocolate Flavored Milk with Oat Beta Glucan. Int. J. Clin. Biomed. Res. 2016, 2, 25–28. [Google Scholar]
- Vasquez-Orejarena, E.; Simons, C.T.; Litchfield, J.H.; Alvarez, V.B. Functional Properties of a High Protein Beverage Stabilized with Oat-β-Glucan. J. Food Sci. 2018, 83, 1360–1365. [Google Scholar] [CrossRef] [PubMed]
- Temelli, F.; Bansema, C.; Stobbe, K. Development of an Orange-flavored Barley β-Glucan Beverage with Added Whey Protein Isolate. J. Food Sci. 2004, 69, 237–242. [Google Scholar] [CrossRef]
- Mah, E.; Kaden, V.N.; Kelley, K.M.; Liska, D.J. Beverage Containing Dispersible Yeast β-Glucan Decreases Cold/Flu Symptomatic Days After Intense Exercise: A Randomized Controlled Trial. J. Diet. Suppl. 2020, 17, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Liutkevičius, A.; Speičienė, V.; Alenčikienė, G.; Mieželienė, A.; Kaminskas, A.; Abaravičius, J.A.; Vitkus, D.; Jab, V. Oat β-glucan in milk products: Impact on human health. Agric. Food 2015, 3, 74–81. [Google Scholar]
- Qu, X.; Nazarenko, Y.; Yang, W.; Nie, Y.; Zhang, Y.; Li, B. Effect of Oat β-Glucan on the Rheological Characteristics and Microstructure of Set-Type Yogurt. Molecules 2021, 26, 4752. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, A.; Waszkiewicz-Robak, B.; Swiderski, F. Possibility of beta-glucan from spent brewer’s yeast addition to yoghurts. Pol. J. Food Nutr. Sci. 2009, 59, 299–302. [Google Scholar]
- Hozová, B.; Kuniak, Ľ.; Kelemenová, B. Application of β-d-glucans isolated from mushrooms Pleurotus ostreatus (pleuran) and Lentinus edodes (lentinan) for increasing the bioactivity of yoghurts. Czech J. Food Sci. 2004, 22, 204–214. [Google Scholar] [CrossRef]
- Henao, S.L.D.; Urrego, S.A.; Cano, A.M.; Higuita, E.A. Randomized Clinical Trial for the Evaluation of Immune Modulation by Yogurt Enriched with β-Glucans from Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), in Children from Medellin, Colombia. Int. J. Med. Mushrooms 2018, 20, 705–716. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Nutrition, Novel Foods and Food Allergens); Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of dried whole cell Euglena gracilis as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2020, 18, e06100. [Google Scholar] [CrossRef]
- Mejri, W.; Bornaz, S.; Sahli, A. Formulation of non-fat yoghurt with β-glucanfrom spent brewer’s yeast. J. Hyg. Eng. Des. 2014, 8, 163–173. [Google Scholar]
- Chirsanova, A.I.; Boistean, A.V.; Chiseliță, N.; Siminiuc, R. Impact of yeast sediment beta-glucans on the quality indices of yoghurt. Food Syst. 2021, 4, 12–18. [Google Scholar] [CrossRef]
- Pappa, E.C.; Kondyli, E.; MacNaughtan, W.; Kakouri, A.; Nesseris, K.; Israilides, C. Quality and Sensory Properties of Reduced Fat Yoghurt Made with Addition of β-Glucans. Food Nutr. Sci. 2018, 9, 390–402. [Google Scholar] [CrossRef]
- Volikakis, P.; Biliaderis, C.G.; Vamvakas, C.; Zerfiridis, G.K. Effects of a commercial oat-β-glucan concentrate on the chemical, physico-chemical and sensory attributes of a low-fat white-brined cheese product. Food Res. Int. 2004, 37, 83–94. [Google Scholar] [CrossRef]
- Kondyli, E.; Pappa, E.C.; Kremmyda, A.; Arapoglou, D.; Metafa, M.; Eliopoulos, C.; Israilides, C. Manufacture of Reduced Fat White-Brined Cheese with the Addition of β-Glucans Biobased Polysaccharides as Textural Properties Improvements. Polymers 2020, 12, 2647. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, D.; Khatkar, S.K.; Chawla, R.; Panwar, H.; Kapoor, S. Effect of β-glucan fortification on physico-chemical, rheological, textural, colour and organoleptic characteristics of low fat dahi. J. Food Sci. Technol. 2017, 54, 2684–2693. [Google Scholar] [CrossRef] [PubMed]
- Elsanhoty, R.; Zaghlol, A.; Hassanein, A. The Manufacture of Low Fat Labneh Containing Barley β-Glucan 1-Chemical Composition, Microbiological Evaluation and Sensory Properties. Curr. Res. Dairy Sci. 2009, 1, 1–12. [Google Scholar] [CrossRef]
- Melnikova, E.I.; Bogdanova, E.V.; Bolgova, M.S.; Samojlenko, A.V. Method for producing cottage cheese enriched with beta-glucan. Russia Patent RU 2645253 C2, 19 February 2018. [Google Scholar]
- Vithanage, C.R.; Mishra, V.K.; Vasiljevic, T.; Shah, N.P. Use of β-glucan in development of low-fat Mozzarella cheese. Milchwiss. -Milk Sci. Int. 2008, 130, 48–51. [Google Scholar]
- Kondyli, E.; Pappa, E.C.; Arapoglou, D.; Metafa, M.; Eliopoulos, C.; Israilides, C. Effect of Fortification with Mushroom Polysaccharide β-Glucan on the Quality of Ovine Soft Spreadable Cheese. Foods 2022, 11, 417. [Google Scholar] [CrossRef]
- Aljewicz, M.; Majcher, M.; Nalepa, B. A Comprehensive Study of the Impacts of Oat β-Glucan and Bacterial Curdlan on the Activity of Commercial Starter Culture in Yogurt. Molecules 2020, 25, 5411. [Google Scholar] [CrossRef]
- Shibani, F.; Asadollahi, S.; Eshaghi, M. The effect of beta-glucan as a fat substitute on the sensory and physico-chemical properties of low-fat ice cream. J. Food Saf. Processing 2021, 1, 71–84. [Google Scholar]
- Mykhalevych, A.; Sapiga, V.; Polischuk, G.; Osmak, T. Functional and technological properties of oat beta-glucan in acidophilic-whey ice cream. Food Environ. Saf. 2022, 21, 116–128. [Google Scholar] [CrossRef]
- Rezaei, R.; Khomeiri, M.; Kashaninejad, M.; Mazaheri-Tehrani, M.; Aalami, M. Potential of β-d-glucan to enhance physicochemical quality of frozen soy yogurt at different aging conditions. Iran. Food Sci. Technol. Res. J. 2019, 15, 1–12. [Google Scholar]
- Durmaz, Y.; Kilicli, M.; Toker, O.S.; Konar, N.; Palabiyik, I.; Tamtürk, F. Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. Algal Res. 2020, 47, 101811. [Google Scholar] [CrossRef]
- Kivelä, R.; Pitkänen, L.; Laine, P.; Aseyev, V.; Sontag-Strohm, T. Influence of homogenisation on the solution properties of oat β-glucan. Food Hydrocoll. 2010, 24, 611–618. [Google Scholar] [CrossRef]
- Vasquez Mejia, S.M.; de Francisco, A.; Manique Barreto, P.L.; Damian, C.; Zibetti, A.W.; Mahecha, H.S.; Bohrer, B.M. Incorporation of β-glucans in meat emulsions through an optimal mixture modeling systems. Meat Sci. 2018, 143, 210–218. [Google Scholar] [CrossRef]
- Lumaga, R.B.; Azzali, D.; Fogliano, V.; Scalfi, L.; Vitaglione, P. Sugar and dietary fibre composition influence, by different hormonal response, the satiating capacity of a fruit-based and a β-glucan-enriched beverage. Food Funct. 2012, 3, 67–75. [Google Scholar] [CrossRef]
- Chakraborty, P.; Witt, T.; Harris, D.; Ashton, J.; Stokes, J.R.; Smyth, H.E. Texture and mouthfeel perceptions of a model beverage system containing soluble and insoluble oat bran fibres. Food Res. Int. 2019, 120, 62–72. [Google Scholar] [CrossRef]
- Lyly, M.; Ohls, N.; Lähteenmäki, L.; Salmenkallio-Marttila, M.; Liukkonen, K.-H.; Karhunen, L.; Poutanen, K. The effect of fibre amount, energy level and viscosity of beverages containing oat fibre supplement on perceived satiety. Food Nutr. Res. 2010, 54, 2149. [Google Scholar] [CrossRef]
- Jaworska, D.; Królak, M.; Przybylski, W.; Jezewska-Zychowicz, M. Acceptance of Fresh Pasta with β-Glucan Addition: Expected Versus Perceived Liking. Foods 2020, 9, 869. [Google Scholar] [CrossRef]
- Lazaridou, A.; Serafeimidou, A.; Biliaderis, C.G.; Moschakis, T.; Tzanetakis, N. Structure development and acidification kinetics in fermented milk containing oat β-glucan, a yogurt culture and a probiotic strain. Food Hydrocoll. 2014, 39, 204–214. [Google Scholar] [CrossRef]
- Lyly, M.; Salmenkallio-Marttila, M.; Suortti, T.; Autio, K.; Poutanen, K.; Lähteenmäki, L. Influence of Oat β-Glucan Preparations on the Perception of Mouthfeel and on Rheological Properties in Beverage Prototypes. Cereal Chem. 2003, 80, 536–541. [Google Scholar] [CrossRef]
- Kontogiorgos, V.; Tosh, S.; Wood, P. Phase behaviour of high molecular weight oat β-glucan/whey protein isolate binary mixtures. Food Hydrocoll. 2009, 23, 949–956. [Google Scholar] [CrossRef]
- de la Vega, M.I.C.; Alatorre-Santamaría, S.; Gómez-Ruiz, L.; García-Garibay, M.; Guzmán-Rodríguez, F.; González-Olivares, L.G.; Cruz-Guerrero, A.E.; Rodríguez-Serrano, G.M. Influence of Oat β-Glucan on the Survival and Proteolytic Activity of Lactobacillus rhamnosus GG in Milk Fermentation: Optimization by Response Surface. Fermentation 2021, 7, 210. [Google Scholar] [CrossRef]
- Sharma, P.; Trivedi, N.; Gat, Y. Development of functional fermented whey–oat-based product using probiotic bacteria. 3 Biotech 2017, 7, 272. [Google Scholar] [CrossRef]
- Angelov, A.; Gotcheva, V.; Kuncheva, R.; Hristozova, T. Development of a new oat-based probiotic drink. Int. J. Food Microbiol. 2006, 112, 75–80. [Google Scholar] [CrossRef]
- Kaur, R.; Riar, C.S. Sensory, rheological and chemical characteristics during storage of set type full fat yoghurt fortified with barley β-glucan. J. Food Sci. Technol. 2020, 57, 41–51. [Google Scholar] [CrossRef]
- Jirdehi, S.; Qajarbeygi, Z.; Khaksar, P. Effect of prebiotic β-glucan composite on physical, chemical, rheological and sensory properties of set-type low-fat Iranian yoghurt. Egypt J. Basic Appl. Sci. 2013, 3, 205–210. [Google Scholar]
- Rahar, S.; Swami, G.; Nagpal, N.; Nagpal, M.A.; Singh, G.S. Preparation, characterization, and biological properties of β-glucans. J. Adv. Pharm. Technol. Res. 2011, 2, 94–103. [Google Scholar] [CrossRef]
- Talbott, S.; Talbott, J. Effect of BETA 1, 3/1, 6 GLUCAN on Upper Respiratory Tract Infection Symptoms and Mood State in Marathon Athletes. J. Sports Sci. Med. 2009, 8, 509–515. [Google Scholar]
- McFarlin, B.K.; Carpenter, K.C.; Davidson, T.; McFarlin, M.A. Baker’s Yeast Beta Glucan Supplementation Increases Salivary IgA and Decreases Cold/Flu Symptomatic Days After Intense Exercise. J. Diet. Suppl. 2013, 10, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, A.; Arendt, E.K.; Zannini, E.; Sahin, A.W. Brewer’s Spent Yeast (BSY), an Underutilized Brewing By-Product. Fermentation. 2020, 6, 123. [Google Scholar] [CrossRef]
- Karlović, A.; Jurić, A.; Ćorić, N.; Habschied, K.; Krstanović, V.; Mastanjević, K. By-Products in the Malting and Brewing Industries—Re-Usage Possibilities. Fermentation 2020, 6, 82. [Google Scholar] [CrossRef]
- Avramia, I.; Amariei, S. Spent Brewer’s Yeast as a Source of Insoluble β-Glucans. Int. J. Mol. Sci. 2021, 22, 825. [Google Scholar] [CrossRef]
- Raikos, V.; Grant, S.B.; Hayes, H.; Ranawana, V. Use of β-glucan from spent brewer’s yeast as a thickener in skimmed yogurt: Physicochemical, textural, and structural properties related to sensory perception. J. Dairy Sci. 2018, 101, 5821–5831. [Google Scholar] [CrossRef]
- Ministerul Agriculturii și Industriei Alimentare. Raport «Privind utilizarea mijloacelor financiare ale Fondul viei și vinului». Available online: https://madrm.gov.md/sites/default/files/Documente%20atasate%20Advance%20Pagines/Raport%20FVV-2017-2019-ONVV-MADRM.pdf. (accessed on 7 July 2022).
- Dönmez, Ö.; Mogol, B.A.; Gökmen, V. Syneresis and rheological behaviors of set yogurt containing green tea and green coffee powders. J. Dairy Sci. 2017, 100, 901–907. [Google Scholar] [CrossRef]
- Cerletti, C.; Esposito, S.; Iacoviello, L. Edible Mushrooms and Beta-Glucans: Impact on Human Health. Nutrients 2021, 13, 2195. [Google Scholar] [CrossRef]
- Kubala, L.; Ruzickova, J.; Nickova, K.; Sandula, J.; Ciz, M.; Lojek, A. The effect of (1→3)-β-d-glucans, carboxymethylglucan and schizophyllan on human leukocytes in vitro. Carbohydr. Res. 2003, 338, 2835–2840. [Google Scholar] [CrossRef]
- Vanegas-Azuero, A.-M.; Gutiérrez, L.-F. Physicochemical and sensory properties of yogurts containing sacha inchi (Plukenetia volubilis L.) seeds and β-glucans from Ganoderma lucidum. J. Dairy Sci. 2018, 101, 1020–1033. [Google Scholar] [CrossRef]
- Danilov, R.A.; Ekelund, N.G.A. Effects of pH on the growth rate, motility and photosynthesis inEuglena gracilis. Folia Microbiol. 2001, 46, 549–554. [Google Scholar] [CrossRef]
- The European Parliament; The Council of the European Union. Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001; OJ L 327, 11.12.2015; The European Parliament and The Council of the European Union: Brussel, Belgium, 2015; pp. 1–22. [Google Scholar]
- Dai, J.; He, J.; Chen, Z.; Qin, H.; Du, M.; Lei, A.; Zhao, L.; Wang, J. Euglena gracilis Promotes Lactobacillus Growth and Antioxidants Accumulation as a Potential Next-Generation Prebiotic. Front. Nutr. 2022, 9, 864565. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, A.; Sasaki, K.; Sasaki, D.; Yasuda, K.; Suzuki, K.; Kondo, A. The alga Euglena gracilis stimulates Faecalibacterium in the gut and contributes to increased defecation. Sci. Rep. 2021, 11, 1074. [Google Scholar] [CrossRef] [PubMed]
- Kearney, N.; Stack, H.M.; Tobin, J.T.; Chaurin, V.; Fenelon, M.A.; Fitzgerald, G.F.; Ross, R.; Stanton, C. Lactobacillus paracasei NFBC 338 producing recombinant beta-glucan positively influences the functional properties of yoghurt. Int. Dairy J. 2011, 21, 561–567. [Google Scholar] [CrossRef]
- Li, X.-W.; Lv, S.; Shi, T.-T.; Liu, K.; Li, Q.-M.; Pan, L.-H.; Zha, X.-Q.; Luo, J.-P. Exopolysaccharides from yoghurt fermented by Lactobacillus paracasei: Production, purification and its binding to sodium caseinate. Food Hydrocoll. 2020, 102, 105635. [Google Scholar] [CrossRef]
- Singh, M.; Kim, S.; Liu, S.X. Effect of Purified Oat β-Glucan on Fermentation of Set-Style Yogurt Mix. J. Food Sci. 2012, 77, E195–E201. [Google Scholar] [CrossRef]
- Sahan, N.; Yasar, K.; Hayaloglu, A.A.; Karaca, O.B.; Kaya, A. Influence of fat replacers on chemical composition, proteolysis, texture profiles, meltability and sensory properties of low-fat Kashar cheese. J. Dairy Res. 2008, 75, 1–7. [Google Scholar] [CrossRef]
- Santipanichwong, R.; Suphantharika, M. Carotenoids as colorants in reduced-fat mayonnaise containing spent brewer’s yeast β-glucan as a fat replacer. Food Hydrocoll. 2007, 21, 565–574. [Google Scholar] [CrossRef]
- Konuklar, G.; Inglett, G.E.; Carriere, C.J.; Felker, F.C. Use of a beta-glucan hydrocolloidal suspension in the manufacture of low-fat Cheddar cheese: Manufacture, composition, yield and microstructure. Int. J. Food Sci. Technol. 2004, 39, 109–119. [Google Scholar] [CrossRef]
- Mishra, N. Cereal β Glucan as a Functional Ingredient. In Innovations in Food Technology; Mishra, P., Mishra, R.R., Adetunji, C.O., Eds.; Springer: Singapore, 2020; pp. 109–122. [Google Scholar] [CrossRef]
- Wen, P.; Zhu, Y.; Luo, J.; Wang, P.; Liu, B.; Du, Y.; Jiao, Y.; Hu, Y.; Chen, C.; Ren, F.; et al. Effect of anthocyanin-absorbed whey protein microgels on physicochemical and textural properties of reduced-fat Cheddar cheese. J. Dairy Sci. 2021, 104, 228–242. [Google Scholar] [CrossRef]
- Ningtyas, D.W.; Bhandari, B.; Bansal, N.; Prakash, S. Texture and lubrication properties of functional cream cheese: Effect of β-glucan and phytosterol. J. Texture Stud. 2018, 49, 11–22. [Google Scholar] [CrossRef]
- Ningtyas, D.W.; Bhandari, B.; Bansal, N.; Prakash, S. The viability of probiotic Lactobacillus rhamnosus (non-encapsulated and encapsulated) in functional reduced-fat cream cheese and its textural properties during storage. Food Control 2019, 100, 8–16. [Google Scholar] [CrossRef]
- Ningtyas, D.W.; Bhandari, B.; Bansal, N.; Prakash, S. Flavour profiles of functional reduced-fat cream cheese: Effects of β-glucan, phytosterols, and probiotic L. rhamnosus. LWT 2019, 105, 16–22. [Google Scholar] [CrossRef]
- Giha, V.; Ordoñez, M.J.; Villamil, R.A. How does milk fat replacement influence cheese analogue microstructure, rheology, and texture profile? J. Food Sci. 2021, 86, 2802–2815. [Google Scholar] [CrossRef] [PubMed]
- Karp, S.; Wyrwisz, J.; Kurek, M.A. The impact of different levels of oat β-glucan and water on gluten-free cake rheology and physicochemical characterisation. J. Food Sci. Technol. 2020, 57, 3628–3638. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.; Tudorica, C.M. The Role of Complex Carbohydrates and Non-Starch Polysaccharides in the Regulation of Postprandial Glucose and Insulin Responses in Cereal Foods. J. Nutraceuticals Funct. Med. Foods. 2003, 4, 49–55. [Google Scholar] [CrossRef]
- Tudoricặ, C.M.; Kuri, V.; Brennan, C.S. Nutritional and Physicochemical Characteristics of Dietary Fiber Enriched Pasta. J. Agric. Food Chem. 2002, 50, 347–356. [Google Scholar] [CrossRef]
- Tudorica, C.M.; Jones, T.E.R.; Kuri, V.; Brennan, C.S. The effects of refined barleyβ-glucan on the physico-structural properties of low-fat dairy products: Curd yield, microstructure, texture and rheology. J. Sci. Food Agric. 2004, 84, 1159–1169. [Google Scholar] [CrossRef]
- Caseiro, C.; Dias, J.N.R.; de Andrade Fontes, C.M.G.; Bule, P. From Cancer Therapy to Winemaking: The Molecular Structure and Applications of β-Glucans and β-1, 3-Glucanases. Int. J. Mol. Sci. 2022, 23, 3156. [Google Scholar] [CrossRef] [PubMed]
- Polischuk, G.; Kochubey-Lytvynenko, O.; Osmak, T.; Kuzmik, U.; Bass, O.; Mykhalevych, A.; Sapiga, V. Scientific explanation of composition of acidophilic-whey ice cream, enriched with protein. Food Environ. Saf. J. 2021, 20, 13–20. [Google Scholar] [CrossRef]
- Neelima; Rao, P.S.; Sharma, R.; Rajput, Y.S. Direct estimation of sialic acid in milk and milk products by fluorimetry and its application in detection of sweet whey adulteration in milk. J. Dairy Res. 2012, 79, 495–501. [Google Scholar] [CrossRef]
- Osmak, T.; Mleko, S.; Bass, O.; Mykhalevych, A.; Kuzmyk, U. Enzymatic hydrolysis of lactose in concentrates of reconstituted demineralized whey, intended for ice cream production. Ukr. Food J. 2021, 10, 277–288. [Google Scholar] [CrossRef]
- Samuelsen, A.B.C.; Schrezenmeir, J.; Knutsen, S.H. Effects of orally administered yeast-derived beta-glucans: A review. Mol. Nutr. Food Res. 2014, 58, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Daly, D.F.M.; McSweeney, P.L.H.; Sheehan, J.J. Split defect and secondary fermentation in Swiss-type cheeses—A review. Dairy Sci. Technol. 2010, 90, 3–26. [Google Scholar] [CrossRef]
- Kerry Health and Nutrition Institute. Available online: https://khni.kerry.com/ (accessed on 12 July 2022).
- Rizzo, G.; Laganà, A.S.; Rapisarda, A.M.C.; La Ferrera, G.M.G.; Buscema, M.; Rossetti, P.; Nigro, A.; Muscia, V.; Valenti, G.; Sapia, F.; et al. Vitamin B12 among Vegetarians: Status, Assessment and Supplementation. Nutrients 2016, 8, 767. [Google Scholar] [CrossRef] [PubMed]
- Hyeast Biotech. Available online: https://www.hiyeast.com/ (accessed on 13 July 2022).
- Kholts-Shitinger, C.; Klapkholts, S.; Varadan, R.; Kazino, M.; Braun, P.; Ajzen, M.; Kon, E.; Privot, D. Non-dairy cheese replica comprising a coacervate. Russia Patent RU 2672489 C2, 15 November 2018. [Google Scholar]
- Utama, G.L.; Dio, C.; Sulistiyo, J.; Chye, F.Y.; Lembong, E.; Cahyana, Y.; Verma, D.K.; Thakur, M.; Patel, A.R.; Singh, S. Evaluating comparative β-glucan production aptitude of Saccharomyces cerevisiae, Aspergillus oryzae, Xanthomonas campestris, and Bacillus natto. Saudi J. Biol. Sci. 2021, 28, 6765–6773. [Google Scholar] [CrossRef]
- Pereira, P.R.; Freitas, C.S.; Paschoalin, V.M.F. Saccharomyces cerevisiae biomass as a source of next-generation food preservatives: Evaluating potential proteins as a source of antimicrobial peptides. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4450–4479. [Google Scholar] [CrossRef] [PubMed]
- Abbas, C.A. Production of Antioxidants, Aromas, Colours, Flavours, and Vitamins by Yeasts. In Yeasts in Food and Beverages; Querol, A., Fleet, G., Eds.; Springer: Berlin, Heidelberg, 2006; Volume 10, pp. 285–334. [Google Scholar] [CrossRef]
- El Ghany, K.A.; Hamouda, R.A.; Mahrous, H.; Elhafe, E.A.; Ahmed, F.A.H.; Hamza, H.A. Description of Isolated LAB Producing β-glucan from Egyptian Sources and Evaluation of its Therapeutic Effect. Int. J. Pharmacol. 2016, 12, 801–811. [Google Scholar] [CrossRef]
- Pérez-Ramos, A.; Mohedano, M.L.; Pardo, M.; López, P. β-Glucan-Producing Pediococcus parvulus 2.6: Test of Probiotic and Immunomodulatory Properties in Zebrafish Models. Front. Microbiol. 2018, 9, 1684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hitosugi, M.; Hamada, K.; Misaka, K. Effects of Bacillus subtilis var. natto products on symptoms caused by blood flow disturbance in female patients with lifestyle diseases. Int. J. Gen. Med. 2015, 8, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Patel, Y.; Naraian, R.; Singh V., K. Medicinal properties of Pleurotus species (Oyster mushrooms): A review. World J. Fungal Plant Biol. 2012, 3, 1–12. [Google Scholar]
- Mantovani, M.S.; Bellini, M.F.; Angeli, J.P.F.; Oliveira, R.J.; Silva, A.F.; Ribeiro, L.R. β-Glucans in promoting health: Prevention against mutation and cancer. Mutat. Res. Mutat. Res. 2008, 658, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Khorshidian, N.; Yousefi, M.; Shadnoush, M.; Mortazavian, A.M. An Overview of β-Glucan Functionality in Dairy Products. Curr. Nutr. Food Sci. 2018, 14, 280–292. [Google Scholar] [CrossRef]
- Chaikliang, C.; Wichienchot, S.; Youravoug, W.; Graidist, P. Evaluation on prebiotic properties of β-glucan and oligo-β-glucan from mushrooms by human fecal microbiota in fecal batch culture. Funct. Foods Health Dis. 2015, 5, 395–405. [Google Scholar] [CrossRef]
- Lam, K.-L.; Cheung, P.C.-K. Non-digestible long chain beta-glucans as novel prebiotics. Bioact. Carbohydrates Diet. Fibre 2013, 2, 45–64. [Google Scholar] [CrossRef]
- Brennan, C.S.; Tudorica, C.M. Carbohydrate-based fat replacers in the modification of the rheological, textural and sensory quality of yoghurt: Comparative study of the utilisation of barley beta-glucan, guar gum and inulin. Int. J. Food Sci. Technol. 2008, 43, 824–833. [Google Scholar] [CrossRef]
- Daou, C.; Zhang, H. Oat Beta-Glucan: Its Role in Health Promotion and Prevention of Diseases. Compr. Rev. Food Sci. Food Saf. 2012, 11, 355–365. [Google Scholar] [CrossRef]
- Belemets, T.; Radzievskaya, I.; Tochkova, O.; Yushchenko, N.; Kuzmyk, U.; Mykhalevych, A. Evaluation of oxidity resistance of milk-containing products based on blending of vegetable oils. Technol. Audit Prod. Reserv. 2021, 1, 26–33. [Google Scholar] [CrossRef]
- Polishchuk, G.; Kuzmyk, U.; Osmak, T.; Kurmach, M.; Bass, O. Analysis of the nature of the composition substances of sour-milk dessert with plant-based fillers. East. -Eur. J. Enterp. Technol. 2021, 6, 68–73. [Google Scholar] [CrossRef]
- Belemets, T.; Kuzmyk, U.; Gryshchenko, R.; Osmak, T. Determination of optimal technological parameters of obtaining stevia extract in technology of sour dairy desserts. East. -Eur. J. Enterp. Technol. 2022, 4, 60–67. [Google Scholar] [CrossRef]
- Bandini, L.G.; Vu, D.; Must, A.; Cyr, H.; Goldberg, A.; Dietz, W.H. Comparison of High-Calorie, Low-Nutrient-Dense Food Consumption among Obese and Non-Obese Adolescents. Obes. Res. 1999, 7, 438–443. [Google Scholar] [CrossRef]
- Sapiga, V.; Polischuk, G.; Osmak, T.; Mykhalevych, A.; Maslikov, M. Scientific explanation of the composition and technological modes of manufacture of dairy ice cream with vegetable puree. Ukr. J. Food Sci. 2019, 7, 83–91. [Google Scholar] [CrossRef]
- Akbari, M.; Eskandari, M.H.; Davoudi, Z. Application and functions of fat replacers in low-fat ice cream: A review. Trends Food Sci. Technol. 2019, 86, 34–40. [Google Scholar] [CrossRef]
- Venables, A.; Frangella, J.; Poulterer, B.; Ruszkay, T. Frozen desserts and methods for manufacture thereof. U.S. Patent 20,070,098,868 A1, 3 May 2007. [Google Scholar]
- Bealer, E.J.; Onissema-Karimu, S.; Rivera-Galletti, A.; Francis, M.; Wilkowski, J.; Salas-de la Cruz, D.; Hu, X. Protein–Polysaccharide Composite Materials: Fabrication and Applications. Polymers 2020, 12, 464. [Google Scholar] [CrossRef] [PubMed]
- Aljewicz, M.; Florczuk, A.; Dąbrowska, A. Influence of β-Glucan Structures and Contents on the Functional Properties of Low-Fat Ice Cream During Storage. Pol. J. Food Nutr. Sci. 2020, 70, 233–240. [Google Scholar] [CrossRef]
- Fan, R.; Zhou, D.; Cao, X. Evaluation of oat β-glucan-marine collagen peptide mixed gel and its application as the fat replacer in the sausage products. PLoS ONE 2020, 15, e0233447. [Google Scholar] [CrossRef]
- BahramParvar, M.; Tehrani, M.M. Application and Functions of Stabilizers in Ice Cream. Food Rev. Int. 2011, 27, 389–407. [Google Scholar] [CrossRef]
- Kurek, M.A.; Wyrwisz, J.; Wierzbicka, A. Optimization of beta-glucan and water content in fortified wheat bread using Response Surface Methodology according to staling kinetics. LWT 2017, 75, 352–357. [Google Scholar] [CrossRef]
- Lazaridou, A.; Vaikousi, H.; Biliaderis, C. Effects of polyols on cryostructurization of barley β-glucans. Food Hydrocoll. 2008, 22, 263–277. [Google Scholar] [CrossRef]
- Abdel-Haleem, A.M.H.; Awad, R.A. Some quality attributes of low fat ice cream substituted with hulless barley flour and barley ß-glucan. J. Food Sci. Technol. 2015, 52, 6425–6434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullah, M.; Rehman, S.; Zubair, H.; Saeed, H.M.; Kousar, S.; Shahid, M. Effect of Skim Milk in Soymilk Blend on the Quality of Ice Cream. Pak. J. Nutr. 2003, 2, 305–311. [Google Scholar] [CrossRef]
- Su, L.-W.; Cheng, Y.-H.; Hsiao, F.S.-H.; Han, J.-C.; Yu, Y.-H. Optimization of Mixed Solid-state Fermentation of Soybean Meal by Lactobacillus Species and Clostridium butyricum. Pol. J. Microbiol. 2018, 67, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Kot, A.; Kamińska-Dwórznicka, A.; Galus, S.; Jakubczyk, E. Effects of Different Ingredients and Stabilisers on Properties of Mixes Based on Almond Drink for Vegan Ice Cream Production. Sustainability 2021, 13, 12113. [Google Scholar] [CrossRef]
- Burkus, Z.; Temelli, F. Stabilization of emulsions and foams using barley β-glucan. Food Res. Int. 2000, 33, 27–33. [Google Scholar] [CrossRef]
- Shukla, T.; Halpem, G. Ice creams comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid. WIPO Patent WO 2005046357 A1, 29 June 2005. [Google Scholar]
- Casas-Arrojo, V.; Decara, J.; de Los Ángeles Arrojo-Agudo, M.; Pérez-Manríquez, C.; Abdala-Díaz, R.T. Immunomodulatory, Antioxidant Activity and Cytotoxic Effect of Sulfated Polysaccharides from Porphyridium cruentum. (S.F.Gray) Nägeli. Biomolecules 2021, 11, 488. [Google Scholar] [CrossRef] [PubMed]
- Rojo-Cebreros, A.H.; Ibarra-Castro, L.; Martínez-Brown, J.M.; Velasco-Blanco, G.; Martínez-Téllez M., A.; Medina-Jasso M., A.; Nieves-Soto, M.; Quintana-Zavala, D. Potential of Nannochloropsis in beta glucan production. In Nannochloropsis: Biology, Biotechnological Potential and Challenges; Nova Science Publishers: New York, NY, USA, 2017; pp. 181–225. [Google Scholar]
- Sun, Y.; Wang, H.; Guo, G.; Pu, Y.; Yan, B. The isolation and antioxidant activity of polysaccharides from the marine microalgae Isochrysis galbana. Carbohydr. Polym. 2014, 113, 22–31. [Google Scholar] [CrossRef]
- Wong, J.F.; Hong, H.J.; Foo, S.C.; Yap, M.K.K.; Tan, J.W. A review on current and future advancements for commercialized microalgae species. Food Sci. Hum. Wellness 2022, 11, 1156–1170. [Google Scholar] [CrossRef]
Name of the Source | β-Glucan Content, % | References |
---|---|---|
Cereal crops | ||
Oat | 4.5–5.5 | [15,16] |
Cultivated barley | 4–6 | [9,17] |
Wild barley | 2–4 | [9,18] |
Rye | 1–2.5 | [19,20] |
Wheat | < 1 | [21,22] |
Rice | 0.4–0.9 | [23,24,25] |
Sorghum | 0.07–0.2 | [26] |
Transgenic oats | > 6 | [27] |
Transgenic barley | 6–7.8 | [28] |
Transgenic wheat | 0.18–0.89 | [29] |
Bacteria | ||
Agrobacterium sp. ZX09 (Salecan®) | > 90 | [30] |
Paenibacillus polymyxa | 1.06 | [31] |
Lactic acid bacteria | 1.9–14.9 | [32] |
Fungi | ||
Saccharomyces cerevisiae | 55–65 | [31,33] |
Sparassis crispa | 43.6 | [34] |
Gyrophora esculenta | 22.7 | [35] |
Pleurotus ostreatus, Pleurotus pulmunarius | 0.21–0.53 | [36] |
Gyrophora esculenta, Lentinus edodes, Coriolus versicolor, Ganodenna lucidum, Flammulina velutipes | 2.12–19.66 | [37,38] |
Ganoderma lucidum | 45.1 | [39,40] |
Aspergillus niger mycelium | 50.9 | |
Microalgae | ||
Durvillaea antarctica | 5–33 | [41] |
Euglena | 20–70 | [42] |
Scenedesmus obtusiusculus A 189 | 6.4–19.5 | [43] |
Durvillaea antarctica (Chamisso) Hariot | 5–33 | [41] |
Product Name | The Dose of β-Glucan Depending on the Source of Origin | |||
---|---|---|---|---|
Cereal Crops | Yeast | Edible Mushrooms | Microalgae | |
Chocolate milk (with stabilizer) | 3% 1 [64] | - | - | - |
High-protein drink | 1.9% 2 [65] | - | - | - |
Functional drink | 0.5% 3 [66] | 0.1% 4 [67] | - | - |
Kefir, yogurt, fermented milk | 0.6% 1 [68] | - | - | - |
Yogurt | 0.3% 1 [69] | 0.3% 5 [70] | 0.5 ml per 150 ml of yogurt 7 [71], 1.0% 8 [72] | no more than 150 mg/100 g 10 [73] |
Fat-free yogurt | - | 1.5% 5 [74], 0.2–0.5% 6 [75] | 0.3% 9 [76] | no more than 150 mg/100 g 10 [73] |
Yogurt drink | - | - | - | no more than 150 mg/100 g 10 [73] |
Product Name | The Dose of β-Glucan Depends on the Source of Origin | |
---|---|---|
Cereal Crops | Edible Mushrooms | |
White-brined cheese | 0.7 and 1.4% 1 [77] | 0.4% 3 [78] |
Low-fat dahi | 0.5% 2 [79] | - |
Low-fat labneh | 5.0% 2 [80] | - |
Curd | 0.5% 1,2 [81] | - |
Low-fat mozzarella | 0.2% 2 [82] | - |
Pasty cheese-like product | - | 0.4% 3 [83] |
Product Name | The Dose of β-Glucan Depends on the Source of Origin | |||
---|---|---|---|---|
Cereal Crops | Bacteria | Microalgae | ||
Ice cream (2.5% of fat) | 0.5–1% 1 [84] | 1% 2 [84] | - | |
Low-fat milk-vegetable ice cream | 0.75–1% 1 [12] | - | - | |
Low-fat ice cream | 0.6% 1 [85] | - | - | |
Low-fat sour milk ice cream | 0.75% 1 [86] | - | - | |
Frozen soy dessert | 1–2% 1 [87] | - | - | |
Vanilla ice cream | - | - | 0.1–0.3% 3 [88] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mykhalevych, A.; Polishchuk, G.; Nassar, K.; Osmak, T.; Buniowska-Olejnik, M. β-Glucan as a Techno-Functional Ingredient in Dairy and Milk-Based Products—A Review. Molecules 2022, 27, 6313. https://doi.org/10.3390/molecules27196313
Mykhalevych A, Polishchuk G, Nassar K, Osmak T, Buniowska-Olejnik M. β-Glucan as a Techno-Functional Ingredient in Dairy and Milk-Based Products—A Review. Molecules. 2022; 27(19):6313. https://doi.org/10.3390/molecules27196313
Chicago/Turabian StyleMykhalevych, Artur, Galyna Polishchuk, Khaled Nassar, Tetiana Osmak, and Magdalena Buniowska-Olejnik. 2022. "β-Glucan as a Techno-Functional Ingredient in Dairy and Milk-Based Products—A Review" Molecules 27, no. 19: 6313. https://doi.org/10.3390/molecules27196313
APA StyleMykhalevych, A., Polishchuk, G., Nassar, K., Osmak, T., & Buniowska-Olejnik, M. (2022). β-Glucan as a Techno-Functional Ingredient in Dairy and Milk-Based Products—A Review. Molecules, 27(19), 6313. https://doi.org/10.3390/molecules27196313