Structural Insight of KSIII (β-Ketoacyl-ACP Synthase)-like Acyltransferase ChlB3 in the Biosynthesis of Chlorothricin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Overall Structure
2.2. The Structure of ChlB3 Resembles a KS-III like Fold
2.3. Catalytic Mechanism of ChlB3
2.4. Specificity in Hydrolytic Reactions
2.5. MD Simulation Confirms the 6MSA-SNAC Is Suitable Substrate
3. Materials and Methods
3.1. Protein Expression and Purification
3.2. Kinetic Analyis
3.3. Chromatographic Analysis
3.4. Crystallization and Structure Determination
3.5. Docking Analysis
3.6. Molecular Dynamic Simulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lacoske, M.H.; Theodorakis, E.A. Spirotetronate Polyketides as Leads in Drug Discovery. J. Nat. Prod. 2015, 78, 562–575. [Google Scholar] [PubMed]
- Jia, X.Y.; Tian, Z.H.; Shao, L.; Qu, X.D.; Zhao, Q.F.; Tang, J.; Tang, G.L.; Liu, W. Genetic characterization of the chlorothricin gene cluster as a model for spirotetronate antibiotic biosynthesis. Chem. Biol. 2006, 13, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Keller-Schierlein, W.; Muntwyler, R.; Pache, W.; Zähner, H. Stoffwechselprodukte von Mikroorganismen 73. Mitteilung [1] Chlorothricin und Des-chlorothoricin. Helv. Chim. Acta 1969, 52, 127–142. [Google Scholar] [CrossRef]
- Ding, W.; Lei, C.; He, Q.; Zhang, Q.; Bi, Y.; Liu, W. Insights into Bacterial 6-Methylsalicylic Acid Synthase and Its Engineering to Orsellinic Acid Synthase for Spirotetronate Generation. Chem. Biol. 2010, 17, 495–503. [Google Scholar] [CrossRef]
- Shao, L.; Qu, X.-D.; Jia, X.-Y.; Zhao, Q.-F.; Tian, Z.-H.; Wang, M.; Tang, G.-L.; Liu, W. Cloning and characterization of a bacterial iterative type I polyketide synthase gene encoding the 6-methylsalicyclic acid synthase. Biochem. Biophys. Res. Commun. 2006, 345, 133–139. [Google Scholar] [CrossRef] [PubMed]
- He, Q.-L.; Jia, X.-Y.; Tang, M.-C.; Tian, Z.-H.; Tang, G.-L.; Liu, W. Dissection of Two Acyl-Transfer Reactions Centered on Acyl-S-Carrier Protein Intermediates for Incorporating 5-Chloro-6-methyl-O-methylsalicyclic Acid into Chlorothricin. ChemBioChem 2009, 10, 813–819. [Google Scholar] [CrossRef]
- Liu, G.; Chater, K.F.; Chandra, G.; Niu, G.; Tan, H. Molecular Regulation of Antibiotic Biosynthesis in Streptomyces. Microbiol. Mol. Biol. Rev. 2013, 77, 112–143. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Li, Y.; Zheng, J.; Liu, N.; Zhang, J.; Tan, H. Important role of a LAL regulator StaR in the staurosporine biosynthesis and high-production of Streptomyces fradiae CGMCC 4.576. Sci. China Life Sci. 2019, 62, 1638–1654. [Google Scholar] [CrossRef]
- Yi, X.; Zhao, Q.; Tian, Z.; Jia, X.; Cao, W.; Liu, W.; He, Q.L. Insights into the Functionalization of the Methylsalicyclic Moiety during the Biosynthesis of Chlorothricin by Comparative Kinetic Assays of the Activities of Two KAS III-like Acyltransferases. Chin. J. Chem. 2019, 37, 821–826. [Google Scholar] [CrossRef]
- Khosla, C. Structures and Mechanisms of Polyketide Synthases. J. Org. Chem. 2009, 74, 6416–6420. [Google Scholar] [CrossRef]
- Staunton, J.; Weissman, K.J. Polyketide biosynthesis: A millennium review. Nat. Prod. Rep. 2001, 18, 380–416. [Google Scholar]
- Ruan, X.; Stassi, D.; Lax, S.A.; Katz, L. A second type-I PKS gene cluster isolated from Streptomyces hygroscopicus ATCC 29253, a rapamycin-producing strain. Gene 1997, 203, 1–9. [Google Scholar] [CrossRef]
- Austin, M.B.; Noel, J.P. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 2002, 20, 79–110. [Google Scholar]
- Fischbach, M.A.; Walsh, C.T. Assembly-Line Enzymology for Polyketide and Nonribosomal Peptide Antibiotics: Logic, Machinery, and Mechanisms. Chem. Rev. 2006, 106, 3468–3496. [Google Scholar] [CrossRef] [PubMed]
- Hertweck, C.; Luzhetskyy, A.; Rebets, Y.; Bechthold, A. Type II polyketide synthases: Gaining a deeper insight into enzymatic teamwork. Nat. Prod. Rep. 2007, 24, 162–190. [Google Scholar]
- Choi, K.H.; Heath, R.J.; Rock, C.O. beta-ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in branched-chain fatty acid biosynthesis. J. Bacteriol. 2000, 182, 365–370. [Google Scholar] [PubMed]
- Pan, H.; Tsai, S.-C.; Meadows, E.S.; Miercke, L.J.W.; Keatinge-Clay, A.T.; O’Connell, J.; Khosla, C.; Stroud, R.M. Crystal Structure of the Priming β-Ketosynthase from the R1128 Polyketide Biosynthetic Pathway. Structure 2002, 10, 1559–1568. [Google Scholar]
- Tsay, J.T.; Oh, W.; Larson, T.J.; Jackowski, S.; Rock, C.O. Isolation and characterization of the beta-ketoacyl-acyl carrier protein synthase III gene (fabH) from Escherichia coli K-12. J. Biol. Chem. 1992, 267, 6807–6814. [Google Scholar] [CrossRef]
- Zhang, Y.-M.; Rao, M.S.; Heath, R.J.; Price, A.C.; Olson, A.J.; Rock, C.O.; White, S.W. Identification and analysis of the acyl carrier protein (ACP) docking site on β-ketoacyl-ACP synthase III. J. Biol. Chem. 2001, 276, 8231–8238. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Lee, T.S.; Kobayashi, S.; Khosla, C. Ketosynthases in the Initiation and Elongation Modules of Aromatic Polyketide Synthases Have Orthogonal Acyl Carrier Protein Specificity. Biochemistry 2003, 42, 6588–6595. [Google Scholar] [CrossRef] [PubMed]
- Moore, B.S.; Hertweck, C. Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Nat. Prod. Rep. 2002, 19, 70–99. [Google Scholar] [PubMed]
- Bretschneider, T.; Zocher, G.; Unger, M.; Scherlach, K.; Stehle, T.; Hertweck, C. A ketosynthase homolog uses malonyl units to form esters in cervimycin biosynthesis. Nat. Chem. Biol. 2011, 8, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Florova, G.; Kazanina, G.; Reynolds, K.A. Enzymes Involved in Fatty Acid and Polyketide Biosynthesis in Streptomyces glaucescens: Role of FabH and FabD and Their Acyl Carrier Protein Specificity. Biochemistry 2002, 41, 10462–10471. [Google Scholar] [PubMed]
- Dunn, B.J.; Cane, D.E.; Khosla, C. Mechanism and Specificity of an Acyltransferase Domain from a Modular Polyketide Synthase. Biochemistry 2013, 52, 1839–1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Shi, T.; Ji, H.; Ali, I.; Huang, S.; Deng, Z.; Min, Q.; Bai, L.; Zhao, Y.; Zheng, J. Structural Insights into the Substrate Specificity of Acyltransferases from Salinomycin Polyketide Synthase. Biochemistry 2019, 58, 2978–2986. [Google Scholar] [CrossRef]
- Klopries, S.; Sundermann, U.; Schulz, F. Quantification of N-acetylcysteamine activated methylmalonate incorporation into polyketide biosynthesis. Beilstein J. Org. Chem. 2013, 9, 664–674. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.; Ji, J.; Zhou, Z.; Yu, J.; Zhu, H.; Su, Z.; Zhang, L.; Zheng, J. Structural and Functional Analysis of a Loading Acyltransferase from the Avermectin Modular POLYKETIDE Synthase. ACS Chem. Biol. 2015, 10, 1017–1025. [Google Scholar] [CrossRef]
- Kokkinidis, M.; Glykos, N.; Fadouloglou, V. Protein flexibility and enzymatic catalysis. Adv. Protein Chem. Struct. Biol. 2012, 87, 181–218. [Google Scholar]
- Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic. Acids Res. 2018, 46, W363–W367. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, J.; Yuan, M.; Feng, Y.; Wang, L.; Deng, Z.; Bai, L.; Zheng, J. Stereospecificity of Enoylreductase Domains from Modular Polyketide Synthases. ACS Chem. Biol. 2018, 13, 871–875. [Google Scholar] [CrossRef]
- Liu, C.; Yuan, M.; Xu, X.; Wang, L.; Keatinge-Clay, A.T.; Deng, Z.; Lin, S.; Zheng, J. Substrate-bound structures of a ketoreductase from amphotericin modular polyketide synthase. J. Struct. Biol. 2018, 203, 135–141. [Google Scholar] [PubMed]
- Riener, C.K.; Kada, G.; Gruber, H.J. Quick measurement of protein sulfhydryls with Ellman’s reagent and with 4,4′-dithiodipyridine. Anal. Bioanal. Chem. 2002, 373, 266–276. [Google Scholar] [PubMed]
- Abugrain, M.E.; Brumsted, C.J.; Osborn, A.R.; Philmus, B.; Mahmud, T. A highly promiscuous ß-ketoacyl-acp synthase (kas) III-like protein is involved in pactamycin biosynthesis. ACS Chem. Biol. 2017, 12, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Otwinowski, Z.; Minor, W. [20] Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997, 276, 307–326. [Google Scholar] [PubMed]
- Project, C.C. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 1994, 50, 760–763. [Google Scholar]
- Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2126–2132. [Google Scholar]
- DeLano, W.L. The PyMOL User’s Manual; DeLano Scientific: San Carlos, CA, USA, 2002; p. 452. [Google Scholar]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar]
- Case, D.; Ben-Shalom, I.; Brozell, S.; Cerutti, D.; Cheatham III, T.; Cruzeiro, V.; Darden, T.; Duke, R.; Ghoreishi, D.; Gilson, M. AMBER 2018; University of California: San Francisco, CA, USA, 2018. [Google Scholar]
- Rahman, M.U.; Rehman, A.U.; Liu, H.; Chen, H.-F. Inhibitory mechanism of 5-bromo-3-indoleacetic acid for non-structural-3 helicase hepatitis C virus with dynamics correlation network analysis. Comput. Biol. Chem. 2018, 77, 167–177. [Google Scholar]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar]
- Baron, R.; Vellore, N.A. LSD1/CoREST is an allosteric nanoscale clamp regulated by H3-histone-tail molecular recognition. Proc. Natl. Acad. Sci. USA 2012, 109, 12509–12514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Data Collection | ChlB3 |
---|---|
Wavelength (Å) | 0.9793 |
Space group | P212121 |
α, b, c (Å) | 99.473 186.583 189.750 |
Resolution (Å) | 50–3.1 |
Rmerge | 0.115 (0.589) |
I/σ I | 14.9 (3.7) |
CC1/2 | 0.884 |
Completeness (%) | 99.5 (99.9) |
Redundancy | 6.0 (5.9) |
Refinement statistics | |
Resolution (Å) | 50–3.1 |
Unique reflections | 74,294 |
Rwork/Rfree | 0.226/0.256 |
No. of atoms | |
Protein | 19057 |
B factor | |
Protein | 67 |
R.m.s.d. (Å) | |
Bond lengths (Å) | 0.01 |
Bond angles (o) | 1.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed, A.U.; Rahman, M.U.; Chen, H.-F.; Zheng, J. Structural Insight of KSIII (β-Ketoacyl-ACP Synthase)-like Acyltransferase ChlB3 in the Biosynthesis of Chlorothricin. Molecules 2022, 27, 6405. https://doi.org/10.3390/molecules27196405
Saeed AU, Rahman MU, Chen H-F, Zheng J. Structural Insight of KSIII (β-Ketoacyl-ACP Synthase)-like Acyltransferase ChlB3 in the Biosynthesis of Chlorothricin. Molecules. 2022; 27(19):6405. https://doi.org/10.3390/molecules27196405
Chicago/Turabian StyleSaeed, Asad Ullah, Mueed Ur Rahman, Hai-Feng Chen, and Jianting Zheng. 2022. "Structural Insight of KSIII (β-Ketoacyl-ACP Synthase)-like Acyltransferase ChlB3 in the Biosynthesis of Chlorothricin" Molecules 27, no. 19: 6405. https://doi.org/10.3390/molecules27196405
APA StyleSaeed, A. U., Rahman, M. U., Chen, H. -F., & Zheng, J. (2022). Structural Insight of KSIII (β-Ketoacyl-ACP Synthase)-like Acyltransferase ChlB3 in the Biosynthesis of Chlorothricin. Molecules, 27(19), 6405. https://doi.org/10.3390/molecules27196405