Effects of Environmental and Electric Perturbations on the pKa of Thioredoxin Cysteine 35: A Computational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Perturbed Matrix Method
2.2. Estimates of Helmholtz Free Energy and pKa
2.3. Principal Components Analysis
2.4. Computational Details
3. Results
pKa Calculation for Cysteine in Different Environments
4. Discussion and Conclusions
4.1. Inhibitor (TXNIP) Effect
4.2. Effects Induced by Static Electric Field and Temperature Perturbations
4.3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nordberg, J.; Arnér, E.S. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 2001, 31, 1287–1312. [Google Scholar] [CrossRef]
- Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radical. Bio. Med. 2014, 66, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Matsuzawa, A. Thioredoxin and redox signaling: Roles of the thioredoxin system in control of cell fate. Arch. Biochem. Biophys. 2017, 617, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Carvahlo, A.T.P.; Fernandes, P.A.; Ramos, M.J. Determination of the pKa between the Active Site Cysteines of Thioredoxin and DsbA. J. Comput. Chem. 2006, 27, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zhang, J.; Ballou, D.P.; Williams, C.H. Reactivity of thioredoxin as a protein thiol-disulfide oxidoreductase. Chem. Rev 2011, 111, 5768–5783. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Suh, H.W.; Jeon, Y.H.; Hwang, E.; Nguyen, L.T.; Yeom, J.; Lee, S.G.; Lee, C.; Kim, K.J.; Kang, B.S.; et al. The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein. Nat. Commun. 2014, 5, 2958. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.J.; Botero, A.; Hirota, K.; Bradbury, C.M.; Markovina, S.; Laszlo, A.; Spitz, D.R.; Goswami, P.C.; Yodoi, J.; Gius, D. Thioredoxin nuclear translocation and interaction with redox factor-1 activates the activator protein-1 transcription factor in response to ionizing radiation. Cancer Res. 2000, 60, 6688–6695. [Google Scholar]
- Junn, E.; Han, S.H.; Im, J.Y.; Yang, Y.; Cho, E.W.; Um, H.D.; Kim, D.K.; Lee, K.W.; Han, P.L.; Rhee, S.G.; et al. Vitamin D3 Up-Regulated Protein 1 Mediates Oxidative Stress via Suppressing the Thioredoxin Function. J. Immunol. 2000, 164, 6287–6295. [Google Scholar] [CrossRef]
- Alhawiti, N.M.; Al Mahri, S.; Aziz, M.A.; Malik, S.S.; Mohammad, S. TXNIP in Metabolic Regulation: Physiological Role and Therapeutic Outlook. CDT 2017, 18, 1095–1103. [Google Scholar] [CrossRef]
- Ben-Lulu, S.; Ziv, T.; Admon, A.; Weisman-Shomer, P.; Benhar, M. A substrate trapping approach identifies proteins regulated by reversible S-nitrosylation. Mol. Cell Proteomics 2014, 13, 2573–2583. [Google Scholar] [CrossRef]
- Cao, Z.; Mitchell, L.; Hsia, O.; Scarpa, M.; Caldwell, T.S.; Alfred, A.D.; Gennaris, A.; Collet, J.F.; Hartley, R.C.; Bulleid, N.J. Methionine sulfoxide reductase B3 requires resolving cysteine residues for full activity and can act as a stereospecific methionine oxidase. Biochem. J 2018, 475, 827–838. [Google Scholar] [CrossRef] [Green Version]
- Netto, L.E.S.; de Oliveira, M.A.; Monteiro, G.; Demasi, A.P.D.; Cussiol, J.R.R.; Discola, K.F.; Demasi, M.; Silva, G.M.; Alves, S.V.; Faria, V.G.; et al. Reactive cysteine in proteins: Protein folding, antioxidant defense, redox signaling and more. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2007, 146, 180–193. [Google Scholar] [CrossRef]
- Forman-Kay, J.; Clore, G.M.; Gronenborn, A.M. Relationship between Electrostatics and Redox Function in Human Thioredoxin: Characterization of pH Titration Shifts Using Two-Dimensional Homo- and Heteronuclear NMR. Biochemistry 1992, 31, 3442–3452. [Google Scholar] [CrossRef]
- Roos, G.; Foloppe, N.; Van Laer, K.; Wyns, L.; Nilsson, L.; Geerlings, P.; Messens, J. How thioredoxin dissociates its mixed disulfide. PLoS Comput. Biol. 2009, 5, e1000461. [Google Scholar] [CrossRef]
- Mossner, E.; Iwai, H.; Glockshuber, R. In£uence of the pKa value of the buried, active-site cysteine on the redox properties of thioredoxin-like oxidoreductases. FEBS Lett. 2000, 477, 21–26. [Google Scholar] [CrossRef]
- Aschi, M.; Spezia, R.; Di Nola, A.; Amadei, A. A first-principles method to model perturbed electronic wavefunctions: The effect of an external homogeneous electric field. Chem. Phys. Lett. 2001, 344, 374–380. [Google Scholar] [CrossRef]
- Zanetti-Polzi, L.; Del Galdo, S.; Daidone, I.; D’Abramo, M.; Barone, V.; Aschi, M.; Amadei, A. Extending the perturbed matrix method beyond the dipolar approximation: Comparison of different levels of theory. Phys. Chem. Chem. Phys. 2018, 20, 24369–24378. [Google Scholar] [CrossRef]
- Zanetti-Polzi, L.; Daidone, I.; Amadei, A. Fully Atomistic Multiscale Approach for pKa Prediction. J. Phys. Chem. B 2020, 124, 4712–4722. [Google Scholar] [CrossRef]
- Zanetti-Polzi, L.; Bortolotti, C.A.; Daidone, E.; Aschi, M.; Amadai, A.; Corni, S. A few key residues determine the high redox potential shift in azurin mutants. Org. Biomol. Chem. 2015, 13, 11003–11013. [Google Scholar] [CrossRef]
- Senn, H.M.; Thiel, W. QM/MM Methods for Biological Systems. In Atomistic Approaches in Modern Biology: From Quantum Chemistry to Molecular Simulations; Reiher, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 173–290. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Y.; Chen, Y.; Field, M.J.; Gao, J. QM/MM through the 1990s: The First Twenty Years of Method Development and Applications. Isr. J. Chem. 2014, 54, 1250–1263. [Google Scholar] [CrossRef] [Green Version]
- Nardi, A.N.; Olivieri, A.; D’Abramo, M. Rationalizing Sequence and Conformational Effects on the Guanine Oxidation in Different DNA Conformations. J. Phys. Chem. B 2022, 126, 5017–5023. [Google Scholar] [CrossRef]
- Segreto, G.E.; Alba, J.; Salvio, R.; D’Abramo, M. DNA cleavage by endonuclease I-DmoI: A QM/MM study and comparison with experimental data provide indications on the environmental effects. Theor. Chem. Acc. 2020, 139, 1–16. [Google Scholar] [CrossRef]
- Chen, C.G.; Nardi, A.N.; Giustini, M.; D’Abramo, M. Absorption behavior of doxorubicin hydrochloride in visible region in different environments: A combined experimental and computational study. Phys. Chem. Chem. Phys. 2022, 24, 12027–12035. [Google Scholar] [CrossRef]
- D’Annibale, V.; Nardi, A.N.; Amadei, A.; D’Abramo, M. Theoretical Characterization of the Reduction Potentials of Nucleic Acids in Solution. J. Chem. Theory Comput. 2021, 17, 1301–1307. [Google Scholar] [CrossRef]
- Hunenberger, P.; Reif, M. Single-Ion Solvation; Theoretical and Computational Chemistry Series; The Royal Society of Chemistry: Cambridge, UK, 2011; pp. 1–664. [Google Scholar] [CrossRef]
- Tissandier, M.D.; Cowen, K.A.; Feng, W.Y.; Gundlach, E.; Cohen, M.H.; Earhart, A.D.; Coe, J.V.; Tuttle, T.R. The Proton’s Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data. J. Phys. Chem. A 1998, 102, 7787–7794. [Google Scholar] [CrossRef]
- Kass, S.R.G.H.; Dahlke, G. The thiomethyl anion: Formation, reactivity, and thermodynamic properties. J. Am. Soc. Spectrom. 1990, 1, 366–371. [Google Scholar] [CrossRef]
- Daidone, I.; Amadei, A. Essential dynamics: Foundation and applications. WIREs Comput. Mol. Sci. 2012, 2, 762–770. [Google Scholar] [CrossRef]
- Becke, A.D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Rassolov, V.A.; Ratner, M.A.; Pople, J.A.; Redfern, P.C.; Curtiss, L.A. 6-31G* Basis Set for Third-Row Atoms. J. Comput. Chem. 2001, 22, 976–984. [Google Scholar] [CrossRef]
- Fernandes, P.A.; Ramos, M.J. Theoretical Insight into the Mechanism for Thiol/Disulfide Exchange. Chem. Eur. J. 2004, 10, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Kazachenko, A.S.; Akman, F.; Sagaama, A.; Issaoui, N.; Malyar, Y.N.; Vasilieva, N.Y.; Borovkova, V.S. Theoretical and experimental study of guar gum sulfation. J. Mol. Model. 2021, 27, 15. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, M.; Aschi, M.; Mazzuca, C.; Palleschi, A.; Amadei, A. Theoretical modelling of UV-Vis absorption and emission spectra in liquid state systems including vibrational and conformational effects: The vertical transition approximation. J. Chem. Phys. 2013, 139, 114102-1–114102-8. [Google Scholar] [CrossRef] [PubMed]
- Tirado-Rives, J.; Jorgensen, W.L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. J. Chem. Theory Comput. 2008, 4, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Freindorf, M.; Shao, Y.; Furlani, T.R.; Kong, J. Lennard–Jones parameters for the combined QM/MM method using the B3LYP/6-31G*/AMBER potential. J. Comput. Chem. 2005, 26, 1270–1278. [Google Scholar] [CrossRef] [PubMed]
- Ban, F.; Rankin, K.N.; Gauld, J.W.; Boyd, R.J. Recent applications of density functional theory calculations to biomolecules. Theor. Chem. Acc. 2002, 108, 1–11. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian~16 Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Pall, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- D’Abramo, M.; Orozco, M.; Amadei, A. Effects of local electric fields on the redox free energyof Supporting Informationngle stranded DNA. Chem. Commun. 2011, 47, 2646–2648. [Google Scholar] [CrossRef]
- Hagras, M.A.; Bellucci, M.A.G.G.; Marek, R.A.; Trout, B.L. Computational Modeling of the Disulfide Cross-Linking reaction. J. Phys. Chem. B 2020, 124, 9840–9851. [Google Scholar] [CrossRef]
- Kortemme, T.; Creighton, T.E. Ionisation of cysteine residues at the termini of model α-helical peptides. Relevance to unusual thiol pKa values in proteins of the thioredoxin family. J. Mol. Biol. 1995, 253, 799–812. [Google Scholar] [CrossRef]
- Roos, G.; Loverix, S.; Geerlings, P. Origin of the pKa perturbation of N-terminal cysteine in α- And 310-helices: A computational DFT study. J. Phys. Chem. B 2006, 110, 557–562. [Google Scholar] [CrossRef]
- Hol, W.G.J.; Van Duijnen, P.T.; Berendsen, H.J.C. The alpha-helix dipole and the properties of proteins. Nature 1978, 273, 443–446. [Google Scholar] [CrossRef]
- Sengupta, D.; Behera, R.N.; Smith, J.C.; Ullmann, G.M. The α Helix Dipole: Screened Out? Structure 2005, 13, 849–855. [Google Scholar] [CrossRef]
- Witt, A.C.; Lakshminarasimhan, M.; Remington, B.C.; Hasim, S.; Pozharski, E.; Wilson, M.A. Cysteine pKa Depression by a Protonated Glutamic Acid in Human DJ-1. Biochemistry 2008, 47, 7430–7440. [Google Scholar] [CrossRef]
- Dyson, H.J.; Tennant, L.L.; Holmgren, A. Proton-transfer effects in the active-site region of Escherichia coli thioredoxin using two-dimensional proton NMR. Biochemistry 1991, 30, 4262–4268. [Google Scholar] [CrossRef]
- Dyson, H.J.; Jeng, M.F.; Tennant, L.L.; Slaby, I.; Lindell, M.; Cui, D.S.; Kuprin, S.; Holmgren, A. Effects of Buried Charged Groups on Cysteine Thiol Ionization and Reactivity in Escherichia coli Thioredoxin: Structural and Functional Characterization of Mutants of Asp 26 and Lys 57. Biochemistry 1997, 36, 2622–2636. [Google Scholar] [CrossRef]
- Chivers, P.T.; Prehoda, K.E.; Volkman, B.F.; Kim, B.M.; Markley, J.L.; Raines, R.T. Microscopic pKa Values of Escherichia coli Thioredoxin. Biochemistry 1997, 36, 14985–14991. [Google Scholar] [CrossRef]
- Li, H.; Hanson, C.; Fuchs, J.A.; Woodward, C.; Thomas, G.J., Jr. Determination of the pK& Values of Active-Center Cysteines, Cysteines-32 and -35, in Escherichia coli Thioredoxin by Raman Spectroscopy. Biochemistry 1993, 32, 5800–5808. [Google Scholar]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD—Visual Molecular Dynamics. J. Mol. Graph. Model 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Amadei, A.; Marracino, P. Theoretical–computational modelling of the electric field effects on protein unfolding thermodynamics. RSC Adv. 2015, 5, 96551–96561. [Google Scholar] [CrossRef]
Molecule | (kJ/mol) | pKa | pKa | pKa (exp. data) |
---|---|---|---|---|
Cysteine in water | 1174.9 ± 3.9 | 8.2 | 0 | 8.3–8.8 [4,12,43,47] |
Cys 32 in TRX | 1147.9 ± 4.1 | 3.5 | −4.7 ± 1.0 | 5.5–10 [5,13,14,48,49] |
Cys 35 in TRX | 1147.9 ± 4.3 | 3.5 | −4.7 ± 1.0 | 7–14 [13,48,49,50,51] |
Cys 35 in TRX-TXNIP | 1161.2 ± 5.3 | 5.8 | −2.4 ± 1.1 | N.A. |
Molecule | Distance C35-C32 (nm) | Active Site (CGPC) Exposed Surface (nm) |
---|---|---|
TRX | 1.09 | 6.14 |
TRX-TXNIP | 0.40 | 5.24 |
Electric Field (V/nm) | (kJ/mol) | pKa | Mean Dipole Moment (D) | |
---|---|---|---|---|
0.00 | 1147.9 ± 4.3 | −4.7 ± 1.0 | 0 | 311.93 |
0.02 | 1128.5 ± 4.20 | −8.1 ± 0.1 | −3.4 | 332.23 |
0.04 | 1101.2 ± 8.7 | −12.8 ± 1.7 | −8.1 | 387.08 |
0.06 | 1089.8 ± 4.2 | −14.8 ± 1.7 | −10.1 | 403.23 |
0.08 | 1064.7 ± 12.92 | −19.2 ± 2.3 | −14.5 | 470.80 |
0.10 | 1070.4 ± 13.7 | −17.5 ± 2.5 | −12.8 | 427.02 |
0.12 | 1053.8 ± 11.5 | −21.1 ± 2.1 | −16.4 | 479.36 |
Temperature (K) | (kJ/mol) | pKa | |
---|---|---|---|
300 | 1147.9 ± 4.3 | −4.7 ± 1.0 | 0 |
310 | 1137.5 ± 2.7 | −6.6 ± 0.8 | −1.9 |
320 | 1137.7 ± 3.4 | −6.7 ± 0.8 | −2.0 |
330 | 1155.8 ± 6.4 | −3.8 ± 1.2 | +0.9 |
340 | 1136.6 ± 3.5 | −6.9 ± 0.8 | −2.2 |
350 | 1128.3 ± 7.6 | −8.1 ± 1.3 | −3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Annibale, V.; Fracassi, D.; Marracino, P.; D’Inzeo, G.; D’Abramo, M. Effects of Environmental and Electric Perturbations on the pKa of Thioredoxin Cysteine 35: A Computational Study. Molecules 2022, 27, 6454. https://doi.org/10.3390/molecules27196454
D’Annibale V, Fracassi D, Marracino P, D’Inzeo G, D’Abramo M. Effects of Environmental and Electric Perturbations on the pKa of Thioredoxin Cysteine 35: A Computational Study. Molecules. 2022; 27(19):6454. https://doi.org/10.3390/molecules27196454
Chicago/Turabian StyleD’Annibale, Valeria, Donatella Fracassi, Paolo Marracino, Guglielmo D’Inzeo, and Marco D’Abramo. 2022. "Effects of Environmental and Electric Perturbations on the pKa of Thioredoxin Cysteine 35: A Computational Study" Molecules 27, no. 19: 6454. https://doi.org/10.3390/molecules27196454
APA StyleD’Annibale, V., Fracassi, D., Marracino, P., D’Inzeo, G., & D’Abramo, M. (2022). Effects of Environmental and Electric Perturbations on the pKa of Thioredoxin Cysteine 35: A Computational Study. Molecules, 27(19), 6454. https://doi.org/10.3390/molecules27196454