Multivariate Statistical Analysis for Mutual Dependence Assessment of Selected Polyphenols, Organic Acids and Metals in Cool-Climate Wines
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Reagents, Chemicals and Standards
3.2. Samples
3.3. Instrumentation
3.4. Chemometric Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guidi, G.C.; Lippi, G.; Franchini, M. Red Wine and Cardiovascular Health the “French Paradox” Revisited. Int. J. Wine Res. 2010, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Płotka-Wasylka, J.; Simeonov, V.; Morrison, C.; Namieśnik, J. Impact of Selected Parameters of the Fermentation Process of Wine and Wine Itself on the Biogenic Amines Content: Evaluation by Application of Chemometric Tools. Microchem. J. 2018, 142, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine Polyphenol Content and Its Influence on WineQuality and Properties: A Review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef] [PubMed]
- La Torre, G.L.; la Pera, L.; Rando, R.; lo Turco, V.; di Bella, G.; Saitta, M.; Dugo, G. Classification of Marsala Wines According to Their Polyphenol, Carbohydrate and Heavy Metal Levels Using Canonical Discriminant Analysis. Food Chem. 2008, 110, 729–734. [Google Scholar] [CrossRef]
- Faustino, R.S.; Sobrattee, S.; Edel, A.L.; Pierce, G.N. Comparative Analysis of the Phenolic Content of Selected Chilean, Canadian and American Merlot Red Wines. Mol. Cell. Biochem. 2003, 249, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Uchida Katayama, F.C.; de Castro, I.A. Characterization of Red Wines from South America Based on Sensory Properties and Antioxidant Activity. J. Sci. Food Agric. 2012, 92, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Robles, A.; Fabjanowicz, M.; Chmiel, T.; Płotka-Wasylka, J. Determination and Identification of Organic Acids in Wine Samples. Problems and Challenges. TrAC Trends Anal. Chem. 2019, 120, 115630. [Google Scholar] [CrossRef]
- Shahrzad, S.; Aoyagi, K.; Winter, A.; Koyama, A.; Bitsch, I. Pharmacokinetics of Gallic Acid and Its Relative Bioavailability from Tea in Healthy Humans. J. Nutr. 2001, 131, 1207–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortz, J.D.; Kirschner, M.I. Methods and Compositions for Enhancing Iron Absorption. Patent Application Publication Pub. No. US 2016/0022631 A1, 28 January 2016. [Google Scholar]
- Alkış, İ.M.; Öz, S.; Atakol, A.; Yılmaz, N.; Anlı, R.E.; Atakol, O. Investigation of Heavy Metal Concentrations in Some Turkish Wines. J. Food Compos. Anal. 2014, 33, 105–110. [Google Scholar] [CrossRef]
- BAI, Y.; SONG, F.; CHEN, M.; XING, J.; LIU, Z.; LIU, S. Characterization of the Rutin-Metal Complex by Electrospray Ionization Tandem Mass Spectrometry. Anal. Sci. 2004, 20, 1147–1151. [Google Scholar] [CrossRef] [PubMed]
- Esparza, I.; Salinas, I.; Caballero, I.; Santamaría, C.; Calvo, I.; García-Mina, J.M.; Fernández, J.M. Evolution of Metal and Polyphenol Content over a 1-Year Period of Vinification: Sample Fractionation and Correlation between Metals and Anthocyanins. Anal. Chim. Acta 2004, 524, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Płotka-Wasylka, J.; Frankowski, M.; Simeonov, V.; Polkowska, Ż.; Namieśnik, J. Determination of Metals Content in Wine Samples by Inductively Coupled Plasma-Mass Spectrometry. Molecules 2018, 23, 2886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massart, D.L.; Kaufman, L. The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis; Elsevier: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Shih, M.-K.; Tain, Y.-L.; Cheng, C.-M.; Hsu, C.-N.; Chen, Y.-W.; Huang, H.-T.; Chang, C.-I.; Hou, C.-Y. Separation and Identification of Resveratrol Butyrate Ester Complexes and Their Bioactivity in HepG2 Cell Models. Int. J. Mol. Sci. 2021, 22, 13539. [Google Scholar] [CrossRef] [PubMed]
- Fabjanowicz, M.; Płotka-Wasylka, J.; Namieśnik, J. Detection, Identification and Determination of Resveratrol in Wine. Problems and Challenges. TrAC Trends Anal. Chem. 2018, 103, 21–33. [Google Scholar] [CrossRef]
- Robles, A.D.; Fabjanowicz, M.; Płotka-Wasylka, J.; Konieczka, P. Organic Acids and Polyphenols Determination in Polish Wines by Ultrasound-Assisted Solvent Extraction of Porous Membrane-Packed Liquid Samples. Molecules 2019, 24, 4376. [Google Scholar] [CrossRef] [PubMed]
- Demšar, J.; Curk, T.; Erjavec, A.; Gorup, Č.; Hočevar, T.; Milutinovič, M.; Možina, M.; Polajnar, M.; Toplak, M.; Starič, A.; et al. Orange: Data mining toolbox in python. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. Available online: http://www.jmlr.org/papers/v12/pedregosa11a.html (accessed on 28 September 2022).
- Robnik-Šikonja, M.; Kononenko, I. An Adaptation of Relief for Attribute Estimation in Regression. In Proceedings of the Machine Learning: Proceedings of the Fourteenth International Conference (ICML’97), Nashville, TN, USA,, 8–12 July 1997; Volume 5, pp. 296–304. [Google Scholar]
Parameters | ICP-MS |
---|---|
Radio frequency power generator [kW] | 1.2 |
Gas type | Argon |
Plasma gas flow rate [L min−1] | 8.0 |
Auxiliary gas flow rate [L min−1] | 1.1 |
Nebulization gas flow rate [L min−1] | 0.7 |
Torch | Mini-torch (quartz) |
Nebulizer | Coaxial |
Spray chamber temperature [°C] | 3 |
Drain | Gravity fed |
Internal standard | Automatic addition |
Sampling depth [mm] | 5 |
Collision cell gas flow (He) [mL min−1] | 6.0 |
Cell voltage [V] | −21 |
Energy filter [V] | 7.0 |
Number of replicates | 3 |
Integration conditions/number of scans | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabjanowicz, M.; Simeonov, V.; Frankowski, M.; Wojnowski, W.; Płotka-Wasylka, J. Multivariate Statistical Analysis for Mutual Dependence Assessment of Selected Polyphenols, Organic Acids and Metals in Cool-Climate Wines. Molecules 2022, 27, 6566. https://doi.org/10.3390/molecules27196566
Fabjanowicz M, Simeonov V, Frankowski M, Wojnowski W, Płotka-Wasylka J. Multivariate Statistical Analysis for Mutual Dependence Assessment of Selected Polyphenols, Organic Acids and Metals in Cool-Climate Wines. Molecules. 2022; 27(19):6566. https://doi.org/10.3390/molecules27196566
Chicago/Turabian StyleFabjanowicz, Magdalena, Vasil Simeonov, Marcin Frankowski, Wojciech Wojnowski, and Justyna Płotka-Wasylka. 2022. "Multivariate Statistical Analysis for Mutual Dependence Assessment of Selected Polyphenols, Organic Acids and Metals in Cool-Climate Wines" Molecules 27, no. 19: 6566. https://doi.org/10.3390/molecules27196566
APA StyleFabjanowicz, M., Simeonov, V., Frankowski, M., Wojnowski, W., & Płotka-Wasylka, J. (2022). Multivariate Statistical Analysis for Mutual Dependence Assessment of Selected Polyphenols, Organic Acids and Metals in Cool-Climate Wines. Molecules, 27(19), 6566. https://doi.org/10.3390/molecules27196566