Effects of Hydrogen Peroxide on In Vitro Cultures of Tea (Camellia sinensis L.) Grown in the Dark and in the Light: Morphology, Content of Malondialdehyde, and Accumulation of Various Polyphenols
Abstract
:1. Introduction
2. Results
2.1. Morphophysiological Characteristics of Callus Cultures of the Tea Plant
2.2. Malondialdehyde Content in Callus Cultures of the Tea Plant
2.3. The Content of Phenolic Compounds in Callus Cultures of the Tea Plant
2.4. The Content of Flavans in Callus Cultures of the Tea Plant
2.5. The Content of Free and Bound Proanthocyanidins in Callus Cultures of the Tea Plant
2.6. The Content of Lignin in Tea Callus Cultures Grown in the Dark or in the Light
3. Discussion
3.1. Morphophysiological Characteristics of Crops
3.2. Content of Malondialdehyde
3.3. The Total Phenolic Compounds
3.4. Flavan Content
3.5. Content of Proanthocyanidins
3.6. Lignin Content
4. Materials and Methods
4.1. Tea Tissue Culture
4.2. Determination of Morphophysiological Characteristics of Callus Cultures
4.3. Determination of Water Content in Callus Cultures
4.4. Determination of the Level of Lipid Peroxidation
4.5. Extraction of Phenolic Compounds from Plant Material
4.6. Determination of the Total Content of Phenolic Compounds
4.7. Determination of Flavan Content
4.8. Determination of the Content of Soluble Proanthocyanidins
4.9. Determination of the Content of Insoluble (Bound) Proanthocyanidins
4.10. Determination of Lignin Content
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Espinosa-Leal, C.; Puente-Garza, C.; García-Lara, S. In vitro plant tissue culture: Means for production of biological active compounds. Planta 2018, 248, 1–18. [Google Scholar] [CrossRef]
- Jan, M.; Scarfò, I.; Larson, R.; Walker, A.; Schmidts, A.; Guirguis, A.; Ebert, B. Reversible ON-and OFF-switch chimeric antigen receptors controlled by lenalidomide. Sci. Transl. Med. 2021, 13, eabb6295. [Google Scholar] [CrossRef]
- Panda, S.; Kazachkova, Y.; Aharoni, A. Catch-22 in specialized metabolism: Balancing defense and growth. J. Exp. Bot. 2021, 72, 6027–6041. [Google Scholar] [CrossRef]
- Lariguet, P.; Ranocha, P.; De Meyer, M.; Barbier, O.; Penel, C.; Dunand, C. Identification of a H2O2 signalling pathway in the control of light-dependent germination in Arabidopsis. Planta 2013, 238, 381–395. [Google Scholar] [CrossRef]
- Jamaludin, R.; Mat, N.; Mohd, K.; Badaluddin, N.; Mahmud, K.; Sajili, M.; Khandaker, M. Influence of exogenous hydrogen peroxide on plant physiology, leaf anatomy and rubisco gene expression of the Ficus deltoidea Jack var. Deltoidea. Agronomy 2020, 10, 497. [Google Scholar] [CrossRef] [Green Version]
- Guler, N.; Pehlivan, N.; Karaoglu, S.; Guzel, S.; Bozdeveci, A. Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defense in maize seedlings. Acta Physiol. Plant 2016, 38, 132. [Google Scholar] [CrossRef]
- Nazir, F.; Fariduddin, Q.; Khan, T. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere 2020, 252, 126486. [Google Scholar] [CrossRef]
- Khan, T.; Yusuf, M.; Fariduddin, Q. Hydrogen peroxide in regulation of plant metabolism: Signalling and its effect under abiotic stress. Photosynthetica 2018, 56, 1237–1248. [Google Scholar] [CrossRef]
- Černý, M.; Habánová, H.; Berka, M.; Luklová, M.; Brzobohatý, B. Hydrogen peroxide: Its role in plant biology and crosstalk with signaling networks. Int. J. Mol. Sci. 2018, 19, 2812. [Google Scholar] [CrossRef] [Green Version]
- Smirnoff, N.; Arnaud, D. Hydrogen peroxide metabolism and functions in plants. New Phytol. 2019, 221, 1197–1214. [Google Scholar] [CrossRef] [Green Version]
- Nurnaeimah, N.; Mat, N.; Suryati Mohd, K.; Badaluddin, N.; Yusoff, N.; Sajili, M.; Khandaker, M. The effects of hydrogen peroxide on plant growth, mineral accumulation, as well as biological and chemical properties of Ficus deltoidea. Agronomy 2020, 10, 599. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, M.; Pandey, S.; Tiwari, A.; Tiwari, B. Plastid-mediated singlet oxygen in regulated cell death. Plant Biol. 2021, 23, 686–694. [Google Scholar] [CrossRef]
- Ślesak, H.; Popielarska-Konieczna, M.; Góralski, G. Morphological and histological aspects of 2, 4-D effects on rape explants (Brassica napus L. cv. Kana) cultured in vitro. Acta Biol. Crac. Ser. Bot. 2005, 47, 219–226. [Google Scholar]
- Forman, E.; Herbert, J.; Moitra, E.; Yeomans, P.; Geller, P. A randomized controlled effectiveness trial of acceptance and commitment therapy and cognitive therapy for anxiety and depression. Behav. Modif. 2007, 31, 772–799. [Google Scholar] [CrossRef] [PubMed]
- Mubarakshina, M.; Ivanov, B.; Naydov, I.; Hillier, W.; Badger, M.; Krieger-Liszkay, A. Production and diffusion of chloroplastic H2O2 and its implication to signalling. J. Exp. Bot. 2010, 61, 3577–3587. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Rodríguez, M.; Ocaña, B.; Acosta-Suárez, M.; Roque, B.; Hernández, M.; Cruz-Martín, M. Efecto de la aplicación del H2O2 durante la interacción ‘Grande naine’-Mycosphaerella fijiensis. Biotecnol. Vegetal. 2017, 17, 153–159. [Google Scholar]
- Wrzaczek, M. Negative feedback loop controls ROS production in plant immunity. Mol. Plant 2021, 14, 1221–1222. [Google Scholar] [CrossRef]
- Cheynier, V.; Comte, G.; Davies, K.; Lattanzio, V.; Martens, S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Wagay, N.A.; Lone, R.; Rafiq, S.; Bashir, S.U. Phenolics: A game changer in the life cycle of plants. In Plant Phenolics in Sustainable Agriculture; Lone, R., Shuab, R., Kamili, A., Eds.; Springer: Singapore, 2020; pp. 241–275. [Google Scholar]
- Stiller, A.; Garrison, K.; Gurdyumov, K.; Kenner, J.; Yasmin, F.; Yates, P.; Song, B.H. From fighting critters to saving lives: Polyphenols in plant defense and human health. Int. J. Mol. Sci. 2021, 22, 8995. [Google Scholar] [CrossRef] [PubMed]
- Vuolo, M.; Lima, V.; Junior, M. Phenolic compounds: Structure, classification, and antioxidant power. In Bioactive Compounds, Health Benefits and Potential Applications; Campos, M.R.S., Ed.; Elsevier: Sawston, Cambridge, UK, 2019; pp. 33–50. [Google Scholar]
- Soto-Hernández, M.; García-Mateos, R.; Palma-Tenango, M. (Eds.) Plant Physiological Aspects of Phenolic Compounds; IntechOpen: London, UK, 2019; p. 120. [Google Scholar]
- Mihailović, V.; Katanić Stanković, J.S.; Mihailović, N. Phenolic compounds diversity of Teucrium species. In The Teucrium Species: Biology and Applications; Stanković, M., Ed.; Springer Nature: Cham, Switzerland, 2020; pp. 143–177. [Google Scholar]
- Zaprometov, M. Specialized functions of phenolic compounds in plants. Russ. J. Plant Physiol. 1993, 40, 921–931. [Google Scholar]
- Borovaya, S.; Klykov, A. Some aspects of flavonoid biosynthesis and accumulation in buckwheat plants. Plant Biotechnol. Rep. 2020, 14, 213–225. [Google Scholar] [CrossRef]
- Bączek, M.; Zagańczyk-Bączek, M.; Szpringer, M.; Jaroszyński, A.; Wożakowska-Kapłon, B. Students’ perception of online learning during the COVID-19 pandemic: A survey study of Polish medical students. Medicine 2021, 100, e24821. [Google Scholar] [CrossRef]
- Harborne, J.; Williams, C. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, B.; Li, J.; Tang, H.; Tang, J.; Yang, Z. Formation and change of chloroplast-located plant metabolites in response to light conditions. Int. J. Mol. Sci. 2018, 19, 654. [Google Scholar] [CrossRef] [Green Version]
- Fitriansyah, F. Efek komunikasi massa pada khalayak (studi deskriptif pengguna media sosial dalam membentuk perilaku remaja. Cakrawala-J. Hum. 2018, 18, 171–178. [Google Scholar]
- Watson, R.; Preedy, V.; Zibadi, S. Polyphenols: Prevention and Treatment of Human Disease; Elsevier: London, UK, 2018; p. 466. [Google Scholar]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Smetanska, I. Sustainable production of polyphenols and antioxidants by plant in vitro cultures. In Bioprocessing of Plant In Vitro Systems; Springer: Cham, Switzerland, 2018; pp. 225–269. [Google Scholar]
- Coelho, A.; Souza, C.; Bertolucci, S.; Carvalho, A.; Santos, G.; Oliveira, T.; Marques, É.; Salimena, J.; Pinto, J. Wavelength and light intensity enhance growth, phytochemical contents and antioxidant activity in micropropagated plantlets of Urtica dioica L. Plant Cell Tissue Organ Cult. 2021, 145, 59–74. [Google Scholar] [CrossRef]
- Guerriero, G.; Berni, R.; Muñoz-Sanchez, J.; Apone, F.; Abdel-Salam, E.; Qahtan, A.; Alatar, A.; Cantini, C.; Cai, G.; Hausman, J.-F.; et al. Production of plant secondary metabolites: Examples, tips and suggestions for biotechnologists. Genes 2018, 9, 309. [Google Scholar] [CrossRef] [Green Version]
- Salem, M.; Perez de Souza, L.; Serag, A.; Fernie, A.; Farag, M.; Ezzat, S.; Alseekh, S. Metabolomics in the context of plant natural products research: From sample preparation to metabolite analysis. Metabolites 2020, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- Hasanuzzaman, M.; Bhuyan, B.; Zulfiqar, F.; Raza, A.; Mohsin, S.; Mahmud, J.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Zaid, A.; Mohammad, F.; Fariduddin, Q. Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint (Mentha arvensis L.). Physiol. Mol. Biol. Plants 2020, 26, 25–39. [Google Scholar] [CrossRef]
- Namita, P.; Mukesh, R.; Vijay, K. Camellia sinensis (green tea): A review. Glob. J. Pharmacol. 2012, 6, 52–59. [Google Scholar]
- Zeng, L.; Zhou, X.; Liao, Y.; Yang, Z. Roles of specialized metabolites in biological function and environmental adaptability of tea plant (Camellia sinensis) as a metabolite studying model. J. Adv. Res. 2021, 34, 159–171. [Google Scholar] [CrossRef]
- Bansal, S.; Choudhary, S.; Sharma, M.; Kumar, S.; Lohan, S.; Bhardwaj, V.; Syan, N.; Jyoti, S. Tea: A native source of antimicrobial agents. Food Res. Int. 2013, 53, 568–584. [Google Scholar] [CrossRef]
- Preeti, A.; Abhishek, D.; Guarve, K. Green tea: Chemical composition, biological effects and health benefits. J. Pharm. Pharmacol. 2019, 5, 227–234. [Google Scholar]
- Liao, Y.; Zhou, X.; Zeng, L. How does tea (Camellia sinensis) produce specialized metabolites which determine its unique quality and function: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 3751–3767. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jiang, H.; Zhao, Y.; Li, X.; Dai, X.; Zhuang, J.; Zhu, M.; Jiang, X.; Wang, P.; Gao, L.; et al. Three Camellia sinensis glutathione S-transferases are involved in the storage of anthocyanins, flavonols, and proanthocyanidins. Planta 2019, 250, 1163–1175. [Google Scholar] [CrossRef]
- Bajkacz, S.; Adamek, J.; Sobska, A. Application of deep eutectic solvents and ionic liquids in the extraction of catechins from tea. Molecules 2020, 14, 3216. [Google Scholar] [CrossRef]
- Shibasaki-Kitakawa, N.; Takeishi, J.; Yonemoto, T. Improvement of catechin productivity in suspension cultures of tea callus cells. Biotechnol. Prog. 2003, 19, 655–658. [Google Scholar] [CrossRef]
- Zagoskina, N.; Goncharuk, E.; Alyavina, A. Effect of cadmium on the phenolic compounds formation in the callus cultures derived from various organs of the tea plant. Russ. J. Plant Physiol. 2007, 54, 237–243. [Google Scholar] [CrossRef]
- Wang, J.; Duncan, D.; Shi, Z.; Zhang, B. WEB-based gene set analysis toolkit (WebGestalt). Nucl. Acids Res. 2013, 41, W77–W83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maliński, M.; Kikowska, M.; Soluch, A.; Kowalczyk, M.; Stochmal, A.; Thiem, B. Phytochemical screening, phenolic compounds and antioxidant activity of biomass from Lychnis flos-cuculi L. In vitro cultures and intact plants. Plants 2021, 10, 206–224. [Google Scholar] [PubMed]
- Muraseva, D.; Kostikova, V. In vitro propagation of Spiraea betulifolia subsp. aemiliana (Rosaceae) and comparative analysis of phenolic compounds of microclones and intact plants. Plant. Cell Tissue Organ Cult. 2021, 144, 493–504. [Google Scholar]
- Ramirez-Estrada, K.; Vidal-Limon, H.; Hidalgo, D.; Moyano, E.; Golenioswki, M.; Cusidó, R.M.; Palazon, J. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 2016, 21, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahammed, G.; Li, X. Hormonal regulation of health-promoting compounds in tea (Camellia sinensis L.). Plant Physiol. Biochem. 2022, 185, 390–400. [Google Scholar] [CrossRef]
- Wawrosch, C.; Zotchev, S. Production of bioactive plant secondary metabolites through in vitro technologies—Status and outlook. Appl. Microbiol. Biotechnol. 2021, 105, 6649–6668. [Google Scholar] [CrossRef]
- Evans, D.; Coleman, J.; Kearns, A. Plant Cell Culture; Taylor and Francis: London, UK, 2020; p. 208. [Google Scholar]
- Zagoskina, N.V.; Dubravina, G.A.; Zaprometov, M.N. The specific features of chloroplasts and phenolic compound accumulation in photomixotrophic tea callus cultures. Russ. J. Plant Physiol. 2000, 47, 468–473. [Google Scholar]
- Doyle, S.; Diamond, M.; McCabe, P. Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures. J. Exp. Bot. 2010, 61, 473–482. [Google Scholar] [CrossRef]
- Zubova, M.; Nechaeva, T.; Kartashov, A.; Zagoskina, N. Regulation of the phenolic compounds accumulation in the tea-plant callus culture with a separate and combined effect of light and cadmium ions. Biol. Bull. 2020, 47, 593–604. [Google Scholar] [CrossRef]
- Agami, R.; Mohamed, G. Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicol. Environ. Saf. 2013, 94, 164–171. [Google Scholar] [CrossRef]
- Schmid-Siegert, E.; Stepushenko, O.; Glauser, G.; Farmer, E. Membranes as structural antioxidants: Recycling of malondialdehyde to its source in oxidation-sensitive chloroplast fatty acids. J. Biol. Chem. 2016, 291, 13005–13013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheeseman, J. Hydrogen peroxide and plant stress: A challenging relationship. Plant Stress. 2007, 1, 4–15. [Google Scholar]
- Sharma, K.; Bari, S.S.; Singh, H.P. Biotransformation of tea catechins into theaflavins with immobilized polyphenol oxidase. J. Mol. Catal. B Enzym. 2009, 56, 253–258. [Google Scholar] [CrossRef]
- Engwa, G.A. Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases. In Phytochemicals: Source of Antioxidants and Role in Disease Prevention; BoD–Books on Demand; Godfrey Okoye University: Enugu, Nigeria, 2018; Volume 7, pp. 49–74. [Google Scholar]
- Chobot, V.; Hadacek, F.; Bachmann, G.; Weckwerth, W.; Kubicova, L. Pro- and antioxidant activity of three selected flavan type flavonoids: Catechin, eriodictyol and taxifolin. Int. J. Mol. Sci. 2016, 17, 1986. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Liu, Y.; Wu, Y.; Tan, H.; Meng, F.; Wang, Y.; Li, M.; Zhao, L.; Liu, L.; Quian, Y.; et al. Analysis of accumulation patterns and preliminary study on the condensation mechanism of proanthocyanidins in the tea plant [Camellia sinensis]. Sci. Rep. 2015, 5, 8742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ossipova, S.; Ossipov, V.; Haukioja, E.; Loponen, J.; Pihlaja, K. Proanthocyanidins of mountain birch leaves: Quantification and properties. Phytochem. Anal. 2001, 12, 128–133. [Google Scholar] [CrossRef]
- Suvanto, J.; Karppinen, K.; Riihinen, K.; Jaakola, L.; Salminen, J.P. Changes in the proanthocyanidin composition and related gene expression in bilberry (Vaccinium myrtillus L.) tissues. J. Agric. Food Chem. 2020, 68, 7378–7386. [Google Scholar] [CrossRef]
- Zentgraf, U.; Andrade-Galan, A.; Bieker, S. Specificity of H2O2 signaling in leaf senescence: Is the ratio of H2O2 contents in different cellular compartments sensed in Arabidopsis plants? Cell. Mol. Biol. Lett. 2022, 27, 4. [Google Scholar] [CrossRef]
- Kolupaev, Y.; Karpets, Y.; Kabashnikova, L. Antioxidative system of plants: Cellular compartmentalization, protective and signaling functions, mechanisms of regulation. Appl. Biochem. Microbiol. 2019, 55, 441–459. [Google Scholar] [CrossRef]
- Olowolaju, E. Impact of hydrogen peroxide on the secondary metabolites, enzyme activities and photosynthetic pigment accumulation of Vigna unguiculata L. (Walp). Not. Sci. Biol. 2019, 11, 391–395. [Google Scholar] [CrossRef] [Green Version]
- Zaprometov, M.; Nikolaeva, T. Chloroplasts isolated from kidney bean leaves are capable of phenolic compound biosynthesis. Russ. J. Plant Physiol. 2003, 50, 623–626. [Google Scholar] [CrossRef]
- Chen, L.; Hu, B.; Qin, Y.; Hu, G.; Zhao, J. Advance of the negative regulation of anthocyanin biosynthesis by MYB transcription factors. Plant Physiol. Biochem. 2019, 136, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Albert, N.; Lafferty, D.; Moss, S.; Davies, K. Flavonoids–flowers, fruit, forage and the future. J. R. Soc. N. Z. 2022, 1–28. [Google Scholar] [CrossRef]
- Nechaeva, T.L.; Nikolaeva, T.N.; Zagoskina, N.V. Salicylic and hydroxybenzoic acids affect the accumulation of phenolic compounds in tea-plant cultures in vitro. Biol. Bull. Russ. Acad. Sci. 2020, 47, 374–380. [Google Scholar] [CrossRef]
- Šamec, D.; Karalija, E.; Šola, I.; Vujcic Bok, V.; Salopek-Sondi, B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Poudel, A.; Navathe, S.; Chand, R.; Mishra, V.K.; Singh, P.K.; Joshi, A.K. Hydrogen peroxide prompted lignification affects pathogenicity of hemi-biotrophic pathogen Bipolaris sorokiniana to wheat. Plant Pathol. 2019, 35, 287. [Google Scholar] [CrossRef]
- Tomilova, S.V.; Kochkin, D.V.; Tyurina, T.M.; Glagoleva, E.S.; Labunskaya, E.A.; Galishev, B.A.; Nosov, A.M. Growth and biosynthetic profiles of callus and suspension cell cultures of two rare foxglove species, Digitalis grandiflora Mill. and D. ciliata Trautv. Plant Cell Tissue Organ Cult. (PCTOC) 2022, 149, 213–224. [Google Scholar] [CrossRef]
- Senthilkumar, M.; Amaresan, N.; Sankaranarayanan, A. Estimation of malondialdehyde (MDA) by thiobarbituric acid (TBA) assay. In Plant-Microbe Interactions; Springer Protocols Handbooks; Humana Press: New York, NY, USA, 2021; pp. 103–105. [Google Scholar]
- Tsypurskaya, E.; Nikolaeva, T.; Lapshin, P.; Nechaeva, T.; Yuorieva, N.; Baranova, E.; Zagoskina, N. Response of transgenic potato plants expressing heterologous genes of∆ 9-or∆ 12-acyl-lipid desaturases to Phytophthora infestans infection. Plants 2022, 11, 288. [Google Scholar] [CrossRef]
- Olenichenko, N.; Zagoskina, N. Response of winter wheat to cold: Production of phenolic compounds and L-phenylalanine ammonia lyase activity. Appl. Biochem. Microbiol. 2005, 41, 600–603. [Google Scholar] [CrossRef]
- Al-Shwaiyat, M.; Denisenko, T.; Miekh, Y.; Vishnikin, A. Spectrophotometric determination of polyphenols in green teas with 18-molybdodiphosphate. Chem. Chem. Technol. 2018, 12, 135–142. [Google Scholar] [CrossRef]
- Nikolaeva, T.; Lapshin, P.; Zagoskina, N. Method for determining the total content of phenolic compounds in plant extracts with folin-denis reagent and folin-chocalteu reagent: Modification and comparison. Khimiya Rastit. Syr’ya 2021, 2, 291–299. [Google Scholar] [CrossRef]
- Nikolaeva, T.; Zagoskina, N.; Zaprometov, M. Production of phenolic compounds in callus cultures of tea plant under the effect of 2, 4-D and NAA. Russ. J. Plant Physiol. 2009, 56, 45–49. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goncharuk, E.A.; Zubova, M.Y.; Nechaeva, T.L.; Kazantseva, V.V.; Gulevich, A.A.; Baranova, E.N.; Lapshin, P.V.; Katanskaya, V.M.; Aksenova, M.A.; Zagoskina, N.V. Effects of Hydrogen Peroxide on In Vitro Cultures of Tea (Camellia sinensis L.) Grown in the Dark and in the Light: Morphology, Content of Malondialdehyde, and Accumulation of Various Polyphenols. Molecules 2022, 27, 6674. https://doi.org/10.3390/molecules27196674
Goncharuk EA, Zubova MY, Nechaeva TL, Kazantseva VV, Gulevich AA, Baranova EN, Lapshin PV, Katanskaya VM, Aksenova MA, Zagoskina NV. Effects of Hydrogen Peroxide on In Vitro Cultures of Tea (Camellia sinensis L.) Grown in the Dark and in the Light: Morphology, Content of Malondialdehyde, and Accumulation of Various Polyphenols. Molecules. 2022; 27(19):6674. https://doi.org/10.3390/molecules27196674
Chicago/Turabian StyleGoncharuk, Evgenia A., Maria Yu. Zubova, Tatiana L. Nechaeva, Varvara V. Kazantseva, Alexander A. Gulevich, Ekaterina N. Baranova, Petr V. Lapshin, Vera M. Katanskaya, Maria A. Aksenova, and Natalia V. Zagoskina. 2022. "Effects of Hydrogen Peroxide on In Vitro Cultures of Tea (Camellia sinensis L.) Grown in the Dark and in the Light: Morphology, Content of Malondialdehyde, and Accumulation of Various Polyphenols" Molecules 27, no. 19: 6674. https://doi.org/10.3390/molecules27196674
APA StyleGoncharuk, E. A., Zubova, M. Y., Nechaeva, T. L., Kazantseva, V. V., Gulevich, A. A., Baranova, E. N., Lapshin, P. V., Katanskaya, V. M., Aksenova, M. A., & Zagoskina, N. V. (2022). Effects of Hydrogen Peroxide on In Vitro Cultures of Tea (Camellia sinensis L.) Grown in the Dark and in the Light: Morphology, Content of Malondialdehyde, and Accumulation of Various Polyphenols. Molecules, 27(19), 6674. https://doi.org/10.3390/molecules27196674