Identification and Quantification of Anthocyanin and Catechin Compounds in Purple Tea Leaves and Flakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Tea Samples
2.3. Analysis of Nutrients
2.4. Analysis of Anthocyanins
2.5. Analysis of Catechins
2.6. Statistical Analysis
3. Results and Discussion
3.1. Nutrient Content
3.2. Composition of Anthocyanins
3.3. Composition of Catechins
3.4. Other Bioactive Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- FAO. Tea | FAO | Food and Agriculture Organization of the United Nations. 2022. Available online: https://www.fao.org/markets-and-trade/commodities/tea/en/ (accessed on 29 August 2022).
- Jiang, L.; Shen, X.; Shoji, T.; Kanda, T.; Zhou, J.; Zhao, L. Characterization and activity of anthocyanins in Zijuan tea (Camellia sinensis var. kitamura). J. Agric. Food Chem. 2013, 61, 3306–3310. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.; Rana, A.; Kumar, V.; Kumar, D.; Padwad, Y.S.; Yadav, S.K.; Gulat, A. Anthocyanins enriched purple tea exhibits antioxidant, immunostimulatory and anticancer activities. J. Food Sci. Technol. 2017, 54, 1953–1963. [Google Scholar] [CrossRef] [PubMed]
- Kopjar, M.; Tadić, M.; Piližota, V. Phenol content and antioxidant activity of green, yellow and black tea leaves. Chem. Biol. Technol. Agric. 2015, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lv, H.-P.; Dai, W.-D.; Tan, J.-F.; Guo, L.; Zhu, Y.; Lin, Z. Identification of the anthocyanins from the purple leaf coloured tea cultivar Zijuan (Camelliasinensis var. assamica) and characterization of their antioxidant activities. J. Funct. Foods 2015, 17, 449–458. [Google Scholar]
- Roy, M.K.; Koide, M.; Rao, T.P.; Okubo, T.; Ogasawara, Y.; Juneja, L.R. ORAC and DPPH assay comparison to assess antioxidant capacity of tea infusions: Relationship between total polyphenol and individual catechin content. Int. J. Food Sci. Nutr. 2010, 61, 109–124. [Google Scholar] [CrossRef]
- Khan, F.; Bashir, A.; Al-Mughairbi, F. Purple tea composition and inhibitory effect of anthocyanin-rich extract on cancer cell proliferation. Medicinal Aromat. Plants 2018, 7, 1000322. [Google Scholar] [CrossRef]
- Lin, Y.; Shi, D.; Su, B.; Wei, J.; Gaman, M.-A.; Macit, M.S.; do Nascimento, I.J.B.; Guimaraes, N.S. The effect of green tea supplementation on obesity: A systematic review and dose-response meta-analysis of randomized controlled trials. Phytother. Res. 2020, 34, 2459–2470. [Google Scholar] [CrossRef]
- Ohishi, T.; Fukutomi, R.; Shoji, Y.; Goto, S.; Isemura, M. The beneficial effects of principal polyphenols from green tea, coffee, wine, and curry on obesity. Molecules 2021, 26, 453. [Google Scholar] [CrossRef]
- Zhou, D.-D.; Mao, Q.-Q.; Li, B.-Y.; Saimaiti, A.; Huang, S.-Y.; Xiong, R.-G.; Shang, A.; Luo, M.; Li, H.-Y.; Gan, R.-Y.; et al. Effects of different green teas on obesity and non-alcoholic fatty liver disease induced by a high-fat diet in mice. Front. Nutr. 2022, 9, 929210. [Google Scholar] [CrossRef]
- Lai, X.; Wang, X.; Wen, S.; Sun, L.; Chen, R.; Zhang, Z.; Li, Q.; Cao, J.; Lai, Z.; Li, Z.; et al. Six types of tea reduce acute alcoholism in mice by enhancing ethanol metabolism, suppressing oxidative stress and inflammation. Front. Nutr. 2022, 9, 848918. [Google Scholar] [CrossRef]
- Ye, X.; Tang, X.; Li, F.; Zhu, J.; Wu, M.; Wei, X.; Wang, Y. Green and oolong tea extracts with different phytochemical compositions prevent hypertension and modulate the intestinal flora in a high-salt diet fed Wistar rats. Front. Nutr. 2022, 9, 892801. [Google Scholar] [CrossRef]
- Xing, L.; Zhang, H.; Qi, R.; Tsao, R.; Mine, Y. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J. Agric. Food Chem. 2019, 67, 1029–1043. [Google Scholar] [CrossRef] [PubMed]
- Turkmen, N.; Sari, F.; Velioglu, Y.S. Factors affecting polyphenol content and composition of fresh and processed tea leaves. Akademik Gida 2009, 7, 29–40. [Google Scholar]
- Isemura, M. Catechin in human health and disease. EGCG. Molecules 2019, 24, 528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA (EFSA Panel on Food Additives and Nutrient Sources added to Food), Scientific Opinion on the safety of green tea catechins. EFSA J. 2018, 16, 5239.
- Bernatoniene, J.; Kopustinskiene, D.M. The role of catechins in cellular responses to oxidative stress. Molecules 2018, 23, 965. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Zhong, Y.; Duan, Y.; Chen, Q.; Li, F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. 2020, 6, 115e123. [Google Scholar] [CrossRef]
- Gould, K.S. Nature’s Swiss army knife: The diverse protective roles of anthocyanins in leaves. J. Biomed. Biotechnol. 2004, 5, 314–320. [Google Scholar] [CrossRef] [Green Version]
- Harborne, J.B.; Christine, A.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef]
- Hoballah, M.E.; Gübitz, T.; Stuurman, J.; Broger, L.; Barone, M.; Mandel, T.; Dell’Olivo, A.; Arnold, M.; Kuhlemeier, C. Single gene-mediated shift in pollinator attraction in Petunia. Plant Cell 2007, 19, 779–790. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J. Agric. Food Chem. 2006, 54, 4069–4075. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.C.; Nunes, A.R.; Falcão, A.; Alves, G.; Silva, L.R. Dietary effects of anthocyanins in human health: A comprehensive review. Pharmaceuticals 2021, 14, 690. [Google Scholar] [CrossRef] [PubMed]
- Gamel, T.; Abdel-Aal, E.-S.M.; Tucker, A.; Pare, S.; Faughnan, K.; O’Brien, C.; Dykun, A.; Rabalski, I.; Pickard, M.; Wright, A. Consumption of whole purple and regular wheat modestly improves metabolic markers in adults with elevated high-sensitivity C-reactive protein: A randomised, single-blind parallel-arm study. Br. J. Nutr. 2020, 124, 1179–1189. [Google Scholar] [CrossRef] [PubMed]
- Shipp, J.; Abdel-Aal, E.-S.M. Food applications and physiological effects of anthocyanins as functional food ingredients. The Open Food Sci. J. 2010, 4, 7–22. [Google Scholar] [CrossRef]
- Shi, J.; Simal-Gandara, J.; Mei, J.; Ma, W.; Peng, Q.; Shi, Y.; Xu, Q.; Lin, Z.; Lv, H. Insight into the pigmented anthocyanins and the major potential co-pigmented flavonoids in purple-coloured leaf teas. Food Chem. 2021, 363, 130278. [Google Scholar] [CrossRef]
- Mei, Y.; Xie, H.; Liu, S.; Zhu, J.; Zhao, S.; Wei, C. Metabolites and transcriptional profiling analysis reveal the molecular mechanisms of the anthocyanin metabolism in the “Zijuan” tea plant (Camellia sinensis var. assamica). J. Agric. Food Chem. 2021, 69, 414–427. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 21st ed.; the AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Ramdani, D.; Chaudhry, A.S.; Seal, C.J. Chemical composition, plant secondary metabolites, and minerals of green and black teas and the effect of different tea-to-water ratios during their extraction on the composition of their spent leaves as potential additives for ruminants. J. Agric. Food Chem. 2013, 61, 4961–4967. [Google Scholar] [CrossRef]
- Mehra, A.; Lynch, P.; Saikat, S.; Chan, L. Trace elements in tea (Camellia sinensis) and their bioavailability. In Tea in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press of Elsevier: London, UK, 2013. [Google Scholar]
- Gu, L.; Lu, J.; Ye, B. Tea Chemistry; Chinese University of Science and Technology Publishing: Hefei, China, 2002. [Google Scholar]
- Shen, L.; Wang, X.; Wang, Z.; Wua, Y.; Chen, J. Studies on tea protein extraction using alkaline and enzyme methods. Food Chem. 2008, 107, 929–938. [Google Scholar] [CrossRef]
- Kerio, L.C.; Wachira, F.N.; Wanyoko, J.K.; Rotich, M.K. Characterization of anthocyanins in Kenyan teas: Extraction and identification. Food Chem. 2012, 131, 31–38. [Google Scholar] [CrossRef]
- Lai, Y.-S.; Li, S.; Tang, Q.; Li, H.-X.; Chen, S.-X.; Li, P.-W.; Xu, J.-Y.; Xu, Y.; Guo, X. The dark-purple tea cultivar ‘Ziyan’ accumulates a large amount of delphinidin-related anthocyanins. J. Agric. Food Chem. 2016, 64, 2719–2726. [Google Scholar] [CrossRef]
- Rashid, K.; Wachira, F.N.; Ngure, R.M.; Nyabuga, J.N.; Wanyonyi, B.; Murilla, G.; Isaac, A.O. Kenyan purple tea anthocyanins ability to cross blood brain barrier reinforcing brain antioxidant capacity in mice. African Crop Sci. J. 2014, 22, 819–828. [Google Scholar]
- Husain, A.; Chanana, H.; Khan, S.A.; Dhanalekshmi, U.M.; Ali, M.; Alghamdi, A.A.; Ahmad, A. Chemistry and pharmacological actions of delphinidin, a dietary purple pigment in anthocyanidin and anthocyanin forms. Front. Nutr. 2022, 9, 746881. [Google Scholar]
- Saklar, S.; Ertas, E.; Ozdemir, I.S.; Karadeniz, B. Effects of different brewing conditions on catechin content and sensory acceptance in Turkish green tea infusions. J. Food Sci. Technol. 2015, 52, 6639–6646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.-Y.; Zhu, Q.Y.; Tsang, D.; Huang, Y. Degradation of green tea catechins in tea drinks. J. Agric. Food Chem. 2001, 49, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Labbé, D.; Têtu, B.; Trudel, D.; Bazinet, L. Catechin stability of EGC- and EGCG-enriched tea drinks produced by a two-step extraction procedure. Food Chem. 2008, 111, 139–143. [Google Scholar] [CrossRef]
- Sang, S.; Lee, M.-J.; Hou, Z.; Ho, C.-T.; Yang, C.S. Stability of tea polyphenol (−)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions. J. Agric. Food Chem. 2005, 53, 9478–9484. [Google Scholar] [CrossRef]
- Timmel, M.A.; Byl, J.A.W.; Osheroff, N. Epimerization of green tea catechins during brewing does not affect the ability to poison human type II topoisomerases. Chem. Res. Toxicol. 2013, 26, 622–628. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-S.; Tsai, Y.-J.; Tsay, J.-S.; Lin, J.-K. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J. Agric. Food Chem. 2003, 51, 1864–1873. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother. 2021, 133, 110985. [Google Scholar] [CrossRef]
- Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran. J. Basic Med. Sci. 2019, 22, 2025–2037. [Google Scholar]
- Baggott, M.J.; Childs, E.; Hart, A.B.; de Bruin, E.; Palmer, A.A.; Wilkinson, J.E.; de Wit, H. Psychopharmacology of theobromine in healthy volunteers. Psychopharmacology 2013, 228, 109–118. [Google Scholar] [CrossRef] [PubMed]
Tea Product | Moisture (%) | Ash (% As Is) | Protein (% As Is) |
---|---|---|---|
Purple tea leaves-lot 1 | 6.21 ± 0.06 a | 5.39 ± 0.05 a | 24.97 ± 0.06 a |
Purple tea leaves-lot 2 | 6.34 ± 0.02 a | 5.18 ± 0.06 a | 25.70 ± 0.05 a |
Purple tea leaves-lot 3 | 6.46 ± 0.01 a | 5.16 ± 0.02 a | 25.47 ± 0.04 a |
Mean | 6.34 | 5.24 | 25.38 |
Purple tea flakes-lot 1 | 6.59 ± 0.05 a | 7.94 ± 0.04 b | 20.12 ± 0.06 ab |
Purple tea flakes-lot 2 | 5.74 ± 0.01 a | 8.38 ± 0.02 ab | 19.48 ± 0.15 b |
Purple tea flakes-lot 3 | 5.71 ± 0.01 a | 9.49 ± 0.04 a | 20.93 ± 0.07 a |
Mean | 6.01 | 8.60 | 20.18 |
Green tea leaves-lot 1 | 6.08 ± 0.04 a | 5.31 ± 0.03 a | 22.19 ± 0.17 a |
Green tea leaves-lot 2 | 6.07 ± 0.02 a | 5.33 ± 0.01 a | 18.88 ± 0.11 b |
Mean | 6.08 | 5.32 | 20.54 |
Green tea flakes-lot 1 | 6.01 ± 0.01 a | 9.22 ± 0.02 a | 17.62 ± 0.07 a |
Green tea flakes-lot 2 | 5.75 ± 0.03 a | 9.21 ± 0.01 a | 17.31 ± 0.29 a |
Mean | 5.88 | 9.22 | 17.47 |
Peak Number w | RT (min) | Major Ions (m/z) | λmax (nm) | Identity of Anthocyanin y | Concentration (Mean ± SD, µg/g) z | ||
---|---|---|---|---|---|---|---|
Lot 1 | Lot 2 | Lot 3 | |||||
1 | 5.8 | 465/303 | 525 | Dp-3-Gal | 918 ± 10.6 a | 584 ± 3.8 b | 628 ± 5.3 b |
2 | 6.4 | 465/303 | 524 | Dp-3-Glu | 478 ± 10.1 a | 294 ± 6.4 b | 319 ± 2.1 b |
3 | 7.0 | 449/287 | 517 | Cy-3-Gal | 348 ± 0.4 a | 219 ± 0.9 b | 230 ± 1.8 b |
4 | 7.6 | 449/287 | 516 | Cy-3-Glu | 161 ± 7.0 a | 97 ± 4.5 b | 103 ± 0.6 b |
5 | 12.7 | 611/303 | 530 | Dp-Cou-Hex | 378 ± 18.2 a | 202 ± 3.1 b | 237 ± 1.3 b |
6 | 14.0 | 611/303 | 532 | Dp-Cou-Hex | 3228 ± 5.2 a | 2497 ± 31.2 b | 2634 ± 15.6 b |
7 | 15.1 | 611/303 | 528 | Dp-Cou-Hex | 141 ± 3.1 a | 109 ± 3.8 b | 117 ± 0.3 b |
8 | 15.4 | 595/287 | 520 | Cy-Cou-Hex | 653 ± 1.4 a | 506 ± 1.8 b | 569 ± 0.1 b |
9 | 15.9 | 625/317 | 533 | Pt-Cou-Hex | 160 ± 1.0 a | 93 ± 2.8 b | 97 ± 5.9 b |
10 | 16.7 | 595/287 | 520 | Cy-Cou-Hex | 122 ± 4.2 a | 100 ± 0.2 b | 106 ± 2.2 b |
Total major | - | - | - | - | 6587 | 4701 | 5040 |
Total minor | - | - | - | - | 449 | 344 | 319 |
Gross total x | - | - | - | - | 7036 | 5045 | 5359 |
Peak Number w | Identity of Anthocyanin y | Concentration (Mean ± SD, µg/g) z | ||
---|---|---|---|---|
Lot 1 | Lot 2 | Lot 3 | ||
1 | Dp-3-Gal | 49.9 ± 0.1 a | 18.6 ± 0.7 b | 11.0 ± 0.7 c |
2 | Dp-3-Glu | 37.1 ± 0.3 a | 13.1 ± 0.6 b | 9.7 ± 0.4 b |
3 | Cy-3-Gal | 15.1 ± 0.3 a | 6.2 ± 0.3 b | 2.6 ± 0.1 c |
4 | Cy-3-Glu | 10.8 ± 0.3 a | 4.1 ± 0.2 b | 2.8 ± 0.1 b |
5 | Dp-Cou-Hex | 20.8 ± 0.6 a | 9.0 ± 0.4 b | 5.0 ± 0.2 c |
6 | Dp-Cou-Hex | 234.3 ± 2.5 a | 15.9 ± 1.1 b | 24.5 ± 0.3 c |
7 | Dp-Cou-Hex | 13.5 ± 0.2 a | 2.7 ± 0.1 b | 3.6 ± 0.2 b |
8 | Cy-Cou-Hex | 47.5 ± 0.3 a | 3.7 ± 0.1 b | 5.2 ± 0.3 b |
9 | Pt-Cou-Hex | 12.7 ± 0.2 a | 2.5 ± 0.1 b | 3.2 ± 0.2 b |
10 | Cy-Cou-Hex | 10.6 ± 0.4 a | 2.8 ± 0.1 b | 3.1 ± 0.2 b |
Total major | - | 425 | 78.4 | 70.2 |
Total minor | - | 5.8 | 0.7 | 0.7 |
Gross total x | - | 457.8 | 79 | 70.9 |
Catechin | Peak Number x | Concentration (Mean ± SD, mg/g) y | ||
---|---|---|---|---|
Lot 1 | Lot 2 | Lot 3 | ||
Purple tea leaves | ||||
(−)-Gallocatechin | 2 | 1.73 ± 0.02 a | 2.07 ± 0.01 a | 1.83 ± 0.02 a |
(−)-Epigallocatechin | 4 | 16.36 ± 0.19 a | 14.37 ± 0.21 b | 12.30 ± 0.15 c |
(+)-Catechin | 5 | 0.23 ± 0.01 b | 0.40 ± 0.01 a | 0.47 ± 0.03 a |
(−)-Epicatechin | 7 | 5.17 ± 0.17 a | 5.16 ± 0.29 a | 5.33 ± 0.11 a |
(−)-Epigallocatechin gallate | 8 | 89.46 ± 0.43 b | 95.07 ± 0.25 a | 96.51 ± 0.24 a |
(−)-Gallocatechin gallate | 9 | nd | nd | nd |
(−)-Epicatechin gallate | 10 | 27.45 ± 0.10 b | 28.09 ± 1.13 b | 31.03 ± 1.81 a |
Total | - | 140.4 | 145.2 | 147.5 |
Purple tea flakes | ||||
(−)-Gallocatechin | 2 | 8.74 ± 0.42 b | 15.70 ± 0.26 a | 2.73 ± 0.11 c |
(−)-Epigallocatechin | 4 | 10.61 ± 0.01 c | 48.54 ± 0.62 a | 23.72 ± 0.03 b |
(+)-Catechin | 5 | 4.49 ± 0.02 a | 4.43 ± 0.04 a | 2.09 ± 0.01 a |
(−)-Epicatechin | 7 | 8.72 ± 0.38 c | 73.95 ± 0.55 a | 66.95 ± 0.61 b |
(−)-Epigallocatechin gallate | 8 | 85.40 ± 0.76 b | 113.80 ± 3.17 a | 111.05 ± 3.86 a |
(−)-Gallocatechin gallate | 9 | 69.85 ± 1.15 a | 38.90±0.22 b | 10.15 ± 0.18 c |
(−)-Epicatechin gallate | 10 | 31.11 ± 0.77 b | 45.78 ± 0.41 a | 46.02 ± 0.12 a |
Total | - | 218.9 | 341.05 | 262.7 |
Catechin | Peak Number x | Concentration (Mean ± SD, mg/g) y | |
---|---|---|---|
Lot 1 | Lot 2 | ||
Green tea leaves | |||
(−)-Gallocatechin | 2 | 27.89 ± 0.28 a | 31.35 ± 0.47 b |
(−)-Epigallocatechin | 4 | 74.88 ± 0.83 b | 83.41 ± 1.26 a |
(+)-Catechin | 5 | 3.47 ± 0.06 a | 3.73 ± 0.04 a |
(−)-Epicatechin | 7 | 13.14 ± 0.06 a | 13.63 ± 0.50 a |
(−)-Epigallocatechin gallate | 8 | 118.5 ± 0.93 b | 150.5 ± 0.86 a |
(−)-Gallocatechin gallate | 9 | 0.90 ± 0.10 b | 1.31 ± 0.04 a |
(−)-Epicatechin gallate | 10 | 20.41 ± 1.11 b | 27.05 ± 0.21 a |
Total | - | 259.2 | 311.0 |
Green tea powders | |||
(−)-Gallocatechin | 2 | 61.70 ± 0.42 a | 60.45 ± 0.35 a |
(−)-Epigallocatechin | 4 | 92.65 ± 0.66 a | 88.80 ± 0.19 a |
(+)-Catechin | 5 | 5.78 ± 0.12 a | 5.94 ± 0.03 a |
(−)-Epicatechin | 7 | 76.30 ± 0.81 a | 71.60 ± 0.52 a |
(−)-Epigallocatechin gallate | 8 | 124.80 ± 4.46 b | 142.60 ± 4.71 a |
(−)-Gallocatechin gallate | 9 | 23.54 ± 0.07 a | 24.37 ± 0.11 a |
(−)-Epicatechin gallate | 10 | 31.42 ± 0.42 a | 31.71 ± 0.76 a |
Total | - | 416.2 | 425.5 |
Tea | Gallic Acid (Peak #1) y | Theobromine (Peak #3) y | Caffeine (Peak #6) y |
---|---|---|---|
Purple tea leaves-lot 1 | 4.77 ± 0.13 b | 5.01 ± 0.06 b | 15.35 ± 0.07 a |
Purple tea leaves-lot 2 | 6.54 ± 0.04 a | 9.12 ± 0.07 a | 15.53 ± 0.32 a |
Purple tea leaves-lot 3 | 6.12 ± 0.11 a | 8.03 ± 0.03 a | 13.83 ± 0.21 b |
Average | 5.81 | 7.39 | 14.90 |
Purple tea flakes-lot 1 | 38.95 ± 1.17 b | 14.71 ± 0.33 b | 30.18 ± 0.07 c |
Purple tea flakes-lot 2 | 37.35 ± 0.19 b | 13.87 ± 0.47 b | 43.30 ± 0.18 a |
Purple tea flakes-lot 3 | 43.37 ± 0.09 a | 21.38 ± 0.34 a | 38.51 ± 0.17 b |
Average | 39.89 | 16.65 | 37.33 |
Green tea leaves-lot 1 | 1.69 ± 0.05 a | 1.24 ± 0.01 a | 17.12 ± 0.16 b |
Green tea leaves-lot 2 | 1.98 ± 0.01 a | 1.35 ± 0.06 a | 19.74 ± 0.13 a |
Average | 1.84 | 1.30 | 18.43 |
Green tea flakes-lot 1 | 10.08 ± 0.03 a | 4.27 ± 0.18 a | 56.00 ± 0.52 a |
Green tea flakes-lot 2 | 9.66 ± 0.05 a | 4.14 ± 0.06 a | 52.90 ± 0.55 b |
Average | 9.87 | 4.07 | 54.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Aal, E.-S.M.; Rabalski, I.; Mats, L.; Rai, I. Identification and Quantification of Anthocyanin and Catechin Compounds in Purple Tea Leaves and Flakes. Molecules 2022, 27, 6676. https://doi.org/10.3390/molecules27196676
Abdel-Aal E-SM, Rabalski I, Mats L, Rai I. Identification and Quantification of Anthocyanin and Catechin Compounds in Purple Tea Leaves and Flakes. Molecules. 2022; 27(19):6676. https://doi.org/10.3390/molecules27196676
Chicago/Turabian StyleAbdel-Aal, El-Sayed M., Iwona Rabalski, Lili Mats, and Ishan Rai. 2022. "Identification and Quantification of Anthocyanin and Catechin Compounds in Purple Tea Leaves and Flakes" Molecules 27, no. 19: 6676. https://doi.org/10.3390/molecules27196676
APA StyleAbdel-Aal, E. -S. M., Rabalski, I., Mats, L., & Rai, I. (2022). Identification and Quantification of Anthocyanin and Catechin Compounds in Purple Tea Leaves and Flakes. Molecules, 27(19), 6676. https://doi.org/10.3390/molecules27196676