Rapid Measurement of Cellulose, Hemicellulose, and Lignin Content in Sargassum horneri by Near-Infrared Spectroscopy and Characteristic Variables Selection Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Measurement of Cellulose, Hemicellulose, and Lignin
2.3. NIR Spectra Acquisition
2.4. Multivariate Data Analysis
2.4.1. Data Partition
2.4.2. Spectral Pretreatment
2.4.3. Selection of Characteristic Variables
2.4.4. Development and Evaluation of NIR Models
2.5. Software
3. Results and Discussion
3.1. NIR Spectral Features
3.1.1. Division of Calibration and Prediction Set
3.1.2. Spectral Pretreatment
3.1.3. Performance of Multivariate Calibration Models
3.2. Results of the Full-PLSR Model
3.3. Results of the iPLS-PLSR Model
3.4. Results of the CARS-PLSR Model
3.5. Results of the CC-PLSR Model
3.6. Results of the GA-PLSR Model
3.7. Comparison of the Results by Four Variable Selection Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Vamvuka, D. Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes-An overview. Int. J. Energ. Res. 2011, 35, 835–862. [Google Scholar] [CrossRef]
- Shao, P.; Chen, X.; Sun, P. Chemical characterization, antioxidant and antitumor activity of sulfated polysaccharide from Sargassum horneri. Carbohydr. Polym. 2014, 105, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Hasan, K.F.; Horváth, P.G.; Alpár, T. Lignocellulosic fiber cement compatibility: A state of the art review. J. Nat. Fibers 2021, 1–26. [Google Scholar] [CrossRef]
- Hasan, K.M.F.; Horváth, P.G.; Kóczán, Z.; Le, D.H.A.; Bak, M.; Bejó, L.; Alpár, T. Novel insulation panels development from multilayered coir short and long fiber reinforced phenol formaldehyde polymeric biocomposites. J. Polym. Res. 2021, 28, 467. [Google Scholar] [CrossRef]
- Quero, F.; Rosenkranz, A. Mechanical performance of binary and ternary hybrid mxene/nanocellulose hydro- and aerogels—A critical review. Adv. Mater. Interfaces 2021, 8, 2100952. [Google Scholar] [CrossRef]
- Blanco, E.; Rosenkranz, A.; Espinoza-González, R.; Fuenzalida, V.M.; Zhang, Z.; Suárez, S.; Escalona, N. Catalytic performance of 2D-Mxene nano-sheets for the hydrodeoxygenation (HDO) of lignin-derived model compounds. Catal. Commun. 2020, 133, 105833. [Google Scholar]
- Herrera, C.; Barrientos, L.; Rosenkranz, A.; Sepulveda, C.; García-Fierro, J.L.; Laguna-Bercero, M.A.; Escalona, N. Tuning amphiphilic properties of Ni/Carbon nanotubes functionalized catalysts and their effect as emulsion stabilizer for biomass-derived furfural upgrading. Fuel 2020, 276, 118032. [Google Scholar]
- Herrera, C.; Pinto-Neira, J.; Fuentealba, D.; Sepúlveda, C.; Rosenkranz, A.; González, M.; Escalona, N. Biomass-derived furfural conversion over Ni/CNT catalysts at the interface of water-oil emulsion droplets. Catal. Commun. 2020, 144, 106070. [Google Scholar] [CrossRef]
- Xu, N.; Zhang, W.; Ren, S.F.; Liu, F.; Zhao, C.Q.; Liao, H.F.; Xu, Z.D.; Huang, J.F.; Li, Q.; Tu, Y.Y.; et al. Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnol. Biofuels 2012, 5, 58. [Google Scholar]
- Zhao, H.; Li, Q.; He, J.; Yu, J.; Yang, J.; Liu, C.; Peng, J. Genotypic variation of cell wall composition and its conversion efficiency in Miscanthus sinensis, a potential biomass feedstock crop in China. Gcb Bioenergy 2014, 6, 768–776. [Google Scholar] [CrossRef]
- Gallagher, M.E.; Hockaday, W.C.; Masiello, C.A.; Snapp, S.; McSwiney, C.P.; Baldock, J.A. Biochemical Suitability of Crop Residues for Cellulosic Ethanol: Disincentives to Nitrogen Fertilization in Corn Agriculture. Environ. Sci. Technol. 2011, 45, 2013–2020. [Google Scholar] [CrossRef]
- Huang, H.J.; Ramaswamy, S.; Al-Dajani, W.; Tschirner, U.; Cairncross, R.A. Effect of biomass species and plant size on cellulosic ethanol: A comparative process and economic analysis. Biomass Bioenerg. 2009, 33, 234–246. [Google Scholar] [CrossRef]
- Krasznai, D.J.; Hartley, R.C.; Roy, H.M.; Champagne, P.; Cunningham, M.F. Compositional analysis of lignocellulosic biomass: Conventional methodologies and future outlook. Crit. Rev. Biotechnol. 2018, 38, 199–217. [Google Scholar] [CrossRef]
- Wei, N.; Quarterman, J.; Jin, Y.S. Marine macroalgae: An untapped resource for producing fuels and chemicals. Trends Biotechnol. 2013, 31, 70–77. [Google Scholar] [CrossRef]
- Soest, P.v.; Wine, R. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. J. Assoc. Off. Anal. Chem. 1967, 50, 50–55. [Google Scholar] [CrossRef]
- Assis, C.; Ramos, R.S.; Silva, L.A.; Kist, V.; Barbosa, M.H.P.; Teofilo, R.F. Prediction of Lignin Content in Different Parts of Sugarcane Using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS). Appl. Spectrosc. 2017, 71, 2001–2012. [Google Scholar] [CrossRef]
- He, W.M.; Hu, H.R. Prediction of hot-water-soluble extractive, pentosan and cellulose content of various wood species using FT-NIR spectroscopy. Bioresour. Technol. 2013, 140, 299–305. [Google Scholar] [CrossRef]
- Liu, L.; Ye, X.P.; Womac, A.R.; Sokhansanj, S. Variability of biomass chemical composition and rapid analysis using FT-NIR techniques. Carbohydr. Polym. 2010, 81, 820–829. [Google Scholar] [CrossRef]
- Lindedam, J.; Bruun, S.; Jorgensen, H.; Decker, S.R.; Turner, G.B.; DeMartini, J.D.; Wyman, C.E.; Felby, C. Evaluation of high throughput screening methods in picking up differences between cultivars of lignocellulosic biomass for ethanol production. Biomass Bioenerg. 2014, 66, 261–267. [Google Scholar] [CrossRef]
- Ververis, C.; Georghiou, K.; Danielidis, D.; Hatzinikolaou, D.; Santas, P.; Santas, R.; Corleti, V. Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour. Technol. 2007, 98, 296–301. [Google Scholar] [CrossRef]
- Laurens, L.M.L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P.T. Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based biofuels production. Green Chem. 2015, 17, 1145–1158. [Google Scholar] [CrossRef] [Green Version]
- Sluiter, A.; Wolfrum, E. Near infrared calibration models for pretreated corn stover slurry solids, isolated and in situ. J. Near Infrared Spectrosc. 2013, 21, 249–257. [Google Scholar] [CrossRef]
- Feng, L.; Zhu, S.S.; Chen, S.S.; Bao, Y.D.; He, Y. Combining Fourier Transform Mid-Infrared Spectroscopy with Chemometric Methods to Detect Adulterations in Milk Powder. Sensors 2019, 19, 2934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, H.J.; Sun, D.W. Hyperspectral imaging technology for rapid detection of various microbial contaminants in agricultural and food products. Trends Food Sci. Technol. 2015, 46, 99–109. [Google Scholar] [CrossRef]
- Lestander, T.A.; Sandstrom, L.; Wiinikka, H.; Ohrman, O.G.W.; Thyrel, M. Characterization of fast pyrolysis bio-oil properties by near-infrared spectroscopic data. J. Anal. Appl. Pyrolysis 2018, 133, 9–15. [Google Scholar] [CrossRef]
- Oliveira-Folador, G.; Bicudo, M.D.; de Andrade, E.F.; Renard, C.M.G.C.; Bureau, S.; de Castilhos, F. Quality traits prediction of the passion fruit pulp using NIR and MIR spectroscopy. Lwt-Food Sci. Technol. 2018, 95, 172–178. [Google Scholar] [CrossRef]
- Xia, Z.Y.; Sun, Y.M.; Cai, C.Y.; He, Y.; Nie, P.C. Rapid Determination of Chlorogenic Acid, Luteoloside and 3,5-O-dicaffeoylquinic Acid in Chrysanthemum Using Near-Infrared Spectroscopy. Sensors 2019, 19, 1981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, H.; Feng, L.; Song, D.J.; Tu, K.; Peng, J.; Pan, L.Q. Grading and Sorting of Grape Berries Using Visible-Near Infrared Spectroscopy on the Basis of Multiple Inner Quality Parameters. Sensors 2019, 19, 2600. [Google Scholar] [CrossRef] [Green Version]
- Hayes, D.J.M. Development of near infrared spectroscopy models for the quantitative prediction of the lignocellulosic components of wet Miscanthus samples. Bioresour. Technol. 2012, 119, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Hayes, D.J.M.; Hayes, M.H.B.; Leahy, J.J. Analysis of the lignocellulosic components of peat samples with development of near infrared spectroscopy models for rapid quantitative predictions. Fuel 2015, 150, 261–268. [Google Scholar] [CrossRef]
- Jin, X.; Chen, X.; Shi, C.; Li, M.; Guan, Y.; Yu, C.Y.; Yamada, T.; Sacks, E.J.; Peng, J. Determination of hemicellulose, cellulose and lignin content using visible and near infrared spectroscopy in Miscanthus sinensis. Bioresour. Technol. 2017, 241, 603–609. [Google Scholar] [CrossRef]
- John, R.P.; Anisha, G.S.; Nampoothiri, K.M.; Pandey, A. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol. 2011, 102, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Grossmann, I.E. Optimal engineered algae composition for the integrated simultaneous production of bioethanol and biodiesel. Aiche J. 2013, 59, 2872–2883. [Google Scholar] [CrossRef]
- Yeh, T.-F.; Chang, H.-m.; Kadla, J.F. Rapid prediction of solid wood lignin content using transmittance near-infrared spectroscopy. J. Agric. Food Chem. 2004, 52, 1435–1439. [Google Scholar] [CrossRef] [PubMed]
- Sluiter, J.B.; Ruiz, R.O.; Scarlata, C.J.; Sluiter, A.D.; Templeton, D.W. Compositional Analysis of Lignocellulosic Feedstocks. 1 Review and Description of Methods. J. Agric. Food Chem. 2010, 58, 9043–9053. [Google Scholar] [CrossRef]
- Kennard, R.W.; Stone, L.A. Computer aided design of experiments. Technometrics 1969, 11, 137–148. [Google Scholar] [CrossRef]
- Chen, H.; Tan, C.; Lin, Z.; Wu, T. Classification and quantitation of milk powder by near-infrared spectroscopy and mutual information-based variable selection and partial least squares. Spectrochim. Acta A 2018, 189, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.H.; Liu, Y.; Li, X.Y.; Cai, W.S.; Shao, X.G. Discriminant analysis of Chinese patent medicines based on near-infrared spectroscopy and principal component discriminant transformation. Spectrochim. Acta A 2015, 149, 985–990. [Google Scholar] [CrossRef]
- Frenich, A.G.; Jouan-Rimbaud, D.; Massart, D.; Kuttatharmmakul, S.; Galera, M.M.; Vidal, J.M. Wavelength selection method for multicomponent spectrophotometric determinations using partial least squares. Analyst 1995, 120, 2787–2792. [Google Scholar] [CrossRef]
- Zou, X.B.; Zhao, J.W.; Povey, M.J.W.; Holmes, M.; Mao, H.P. Variables selection methods in near-infrared spectroscopy. Anal. Chim. Acta 2010, 667, 14–32. [Google Scholar]
- Nørgaard, L.; Saudland, A.; Wagner, J.; Nielsen, J.P.; Munck, L.; Engelsen, S.B. Interval partial least-squares regression (i PLS): A comparative chemometric study with an example from near-infrared spectroscopy. Appl. Spectrosc. 2000, 54, 413–419. [Google Scholar] [CrossRef]
- Li, H.D.; Liang, Y.Z.; Xu, Q.S.; Cao, D.S. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, Y.J.; Johnson, L.; Yuan, W.Q.; Pei, Z.J.; Wang, D.H. Development of near-infrared spectroscopy models for quantitative determination of cellulose and hemicellulose contents of big bluestem. Renew. Energy 2017, 109, 101–109. [Google Scholar] [CrossRef]
- Jouan-Rimbaud, D.; Massart, D.-L.; Leardi, R.; De Noord, O.E. Genetic algorithms as a tool for wavelength selection in multivariate calibration. Anal. Chem. 1995, 67, 4295–4301. [Google Scholar] [CrossRef]
- Leardi, R. Application of genetic algorithm–PLS for feature selection in spectral data sets. J. Chemom. A J. Chemom. Soc. 2000, 14, 643–655. [Google Scholar] [CrossRef]
- Nabavi, M.; Dahlen, J.; Schimleck, L.; Eberhardt, T.L.; Montes, C. Regional calibration models for predicting loblolly pine tracheid properties using near-infrared spectroscopy. Wood Sci. Technol. 2018, 52, 445–463. [Google Scholar] [CrossRef]
- Fahey, L.M.; Nieuwoudt, M.K.; Harris, P.J. Using near infrared spectroscopy to predict the lignin content and monosaccharide compositions of Pinus radiata wood cell walls. Int. J. Biol. Macromol. 2018, 113, 507–514. [Google Scholar] [CrossRef]
- Ma, X.L. Development of near infrared reflectance analysis for cellulose content in eucalyptus. Modem Sci. Instrum. 2006, 5, 81–83. [Google Scholar]
- Pan, A.L.; Wang, J.; Li, D.; Xu, K.; Xue, D.H. Determination of cellulose and hemicellulose in corn fiber by near infrared reflectance spectroscopy. Trans. Chin. Soc. Agric. Eng. 2011, 27, 349–352. [Google Scholar]
- Wang, J.Z.; Wang, Y.X.; Li, F.; Gao, Y.H.; Xu, J.Q.; Yuan, J.G. Determination of cellulose, hemicellulose and lignin in corn stalk. Shangdong Food Ferment 2010, 3, 44–47. [Google Scholar]
- Li, X.; Sun, C.; Zhou, B.; He, Y. Determination of hemicellulose, cellulose and lignin in moso bamboo by near infrared spectroscopy. Sci. Rep. 2015, 5, 1–11. [Google Scholar] [CrossRef] [PubMed]
Range | Mean | SD 1 | CV 2 (%) | |
---|---|---|---|---|
Total sets (n = 74) | ||||
Cellulose (%) | 28.29–39.88 | 31.37 | 2.3604 | 7.5237 |
Hemicellulose (%) | 16.75–22.66 | 19.28 | 1.3157 | 6.8229 |
Lignin (%) | 22.10–27.20 | 27.04 | 1.2092 | 4.4725 |
Calibration sets (n = 48) | ||||
Cellulose (%) | 28.29–39.88 | 31.39 | 2.4720 | 7.8760 |
Hemicellulose (%) | 16.75–22.64 | 19.14 | 1.3463 | 7.0349 |
Lignin (%) | 22.10–26.98 | 25.14 | 1.2348 | 4.9126 |
Prediction sets (n = 26) | ||||
Cellulose (%) | 28.46–37.40 | 31.35 | 2.1860 | 6.9738 |
Hemicellulose (%) | 17.14–21.39 | 19.55 | 1.2371 | 6.3266 |
Lignin (%) | 22.41–27.20 | 24.70 | 1.1416 | 4.6220 |
Cellulose (%) | Hemicellulose (%) | Lignin (%) | |
---|---|---|---|
Sargassum horneri | 28.29–39.88% | 16.75–22.64% | 22.10–27.20% |
Eucalyptus [48] | 37–46.9% | / | / |
Corn fiber [49] | 2.26–9.1% | 36.4–46.4% | / |
Corn stalk [50] | 30.6–33.1% | 25.8–27.65% | 14.6–15.9% |
Miscanthus sinensis [31] | 40–60% | 20–40% | 10–25% |
Big bluestem [43] | 29.59–43.02 | 20.73–30.84 | / |
Moso bamboo [51] | 37.98–53.76% | 17.7–28.18% | 13.82–23.86% |
Method | Calibration | Prediction | |||||
---|---|---|---|---|---|---|---|
1 | RMSEC 2 (%) | 3 | RMSECV 4 (%) | 5 | RMSEP 6 (%) | RPD 7 | |
Cellulose | |||||||
SG | 0.9825 | 0.3274 | 0.5347 | 1.3672 | 0.6161 | 1.3833 | 1.6139 |
SG+1st | 0.9998 | 0.0287 | 0.4955 | 1.4034 | 0.3407 | 1.8667 | 1.2316 |
SG+2nd | 0.9942 | 0.1872 | 0.4440 | 1.4093 | 0.4802 | 1.6271 | 1.3871 |
SNV | 1.0000 | 0.0033 | 0.2490 | 1.5854 | 0.3459 | 1.7723 | 1.2364 |
MSC | 1.0000 | 0.0030 | 0.2495 | 1.5803 | 0.3479 | 1.7693 | 1.2383 |
Hemicellulose | |||||||
SG | 0.8843 | 0.4579 | 0.6163 | 0.9491 | 0.5515 | 1.0277 | 1.4931 |
SG+1st | 0.9998 | 0.0163 | 0.6132 | 0.9238 | 0.5558 | 0.9735 | 1.5004 |
SG+2nd | 0.9696 | 0.2348 | 0.5681 | 0.9721 | 0.4724 | 0.9888 | 1.3767 |
SNV | 1.0000 | 0.0024 | 0.5526 | 1.0135 | 0.3894 | 0.9823 | 1.2797 |
MSC | 1.0000 | 0.0026 | 0.5483 | 1.0131 | 0.3787 | 0.9988 | 1.2687 |
Lignin | |||||||
SG | 0.9467 | 0.2849 | 0.2382 | 1.5341 | 0.1935 | 1.5654 | 1.1135 |
SG+1st | 0.9561 | 0.2589 | 0.1892 | 1.5265 | 0.1413 | 1.5676 | 1.0791 |
SG+2nd | 0.8163 | 0.5292 | 0.2113 | 1.3426 | 0.2058 | 1.3833 | 1.1221 |
SNV | 0.9759 | 0.1918 | 0.1259 | 1.5004 | 0.1025 | 1.5259 | 1.0556 |
MSC | 0.9598 | 0.2478 | 0.1932 | 1.4760 | 0.1385 | 1.5947 | 1.0774 |
Model | Calibration | Prediction | ||||||
---|---|---|---|---|---|---|---|---|
CVs 1 | RMSEC (%) | RMSECV (%) | RMSEP (%) | RPD | ||||
Cellulose | ||||||||
Full-PLSR | 8298 | 0.9825 | 0.3274 | 0.5347 | 1.3672 | 0.6161 | 1.3833 | 1.6139 |
iPLS-PLSR | 1540 | 0.9827 | 0.3247 | 0.8511 | 0.7624 | 0.8955 | 0.8232 | 3.0934 |
CARS-PLSR | 3261 | 0.9736 | 0.4017 | 0.6910 | 1.1304 | 0.7742 | 1.0637 | 2.1043 |
CC-PLSR | 2485 | 0.9990 | 0.0783 | 0.7405 | 1.1877 | 0.7353 | 1.2988 | 1.9437 |
GA-PLSR | 421 | 0.9339 | 0.6350 | 0.6808 | 1.1267 | 0.7418 | 1.1506 | 1.9680 |
Hemicellulose | ||||||||
Full-PLSR | 8298 | 0.9998 | 0.0163 | 0.6132 | 0.9238 | 0.5558 | 0.9735 | 1.5004 |
iPLS-PLSR | 1935 | 0.9209 | 0.3786 | 0.8947 | 0.4983 | 0.8669 | 0.4697 | 2.7406 |
CARS-PLSR | 6461 | 0.9998 | 0.0170 | 0.7581 | 0.8095 | 0.6962 | 0.9624 | 1.8143 |
CC-PLSR | 1705 | 0.9723 | 0.2242 | 0.7661 | 0.7351 | 0.6746 | 0.7689 | 1.7532 |
GA-PLSR | 731 | 0.9904 | 0.1320 | 0.7639 | 0.8181 | 0.7201 | 0.8029 | 1.8902 |
Lignin | ||||||||
Full-PLSR | 8298 | 0.8163 | 0.5292 | 0.2113 | 1.3426 | 0.2058 | 1.3833 | 1.1221 |
iPLS-PLSR | 1665 | 0.9315 | 0.3232 | 0.8261 | 0.5172 | 0.7307 | 0.7533 | 1.9272 |
CARS-PLSR | 3328 | 0.9726 | 0.2043 | 0.4423 | 0.9033 | 0.4119 | 0.9015 | 1.3040 |
CC-PLSR | 2264 | 0.9411 | 0.2996 | 0.4139 | 1.3251 | 0.4460 | 1.1685 | 1.3435 |
GA-PLSR | 899 | 0.8495 | 0.4789 | 0.5992 | 1.3164 | 0.3660 | 1.3635 | 1.5796 |
Content | R2 | RMSE | SEP | |
---|---|---|---|---|
Sargassum horneri | Cellulose, hemicellulose and lignin | 0.8955, 0.8669, and 0.7307 | 0.8232, 0.4697, and 0.7533 | 3.0934, 2.7406, and 1.9272 |
Eucalyptus [48] | Cellulose | 0.82–0.94 | 0.7–1.07 | / |
Corn fiber [49] | Cellulose and hemicellulose | 0.81–0.96 and 0.31–0.81 | 0.30–0.68 and 0.79–1.04 | / |
Miscanthus sinensis [31] | Cellulose, hemicellulose and lignin | 0.943, 0.938, and 0.864 | 0.678, 0.707, and 0.562 | / |
Big bluestem [43] | Cellulose and hemicellulose | 0.92 and 0.91 | 0.67 and 0.72 | 4.52 and 3.12 |
Moso bamboo [51] | Cellulose, hemicellulose and lignin | 0.909. 0.921, and 0.892 | 0.81, 1.05, and 0.65 | 5.42, 3.18, and 1.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, N.; Jiang, Y.; Omar, S.; Wang, J.; Xia, L.; Ren, J. Rapid Measurement of Cellulose, Hemicellulose, and Lignin Content in Sargassum horneri by Near-Infrared Spectroscopy and Characteristic Variables Selection Methods. Molecules 2022, 27, 335. https://doi.org/10.3390/molecules27020335
Ai N, Jiang Y, Omar S, Wang J, Xia L, Ren J. Rapid Measurement of Cellulose, Hemicellulose, and Lignin Content in Sargassum horneri by Near-Infrared Spectroscopy and Characteristic Variables Selection Methods. Molecules. 2022; 27(2):335. https://doi.org/10.3390/molecules27020335
Chicago/Turabian StyleAi, Ning, Yibo Jiang, Sainab Omar, Jiawei Wang, Luyue Xia, and Jie Ren. 2022. "Rapid Measurement of Cellulose, Hemicellulose, and Lignin Content in Sargassum horneri by Near-Infrared Spectroscopy and Characteristic Variables Selection Methods" Molecules 27, no. 2: 335. https://doi.org/10.3390/molecules27020335
APA StyleAi, N., Jiang, Y., Omar, S., Wang, J., Xia, L., & Ren, J. (2022). Rapid Measurement of Cellulose, Hemicellulose, and Lignin Content in Sargassum horneri by Near-Infrared Spectroscopy and Characteristic Variables Selection Methods. Molecules, 27(2), 335. https://doi.org/10.3390/molecules27020335