Potential Associations among Bioactive Molecules, Antioxidant Activity and Resveratrol Production in Vitis vinifera Fruits of North America
Abstract
:1. Introduction
2. Results
2.1. Assessment of Phenolic Bioactive Compounds in Table Grapes
2.2. Comparison of Fatty Acid Composition with Seedless Varieties and GRAPE Seeds/Seed Oil
2.3. Analysis of Antioxidant Activity Assay in Seeds in and Seedless Grapes
2.4. Expression of Stilbene Synthase Gene and Resveratrol Production
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Antioxidant Activity Assay Analysis
4.3. Chemicals and Standards
4.4. Extraction and Analysis of Phenolic Compounds by HPLC
4.5. Extraction and Analysis of FAMEs by GC-MS
4.6. RNA Extraction and cDNA Synthesis
4.7. Quantitative Real Time (qRT) PCR Analysis
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sabra, A.; Netticadan, T.; Wijekoon, C. Bioactive molecules in grapes: Extraction, factors affecting its content and associated benefits in hypertension. Food Chem. X 2021, 12, 100149. [Google Scholar]
- Zang, J. Produce Report, 2020/21 Global Table Grape Exports Expected to Hit Record High. 2021. Available online: https://www.producereport.com/article/202021-global-table-grape-exports-expected-hit-record-high (accessed on 29 December 2021).
- Trinklein, D. Grapes—A Brief History. 2013. Available online: https://ipm.missouri.edu/MEG/2013/8/Grapes-A-Brief-History/ (accessed on 2 June 2021).
- Huber, F.; Röckel, F.; Schwander, F.; Maul, E.; Eibach, R.; Cousins, P.; Töpfer, R. A view into American grapevine history: Vitis vinifera cv.’Sémillon’is an ancestor of ‘Catawba’ and ‘Concord’. Vitis 2016, 55, 53–56. [Google Scholar]
- Krochmal, A.; Grierson, W. Brief history of grape growing in the United States. Econ. Bot. 1961, 15, 114–118. [Google Scholar] [CrossRef]
- Shi, J.; Yu, J.; Pohorly, J.E.; Kakuda, Y. Polyphenolics in grape seeds—Biochemistry and functionality. J. Med. Food 2003, 6, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Blunder, M.; Liu, X.; Malainer, C.; Blazevic, T.; Schwaiger, S.; Rollinger, J.M.; Heiss, E.H.; et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review. Biochem. Pharmacol. 2014, 92, 73–89. [Google Scholar] [CrossRef] [Green Version]
- McGovern, P.; Jalabadze, M.; Batiuk, S.; Callahan, M.P.; Smith, K.E.; Hall, G.R.; Kvavadze, E.; Maghradze, D.; Rusishvili, N.; Bouby, L.; et al. Early neolithic wine of Georgia in the South Caucasus. Proc. Natl. Acad. Sci. USA 2017, 114, E10309–E10318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leifert, W.R.; Abeywardena, M.Y. Cardioprotective actions of grape polyphenols. Nutr. Res. 2008, 28, 729–737. [Google Scholar] [CrossRef]
- Garavaglia, J.; Markoski, M.M.; Oliveira, A.; Marcadenti, A. Grape seed oil compounds: Biological and chemical actions for health. Nutr. Metab. Insights 2016, 9, NMI-S32910. [Google Scholar] [CrossRef] [Green Version]
- Balasubramani, S.P.; Rahman, M.A.; Basha, S.M. Synergistic action of stilbenes in Muscadine grape berry extract shows better cytotoxic potential against cancer cells than resveratrol alone. Biomedicines 2019, 7, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langcake, P.; Pryce, R.J. The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry 1977, 16, 1193–1196. [Google Scholar] [CrossRef]
- Rupprich, N.; Hildebrand, H.; Kindl, H. Substrate specificity in vivo and in vitro in the formation of stilbenes. Biosynthesis of rhaponticin. Arch. Biochem. Biophys. 1980, 200, 72–78. [Google Scholar] [CrossRef]
- Rimando, A.M.; Kalt, W.; Magee, J.B.; Dewey, J.; Ballington, J.R. Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J. Agric. Food Chem. 2004, 52, 4713–4719. [Google Scholar] [CrossRef] [PubMed]
- Riccio, B.V.F.; Spósito, L.; Carvalho, G.C.; Ferrari, P.C.; Chorilli, M. Resveratrol isoforms and conjugates: A review from biosynthesis in plants to elimination from the human body. Arch. Pharm. 2020, 353, e2000146. [Google Scholar] [CrossRef]
- Delmas, D.; Aires, V.; Limagne, E.; Dutartre, P.; Mazué, F.; Ghiringhelli, F.; Latruffe, N. Transport, stability, and biological activity of resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Dubrovina, A.S.; Kiselev, K.V. Regulation of stilbene biosynthesis in plants. Planta 2017, 6, 597–623. [Google Scholar] [CrossRef]
- Ghaffari, S.; Roshanravan, N. The role of nutraceuticals in prevention and treatment of hypertension: An updated review of the literature. Food Res. Int. 2020, 128, 108749. [Google Scholar] [CrossRef]
- Chong, M.F.; Macdonald, R.; Lovegrove, J.A. Fruit polyphenols and CVD risk: A review of human intervention studies. Br. J. Nutr. 2010, 104, S28–S39. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Mosa, K.A.; Ji, L.; Kage, U.; Dhokane, D.; Karre, S.; Madalageri, D.; Pathania, N. Metabolomics-assisted biotechnological interventions for developing plant-based functional foods and nutraceuticals. Crit. Rev. Food Sci. Nutr. 2018, 58, 1791–1807. [Google Scholar] [CrossRef]
- Finotti, E.; Di Majo, D. Influence of solvents on the antioxidant property of flavonoids. Food/Nahrung 2003, 47, 186–187. [Google Scholar] [CrossRef]
- Raj, P.; Zieroth, S.; Netticadan, T. An overview of the efficacy of resveratrol in the management of ischemic heart disease. Ann. N. Y. Acad. Sci. 2015, 1348, 55–67. [Google Scholar] [CrossRef]
- Abu-Amsha, R.; Croft, K.D.; Puddey, I.B.; Proudfoot, J.M.; Beilin, L.J. Phenolic content of various beverages determines the extent of inhibition of human serum and low-density lipoprotein oxidation in vitro: Identification and mechanism of action of some cinnamic acid derivatives from red wine. Clin. Sci. 1996, 91, 449–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durak, I.; Avci, A.; Kaçmaz, M.; Büyükkoçak, S.; Cimen, M.Y.; Elgün, S.; Oztürk, H.S. Comparison of antioxidant potentials of red wine, white wine, grape juice and alcohol. Curr. Med. Res. Opin. 1999, 15, 316–320. [Google Scholar] [CrossRef]
- Buchner, I.; Medeiros, N.; Lacerda, D.; Normann, C.A.; Gemelli, T.; Rigon, P.; Wannmacher, C.M.; Henriques, J.A.; Dani, C.; Funchal, C. Hepatoprotective and Antioxidant Potential of Organic and Conventional Grape Juices in Rats Fed a High-Fat Diet. Antioxidants 2014, 3, 323–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, J.H.; Keevil, J.G.; Wiebe, D.A.; Aeschlimann, S.; Folts, J.D. Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation 1999, 100, 1050–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Byrne, D.J.; Devaraj, S.; Grundy, S.M.; Jialal, I. Comparison of the antioxidant effects of Concord grape juice flavonoids alpha-tocopherol on markers of oxidative stress in healthy adults. Am. J. Clin. Nutr. 2002, 76, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
- Thandapilly, S.J.; LeMaistre, J.L.; Louis, X.L.; Anderson, C.M.; Netticadan, T.; Anderson, H.D. Vascular and cardiac effects of grape powder in the spontaneously hypertensive rat. Am. J. Hypertens. 2012, 25, 1070–1076. [Google Scholar] [CrossRef]
- Thandapilly, S.J.; Wojciechowski, P.; Behbahani, J.; Louis, X.L.; Yu, L.; Juric, D.; Kopilas, M.A.; Anderson, H.D.; Netticadan, T. Resveratrol prevents the development of pathological cardiac hypertrophy and contractile dysfunction in the SHR without lowering blood pressure. Am. J. Hypertens. 2010, 23, 192–196. [Google Scholar] [CrossRef] [Green Version]
- Louis, X.L.; Thandapilly, S.J.; MohanKumar, S.K.; Yu, L.; Taylor, C.G.; Zahradka, P.; Netticadan, T. Treatment with low-dose resveratrol reverses cardiac impairment in obese prone but not in obese resistant rats. J. Nutr. Biochem. 2012, 23, 1163–1169. [Google Scholar] [CrossRef]
- Sun, L.; Li, S.; Tang, X.; Fan, X.; Zhang, Y.; Jiang, J.; Liu, J.; Liu, C. Transcriptome analysis reveal the putative genes involved in light-induced anthocyanin accumulation in grape ‘Red Globe’ (V. vinifera L.). Gene 2019, 728, 144284. [Google Scholar] [CrossRef]
- Sridhar, K.; Charles, A.L. In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chem. 2019, 275, 41–49. [Google Scholar] [CrossRef]
- Romero-Pérez, A.I.; Lamuela-Raventós, R.M.; Andrés-Lacueva, C.; de la Torre-Boronat, M.C. Method for the quantitative extraction of resveratrol and piceid isomers in grape berry skins. Effect of powdery mildew on the stilbene content. J. Agric. Food Chem. 2001, 49, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.S.; Teixeira, M.C.; Brodelius, M. Fatty acids profile of selected Artemisia spp. plants: Health promotion. LWT-Food Sci. Technol. 2011, 44, 293–298. [Google Scholar] [CrossRef]
Compound | Chemical Group | Flame (Seedless) | Autumn Royal (Seedless) | Sweet Scarlet (Seedless) | Red Globe (Pitted) |
---|---|---|---|---|---|
Caftaric acid | Cinnamic acid derivatives | 48.5 ± 8.30 b | 95.8 ± 22.1 a | 19.6 ± 1.67 b | 54.7 ± 8.80 b |
Chlorogenic acid | 3.88 ± 0.31 a | 3.64 ± 0.53 a | 5.06 ± 0.82 a | 6.24 ± 1.31 a | |
Caffeic acid | 10.6 ± 3.22 bc | 5.49 ± 1.69 c | 16.7 ± 1.47 ab | 20.2 ± 3.61 a | |
p-Coumaric acid | 1.64 ± 0.13 a | 1.98 ± 0.11 a | 1.74 ± 0.32 a | 1.98 ± 0.08 a | |
Ferulic acid | 4.88 ± 0.48 b | 4.83 ± 1.09 b | 11.1 ± 0.61 a | 6.07 ± 0.93 b | |
Total | 69.5 | 111.7 | 54.2 | 89.2 | |
Protocatechuic acid | Hydroxybenzoic acid | 18.5 ± 0.43 b | 33.9 ± 2.21 a | 36.2 ± 5.89 a | 31.9 ± 5.71 a |
Total | 18.5 | 33.9 | 36.2 | 31.9 | |
Catechin | Flavan-3-ols | 13.6 ± 0.87 b | 25.8 ± 3.22 b | 78.9 ± 9.76 a | 18.3 ± 2.74 b |
Epicatechin | 8.94 ± 0.64 b | 13.9 ± 1.93 b | 41.1 ± 4.34 a | 7.40 ± 0.52 b | |
Epigallocatechin | 0.89 ± 0.04 b | 2.33 ± 0.66 a | 0.73 ± 0.25 b | 0.20 ± 0.07 b | |
Epicatechin gallate | 3.29 ± 0.17 bc | 12.5 ± 2.02 a | 0.74 ± 0.09 c | 7.65 ± 2.32 b | |
Total | 26.7 | 54.5 | 121.5 | 33.6 | |
Rutin | Flavonols | ND | ND | ND | ND |
Quercetin | 2.45 ± 0.05 b | 3.05 ± 0.18 b | 3.77 ± 0.46 b | 24.9 ± 2.55 a | |
Iso-quercetin | 4.02 ± 0.94 b | 26.4 ± 3.17 a | 26.8 ± 0.80 a | 6.49 ± 0.48 b | |
Myricetin | ˂LOD | 22.2 ± 2.07 b | 4.72 ± 0.59 c | 54.2 ± 10.2 a | |
Kaempferol | ND | ND | ND | ND | |
Genistein | ND | ND | ND | ND | |
Total | 6.47 | 51.7 | 35.3 | 85.6 | |
Apiginin | Flavones | ND | 3.27 ± 0.56 b | 2.78 ± 0.22 b | 19.7 ± 3.26 a |
Total | - | 3.27 | 2.78 | 19.7 | |
Resveratrol | Stilbenes | 3.30 ± 0.81 b | 7.23 ± 2.42 b | 7.30 ± 2.11 b | 13.9 ± 2.87 a |
Total | 3.30 | 7.23 | 7.30 | 13.9 | |
Delphinidin chloride | Anthocyanins | 5.79 ± 0.51 d | 53.1 ± 10.9 c | 96.4 ± 6.16 b | 139.6 ± 7.27 a |
Cyanidin glucoside | 4.32 ± 1.68 b | ˂LOD | 16.8 ± 4.09 b | 39.3 ± 7.62 a | |
Pelargonidin chloride | ˂LOD | 9.11 ± 0.46 a | 1.43 ± 0.14 b | 1.06 ± 0.22 b | |
Petunidin 3-O-glucoside | 0.73 ± 0.08 c | 11.1 ± 1.30 a | 2.51 ± 0.25 c | 5.38 ± 0.68 b | |
Delphinidin 3-O-glucoside | 4.50 ± 0.34 c | 11.3 ± 0.10 a | 4.47 ± 0.20 c | 5.58 ± 0.64 b | |
Total | 15.3 | 84.6 | 121.6 | 190.9 |
Fatty Acid Methyl Ester/Volatile Compound | Flame (Seedless) | Autumn Royal (Seedless) | Sweet Scarlet (SEEDLESS) | Red globe (Pitted) | Red Globe Seeds |
---|---|---|---|---|---|
Methyl myristate C14:0 | 3.09 ± 0.49 d | 6.88 ± 1.64 bc | 8.43 ± 1.04 ab | 4.16 ± 0.08 cd | 10.1 ± 0.68 a |
Methyl pentadecanoate C15:0 | 1.07 ± 0.26 b | 1.79 ± 0.15 b | 1.79 ± 0.20 ab | 1.07 ± 0.10 b | 2.66 ± 0.53 a |
Methyl palmitate C16:0 | 188 ± 25.0 c | 321 ± 28.5 b | 337 ± 38.0 b | 307 ± 3.12 b | 720 ± 41.8 a |
Methyl palmitoleate C16:1 | 3.25 ± 0.43 b | 0.84 ± 0.16 c | 2.56 ± 0.53 b | 3.31 ± 0.08 b | 11.1 ± 0.93 a |
Methyl stearate C18:0 | 17.3 ± 1.83 c | 46.6 ± 1.75 bc | 74.9 ± 9.30 b | 39.5 ± 0.94 bc | 257 ± 30.0 a |
Methyl elaidate C18:1 trans | 44.1 ± 1.74 c | 47.1 ± 8.89 c | 44.8 ± 6.65 c | 361 ± 19.8 b | 868 ± 114 a |
Methyl oleate C18:1 cis | 4.17 ± 0.68 c | 8.68 ± 1.43 bc | 14.2 ± 1.12 b | 13.1 ± 0.60 b | 28.4 ± 3.9 a |
Methyl linoleate C18:2 | 323 ± 22.0 b | 580 ± 53.1 b | 859 ± 33.4 b | 584 ± 28.3 b | 4493 ± 674 a |
Methyl arachidate C20:0 | 11.4 ± 0.54 d | 20.4 ± 0.70 b | 45.7 ± 0.49 a | 20.8 ± 0.52 b | 13.5 ± 0.26 c |
Methyl α linolenate C18:3 | 139 ± 24.2 c | 305 ± 13.2 a | 248 ± 24.8 b | 273 ± 19.4 ab | 65.3 ± 2.68 d |
Methyl behenate C22:0 | 17.7 ± 0.78 c | 28.6 ± 3.04 b | 33.3 ± 5.81 b | 48.1 ± 3.11 a | 14.0 ± 0.41 c |
Methyl tricosanoate C23:0 | 2.43 ± 0.45 c | 20.5 ± 2.00 b | 3.24 ± 0.85 c | 26.2 ± 3.51 a | 1.17 ± 0.27 c |
Methyl lignocerate C24:0 | 10.0 ± 1.99 bc | 10.5 ± 1.33 bc | 17.4 ± 2.37 b | 65.4 ± 5.26 a | 6.78 ± 0.54 c |
Hexacosanoic acid C26:0 | 26.4 ± 4.72 a | 15.4 ± 2.50 b | 23.6 ± 3.30 ab | 32.6 ± 2.71 a | 16.2 ± 2.80 b |
Hepta 2,4 dienoic acid | 24.3 ± 3.59 bc | 12.8 ± 2.17 d | 34.1 ± 2.17 a | 31.3 ± 0.04 ab | 18.4 ± 3.42 cd |
Stearaldehyde, dimethyl acetal | 22.6 ± 1.46 c | 39.8 ± 6.27 b | 19.8 ± 3.93 c | 70.6 ± 8.08 a | ND |
Saturated | 277.4 | 471.7 | 545.4 | 544.8 | 1041.4 |
Unsaturated | 513.5 | 941.6 | 1168.6 | 1234.4 | 5465.8 |
Ratio USFA/SFA | 1.85 | 2.00 | 2.14 | 2.27 | 5.25 |
other | 46.9 | 52.6 | 53.9 | 101.9 | 18.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijekoon, C.; Netticadan, T.; Siow, Y.L.; Sabra, A.; Yu, L.; Raj, P.; Prashar, S. Potential Associations among Bioactive Molecules, Antioxidant Activity and Resveratrol Production in Vitis vinifera Fruits of North America. Molecules 2022, 27, 336. https://doi.org/10.3390/molecules27020336
Wijekoon C, Netticadan T, Siow YL, Sabra A, Yu L, Raj P, Prashar S. Potential Associations among Bioactive Molecules, Antioxidant Activity and Resveratrol Production in Vitis vinifera Fruits of North America. Molecules. 2022; 27(2):336. https://doi.org/10.3390/molecules27020336
Chicago/Turabian StyleWijekoon, Champa, Thomas Netticadan, Yaw L. Siow, Ali Sabra, Liping Yu, Pema Raj, and Suvira Prashar. 2022. "Potential Associations among Bioactive Molecules, Antioxidant Activity and Resveratrol Production in Vitis vinifera Fruits of North America" Molecules 27, no. 2: 336. https://doi.org/10.3390/molecules27020336
APA StyleWijekoon, C., Netticadan, T., Siow, Y. L., Sabra, A., Yu, L., Raj, P., & Prashar, S. (2022). Potential Associations among Bioactive Molecules, Antioxidant Activity and Resveratrol Production in Vitis vinifera Fruits of North America. Molecules, 27(2), 336. https://doi.org/10.3390/molecules27020336