Chemical Profile, Antimicrobial and Antioxidant Activity Assessment of the Crude Extract and Its Main Flavonoids from Tartary Buckwheat Sprouts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Profile of the Crude Extract of Tartary Buckwheat Sprouts
2.2. Antimicrobial Activity
2.2.1. Antibacterial Activity of the Buckwheat Sprout Extract and Its Main Flavonoids
2.2.2. Antifungal Activity of the Buckwheat Sprout Extract and Its Main Flavonoids
2.3. DPPH Radical Scavenging Activity
2.4. Structure–Activity Relationship (SAR) of the Flavonoids
3. Experimental
3.1. Preparation of Tartary Buckwheat Sprout Cultures
3.2. Preparation of the Crude Extracts of Tartary Buckwheat Sprouts
3.3. Determination of Total Flavonoid Contents of Tartary Buckwheat Sprouts
3.4. Analysis and Quantification of Major Flavonoids from Tartary Buckwheat Sprouts
3.5. Antimicrobial Activity Test
3.5.1. Antibacterial Activity Evaluation of Buckwheat Sprout Extract and Main Flavonoids
3.5.2. Antifungal Activity Assessment of Buckwheat Sprout Extract and Main Flavonoids
3.6. DPPH Radical Scavenging Assay
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Fan, Y.; Ding, M.; Zhang, K.; Yang, K.; Tang, Y.; Zhang, Z.; Fang, W.; Yan, J.; Zhou, M. Germplasm resource of the genus Fagopyrum Mill. J. Plant Genet. Resour. 2019, 20, 813–828. [Google Scholar]
- Zhang, B.; Gao, C.; Li, Y.; Wang, M. D-chiro-inositol-enriched tartary buckwheat bran extract inhibits nox4 activity and improves endothelium-dependent relaxation in vessels. Food Sci. 2018, 39, 165–170. [Google Scholar]
- Wang, J.Q.; Xiao, J.; Geng, F.; Huang, Q.; Zhao, J.L.; Xiang, D.B.; Zhao, G. Analysis of tartary buckwheat (Fagopyrum tataricum) seed proteome using offline two-dimensional liquid chromatography and tandem mass spectrometry. J. Food Biochem. 2019, 43, e12863. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, X.D.; Niu, M.; Wang, R.; Chen, Z.X. Effect of additives on flavonoids, D-chiro-inositol and trypsin inhibitor during the germination of tartary buckwheat seeds. J. Cereal Sci. 2013, 58, 348–354. [Google Scholar] [CrossRef]
- Bai, C.Z.; Feng, M.L.; Hao, X.L.; Zhong, Q.M.; Tong, L.G.; Wang, Z.H. Rutin, quercetin, and free amino acid analysis in buckwheat (Fagopyrum) seeds from different locations. Genet. Mol. Res. 2015, 14, 19040–19048. [Google Scholar] [CrossRef] [PubMed]
- Pongrac, P.; Potisek, M.; Fraś, A.; Likar, M.; Budič, B.; Myszka, K.; Boros, D.; Nečemer, M.; Kelemen, M.; Vavpetič, P.; et al. Composition of mineral elements and bioactive compounds in tartary buckwheat and wheat sprouts as affected by natural mineral-rich water. J. Cereal Sci. 2016, 69, 9–16. [Google Scholar] [CrossRef]
- Jiang, P.; Burczynski, F.; Campbell, C.; Pierce, G.; Austria, J.A.; Briggs, C.J. Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F. tataricum, and F. homotropicum and their protective effects against lipid peroxidation. Food Res. Int. 2007, 40, 356–364. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Zhao, Y.; Yuan, L.; Yang, X.B. Protective effects of tartary buckwheat flavonoids on high TMAO diet-induced vascular dysfunction and liver injury in mice. Food Funct. 2015, 6, 3359–3372. [Google Scholar] [CrossRef]
- Kim, S.L.; Kim, S.K.; Park, C.H. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Res. Int. 2004, 37, 319–327. [Google Scholar] [CrossRef]
- Qin, P.; Wei, A.; Zhao, D.; Yao, Y.; Yang, X.; Dun, B.; Ren, G. Low concentration of sodium bicarbonate improves the bioactive compound levels and antioxidant and α-glucosidase inhibitory activities of tartary buckwheat sprouts. Food Chem. 2017, 224, 124–130. [Google Scholar] [CrossRef]
- Huang, X.; Zeller, F.; Huang, K.; Shi, T.; Chen, Q. Variation of major minerals and trace elements in seeds of tartary buckwheat (Fagopyrum tataricum Gaertn.). Genet. Resour. Crop Evol. 2014, 61, 567–577. [Google Scholar] [CrossRef]
- Zhao, J.; Zou, L.; Zhong, L.; Peng, L.; Ying, P.; Tan, M.; Zhao, G. Effects of polysaccharide elicitors from endophytic Bionectria pityrodes Fat6 on the growth and flavonoid production in tartary buckwheat sprout cultures. Cereal Res. Commun. 2015, 43, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wang, J.; Guo, Y. Microwave irradiation enhances the germination rate of tartary buckwheat and content of some compounds in its sprouts. Polish J. Food Nutr. Sci. 2018, 68, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Kalinova, J.; Vrchotova, N. Level of catechin, myricetin, quercetin and isoquercitrin in buckwheat (Fagopyrum esculentum moench), changes of their levels during vegetation and their effect on the growth of selected weeds. J. Agric. Food Chem. 2009, 57, 2719–2725. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Xu, Z.; Gao, Y.; Huang, X.; Zou, Y.; Yang, T. Effects of germination on the nutritional properties, phenolic profiles, and antioxidant activities of buckwheat. J. Food Sci. 2015, 80, H1111–H1119. [Google Scholar] [CrossRef]
- Kim, S.J.; Zaidul, I.S.M.; Suzuki, T.; Mukasa, Y.; Hashimoto, N.; Takigawa, S.; Takahiro, N.; Chie, M.E.; Hiroaki, Y. Comparison of phenolic compositions between common and tartary buckwheat (Fagopyrum) sprouts. Food Chem. 2008, 110, 814–820. [Google Scholar] [CrossRef]
- Tsurunaga, Y.; Takahashi, T.; Katsube, T.; Kudo, A.; Kuranitsu, O.; Ishiwata, M.; Matsumoto, S. Effects of UV-B irradiation on the levels of anthocyanin, rutin and radical scavenging activity of buckwheat sprouts. Food Chem. 2013, 141, 552–556. [Google Scholar] [CrossRef]
- Li, H.; Lv, Q.; Ma, C.; Qu, J.; Cai, F.; Deng, J.; Huang, J.; Ran, P.; Shi, T.; Chen, Q. Metabolite profiling and transcriptome analyses provide insights into the flavonoid biosynthesis in the developing seed of tartary buckwheat (Fagopyrum tataricum). J. Agric. Food Chem. 2019, 67, 11262–11276. [Google Scholar] [CrossRef]
- Dziadek, K.; Kopeć, A.; Piątkowska, E.; Leszczyńska, T.; Pisulewska, E.; Witkowicz, R.; Bystrowska, B.; Francik, R. Identifcation of polyphenolic compounds and determination of antioxidant activity in extracts and infusions of buckwheat leaves. Eur. Food Res. Technol. 2018, 244, 333–343. [Google Scholar] [CrossRef]
- Wiczkowski, W.; Szawara-Nowak, D.; Dezbsk, H.; Mitrus, J.; Horbowicz, M. Comparison of flavonoids profifile in sprouts of common buckwheat cultivars and wild tartary buckwheat. Int. J. Food Sci. Technol. 2014, 49, 1977–1984. [Google Scholar] [CrossRef]
- Terpinc, P.; Cigić, B.; Polak, T.; Hribar, J.; Požrl, T. LC-MS analysis of phenolic compounds and antioxidant activity of buckwheat at different stages of malting. Food Chem. 2016, 210, 9–11. [Google Scholar] [CrossRef]
- Xiong, H.B.; Liu, M.H.; Chen, M.H.; Dai, J.H.; Gao, Y.T. Antioxidant activity and flavones compounds contents of tartary buckwheat seedlings extract. Asian J. Chem. 2013, 25, 4189–4194. [Google Scholar] [CrossRef]
- Nam, T.; Lee, S.; Park, J.; Kim, D.; Baek, N.; Eom, S. Flavonoid analysis of buckwheat sprouts. Food Chem. 2015, 170, 97–101. [Google Scholar] [CrossRef]
- Hwang, E.J.; Lee, S.Y.; Kwon, S.J.; Park, M.H.; Boo, H.O. Antioxidative, antimicrobial and cytotoxic activities of Fagopyrum esculentum Möench extract in germinated seeds. Korean J. Med. Crop Sci. 2006, 14, 1–7. [Google Scholar]
- Suzuki, T.; Morishita, T.; Kim, S.J.; Park, S.U.; Woo, S.H.; Noda, T.; Takigawa, S. Physiological roles of rutin in the buckwheat plant. Jpn. Agric. Res. Quart. 2015, 49, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Sawai, Y. Effect of light intensity on flavonoid contents of common and tartary buckwheat sprouts. Jpn. Soc. Food Sci. Technol. 2016, 63, 382–387. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.; Zou, B.; Wang, X.; Qiu, J.; Ma, H.; Gou, Z.; Song, S.; Dong, H. Quercetin-induced H2O2 mediates the pathogen resistance against Pseudomonas syringae pv. Tomato DC3000 in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 2010, 396, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.H.; Zhang, Z.; Shi, G.X.; Meng, J.C.; Tan, R.X. A new antifungal flavonol glycoside from Hypericum perforatum. Acta Bot. Sin. 2002, 44, 743–745. [Google Scholar]
- Askun, T.; Tumen, G.; Sstil, F.; Ates, M. In vitro activity of methanol extracts of plants used as spices against Mycobcterium tuberculosis and other bacteria. Food Chem. 2009, 116, 289–294. [Google Scholar] [CrossRef]
- Boligon, A.A.; Agertt, V.; Janovik, V.; Cruz, R.C.; Campos, M.M.A.; Guillaume, D.; Athayde, M.L.; dos Santos, A.R.S. Antimycobacterial activity of the fractions and compounds from Scutia buxifolia. Braz. J. Pharm. 2012, 22, 45–52. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, P.; Liu, D.; Sun, S.; Li, Z.; Yu, K.; Zhang, M.; Shi, Q. Research progress in structure-activity relationship of flavoniods. Chin. Tradit. Herb. Drugs 2015, 46, 3264–3271. [Google Scholar]
- Rammohan, A.; Bhaskar, B.V.; Venkateswarlu, N.; Rao, V.L.; Gunasekar, D.; Zyryanov, G.V. Isolation of flavonoids from the flowers of Rhynchosia beddomei Baker as prominent antimicrobial agents and molecular docking. Microb. Pathog. 2019, 136, 103667. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Peng, L.; Fu, J.; Zou, L.; Zhao, G.; Zhao, J. Phytochemical, antibacterial and antioxidant activity evaluation of Rhodiola Crenulata. Molecules 2020, 25, 3664. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.X.; Zou, L.; Wang, J.B.; Zhao, J.L.; Xiang, D.B.; Zhao, G. Flavonoids, antioxidant activity and aroma compounds analysis from different kinds of tartary buckwheat tea. Indian J. Pharm. Sci. 2015, 77, 661–667. [Google Scholar]
- Zhong, L.; Zhou, L.; Zhou, Y.; Chen, Y.; Sui, P.; Wang, J.; Wang, M. Antimicrobial flavonoids from the twigs of Populus nigra × Populus deltoids. Nat. Prod. Res. 2012, 26, 307–313. [Google Scholar] [CrossRef]
- Zhong, L.; Zou, L.; Tang, X.; Li, W.; Li, X.; Zhao, G.; Zhao, J. Community of endophytic fungi from the medicinal and edible plant Fagopyrum tataricum and their antimicrobial activity. Trop. J. Pharm. Res. 2017, 16, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Sakuma, M. Probit analysis of preference data. Appl. Entomol. Zool. 1998, 33, 339–347. [Google Scholar] [CrossRef] [Green Version]
- Wan-Nadilah, W.A.; Khozirah, S.; Khatib, A.; Hamid, A.A.; Hamid, M. Evaluation of the α-glucosidase inhibitory and free radical scavenging activities of selected traditional medicine plant species used in treating diabetes. Int. Food Res. J. 2019, 26, 75–85. [Google Scholar]
Compound | Retention Time (min) | Regress Equation (Y = aX + b) | Determination Coefficient (R2) | Content in the Extract (mg/g dw) | Content in the Sprouts (mg/g dw) |
---|---|---|---|---|---|
Isoorientin | 24.555 | Y = 65,468X + 26,976 | 0.9998 | 0.92 ± 0.04 | 0.32 ± 0.01 |
Vitexin | 25.837 | Y = 49,928X + 99,712 | 0.9990 | 2.84 ± 0.23 | 0.98 ± 0.08 |
Isovitexin | 27.002 | Y = 45,270X – 28,163 | 0.9996 | 6.28 ± 0.16 | 2.20 ± 0.06 |
Rutin | 28.068 | Y = 49,996X + 107,063 | 0.9992 | 89.81 ± 0.41 | 31.50 ± 0.14 |
Quercetin | 33.568 | Y = 43,830X – 60,890 | 0.9996 | 23.34 ± 2.54 | 8.17 ± 0.89 |
Kaemferol | 36.438 | Y = 68,692X – 16,938 | 0.9998 | 0.86 ± 0.01 | 0.30 ± 0.00 |
Test bacterium | ME | Isoorientin | Vitexin | Isovitexin | Rutin | Quercetin | Kaemferol | CK+ |
---|---|---|---|---|---|---|---|---|
A. tumefaciens | >3.2 | >0.60 | >0.60 | >0.60 | >0.60 | 0.20 | >0.60 | 0.04 |
E. coli | >3.2 | >0.60 | >0.60 | >0.60 | >0.60 | >0.60 | >0.60 | 0.04 |
P. lachrymans | 0.8 | >0.60 | >0.60 | >0.60 | >0.60 | 0.40 | >0.60 | 0.04 |
X. vesicatoria | >3.2 | >0.60 | >0.60 | >0.60 | >0.60 | 0.20 | >0.60 | 0.04 |
S. typhimurium | 1.6 | >0.60 | >0.60 | >0.60 | >0.60 | 0.60 | >0.60 | 0.04 |
B. subtilis | 1.6 | 0.60 | >0.60 | >0.60 | >0.60 | 0.40 | >0.60 | 0.04 |
S. albus | 3.2 | >0.60 | >0.60 | >0.60 | >0.60 | 0.40 | >0.60 | 0.04 |
S. aureus | 3.2 | >0.60 | >0.60 | >0.60 | >0.60 | 0.60 | 0.60 | 0.10 |
S. epidermidis | >3.2 | >0.60 | >0.60 | >0.60 | >0.60 | >0.60 | >0.60 | 0.04 |
Samples | Test Fungi | Regress Equation | Determination Coefficient (R2) | IC50 (µg/mL) |
---|---|---|---|---|
Quercetin | F. oxysporum f. sp. vasinfectum | Y = 2.3272X + 1.2137 | 0.9785 | 42.4 ± 2.6 |
F. oxysporum f. sp. cucumerinum | Y = 1.7053X + 2.4138 | 0.9421 | 32.9 ± 1.4 | |
Rutin | F. oxysporum f. sp. vasinfectum | Y = 2.3537X − 1.0019 | 0.9948 | 357.8 ± 15.5 |
F. oxysporum f. sp. cucumerinum | Y = 1.6574X + 1.0029 | 0.9767 | 257.3 ± 23.42 | |
Isoorientin | F. oxysporum f. sp. vasinfectum | nd | nd | >400 |
F. oxysporum f. sp. cucumerinum | Y = 0.3746X + 3.4929 | 0.9530 | 146.1 ± 9.8 | |
CK+ | F. oxysporum f. sp. vasinfectum | Y = 1.4235X + 2.9076 | 0.9896 | 29.5 ± 3.1 |
F. oxysporum f. sp. cucumerinum | Y = 1.2563X + 3.1901 | 0.9849 | 27.6 ± 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, L.; Lin, Y.; Wang, C.; Niu, B.; Xu, Y.; Zhao, G.; Zhao, J. Chemical Profile, Antimicrobial and Antioxidant Activity Assessment of the Crude Extract and Its Main Flavonoids from Tartary Buckwheat Sprouts. Molecules 2022, 27, 374. https://doi.org/10.3390/molecules27020374
Zhong L, Lin Y, Wang C, Niu B, Xu Y, Zhao G, Zhao J. Chemical Profile, Antimicrobial and Antioxidant Activity Assessment of the Crude Extract and Its Main Flavonoids from Tartary Buckwheat Sprouts. Molecules. 2022; 27(2):374. https://doi.org/10.3390/molecules27020374
Chicago/Turabian StyleZhong, Lingyun, Yuji Lin, Can Wang, Bei Niu, Ying Xu, Gang Zhao, and Jianglin Zhao. 2022. "Chemical Profile, Antimicrobial and Antioxidant Activity Assessment of the Crude Extract and Its Main Flavonoids from Tartary Buckwheat Sprouts" Molecules 27, no. 2: 374. https://doi.org/10.3390/molecules27020374
APA StyleZhong, L., Lin, Y., Wang, C., Niu, B., Xu, Y., Zhao, G., & Zhao, J. (2022). Chemical Profile, Antimicrobial and Antioxidant Activity Assessment of the Crude Extract and Its Main Flavonoids from Tartary Buckwheat Sprouts. Molecules, 27(2), 374. https://doi.org/10.3390/molecules27020374