A Promising Thermodynamic Study of Hole Transport Materials to Develop Solar Cells: 1,3-Bis(N-carbazolyl)benzene and 1,4-Bis(diphenylamino)benzene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification and DSC Parameters
2.2. Combustion and Formation Enthalpy in Condensed Phase
2.3. Phase Changes by Thermogravimetry
2.4. Experimental Enthalpy of Formation in Gas Phase
2.5. Computational Gas-Phase Enthalpy of Formation
2.6. Comparison and Comments on the Gas-Phase Enthalpy of Formation of NCB and DAB
3. Materials and Methods
3.1. Compounds and Differential Scanning Calorimetry (DSC)
3.2. Combustion Calorimetry
3.3. Thermogravimetry
3.4. Computational Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Konidena, R.K.; Chung, W.J.; Lee, J.Y. C1-, C2-, and C3-Modified carbazole derivatives as promising host materials for phosphorescent organic light-emitting diodes. Org. Lett. 2020, 22, 2786–2790. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Saklani, D.; Justin Thomas, K.R.; Shahnawaz; Swayamprabha, S.S.; Jou, J.-H. Synthesis and characterization of multi-substituted carbazole derivatives exhibiting aggregation-induced emission for OLED applications. Org. Electron. 2020, 86, 105864. [Google Scholar] [CrossRef]
- Venkateswararao, A.; Justin Thomas, K.R.; Lee, C.-P.; Li, C.-T.; Ho, K.-C. Organic dyes containing carbazole as donor and π-Linker: Optical, electrochemical, and photovoltaic properties. ACS Appl. Mater. Interfaces 2014, 6, 2528–2539. [Google Scholar] [CrossRef]
- Sun, D.; Yang, Z.; Ren, Z.; Li, H.; Bryce, M.R.; Ma, D.; Yan, S. Oligosiloxane Functionalized with Pendant (1,3-Bis(9-carbazolyl)benzene) (mCP) for Solution-Processed Organic Electronics. Chem. Eur. J. 2014, 20, 16233–16241. [Google Scholar] [CrossRef]
- Bahy, A.; Chemli, M.; Hassine, B.B. Synthesis and characterization of new carbazole-based materials for optoelectronic applications. Tetrahedron Lett. 2013, 54, 4026–4029. [Google Scholar] [CrossRef]
- Cias, P.; Slugovc, C.; Gescheidt, G. Hole Transport in triphenylamine based OLED devices: From theoretical modeling to properties prediction. J. Phys. Chem. A 2011, 115, 14519–14525. [Google Scholar] [CrossRef]
- Ivan, T.; Vacareanu, L.; Grigoras, M. Synthesis and optoelectronic characterization of some star-shaped oligomers with benzene and triphenylamine cores. ISRN Org. Chem. 2012, 2012, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.-T.; Lin, H.-T.; Liou, G.-S. Synthesis and characterization of novel triarylamine derivatives with dimethylamino substituents for application in optoelectronic devices. ACS Appl. Mater. Interfaces 2019, 11, 14902–14908. [Google Scholar] [CrossRef] [PubMed]
- Degbia, M.; Ben Manaa, M.; Schmaltz, B.; Berton, N.; Bouclé, J.; Antony, R.; Tran Van, F. Carbazole-based hole transporting material for solid state dye-sensitized solar cells: Influence of the purification methods. Mat. Sci. Semicon. Proc. 2016, 43, 90–95. [Google Scholar] [CrossRef]
- Braveenth, R.; Bae, H.W.; Ko, I.J.; Qiong, W.; Nguyen, Q.P.B.; Jayashantha, P.G.S.; Kwon, J.H.; Chai, K.Y. Thermally stable efficient hole transporting materials based on carbazole and triphenylamine core for red phosphorescent OLEDs. Org. Electron. 2017, 51, 463–470. [Google Scholar] [CrossRef]
- Zhang, B.; Liang, J.; Hu, L.; Peng, F.; Chen, G.; Yang, W. Triphenylamine-based broad band-gap polymers for bulk-heterojunction polymer solar cells. J. Mater. Sci. 2015, 50, 5609–5619. [Google Scholar] [CrossRef]
- van Dijken, A.; Bastiaansen, J.J.A.M.; Kiggen, N.M.M.; Langeveld, B.M.W.; Rothe, C.; Monkman, A.; Bach, I.; Stössel, P.; Brunner, K. Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: Polymer hosts for high-efficiency light-emitting diodes. J. Am. Chem. Soc. 2004, 126, 7718–7727. [Google Scholar] [CrossRef]
- Nguyen, Q.P.B.; Baek, S.J.; Kim, M.J.; Shin, N.Y.; Kim, G.W.; Choe, D.C.; Kwon, J.H.; Chai, K.Y. Novel hole transporting materials based on 4-(9H-Carbazol-9-yl)triphenylamine derivatives for OLEDs. Molecules 2014, 19, 14247–14256. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Liu, Y.; Xu, X.; Yang, C.; Yu, G.; Chen, S.; Zhao, Z.; Qiu, W.; Li, Y.; Zhu, D. Novel electroactive and photoactive molecular materials based on conjugated donor-acceptor structures for optoelectronic device applications. J. Phys. Chem. B 2005, 109, 10786–10792. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.D.; Wagman, D.D.; Medvedev, V.A. CODATA Key Values for Thermodynamics; Hemisphere Publishing Corp.: New York, NY, USA, 1989. [Google Scholar]
- Olofsson, G. Combustion Calorimetry; Sunner, S., Månsson, M., Eds.; Pergamon Press: Oxford, UK, 1979. [Google Scholar]
- Chirico, R.D.; Frenkel, M.; Diky, V.V.; Marsh, K.N.; Wilhoit, R.C. ThermoML-An XML-based approach for storages and exchange of experimental and critically evaluated thermophysical and thermochemical property data. 2. uncertainties. J. Chem. Eng. Data 2003, 48, 1344–1359. [Google Scholar] [CrossRef]
- Bevington, P.R.; Robinson, D.K. Data Reduction and Error Analysis for the Physical Sciences; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Chickos, J.S.; Hosseini, S.; Hesse, D.G.; Liebman, J.F. Heat capacity corrections to a standard state: A comparison of new and some literature methods for organic liquids and solids. Struct. Chem. 1993, 4, 271–278. [Google Scholar] [CrossRef]
- Mohr, P.J.; Newell, D.B.; Taylor, B.N. CODATA recommended values of the fundamental physical constants: 2014. Ver. Mod. Phys. 2016, 88, 035009. [Google Scholar] [CrossRef] [Green Version]
- International Union of Pure and Applied Chemistry. Compendium of Chemical Terminology, 2nd ed.; McNaught, A.D., Wilkinson, A., Eds.; Blackwell Scientific Publications: Oxford, UK, 1997. [Google Scholar] [CrossRef]
- Freitas, V.L.S.; Gomes, J.R.B.; Liebman, J.F.; Ribeiro da Silva, M.D.M.C. Energetic and reactivity properties of 9,10-dihydroacridine and diphenylamine: A comparative overview. J. Chem. Thermodyn. 2017, 115, 276–284. [Google Scholar] [CrossRef]
- Glendening, E.D.; Reed, A.E.; Carpenter, J.E.; Weinhold, F. NBO Version 3.1; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, USA, 1998. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J.C.; et al. Gaussian 03, Revision, D.01; Gaussian, Inc.: Wallingford, CT, USA, 2004. [Google Scholar]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oxtoby, D.W.; Gillis, H.P.; Campion, A. Principles of Modern Chemistry, 6th ed.; Thomson Brooks/Cole: Boston, MA, USA, 2008. [Google Scholar]
- Brown, M.E. Determination of purity by differential scanning calorimetry (DSC). J. Chem. Educ. 1979, 56, 310–313. [Google Scholar] [CrossRef]
- Höhne, G.W.H.; Hemminger, W.F.; Flammersheim, H.-J. Differential Scanning Calorimetry, 2nd ed.; Springer: New York, NY, USA, 2003. [Google Scholar]
- Sabbah, R.; Xu-wu, A.; Chickos, J.S.; Leitão, M.L.P.; Roux, M.V.; Torres, L.A. Reference materials for calorimetry and differential thermal analysis. Thermochim. Acta 1999, 331, 93–204. [Google Scholar] [CrossRef]
- Mentado, J.; Mendoza, E. Calibration and testing of an isoperibolic micro-combustion calorimeter developed to measure the enthalpy of combustion of organic compounds containing C, H, O and N. J. Chem. Thermodyn. 2013, 59, 209–213. [Google Scholar] [CrossRef]
- Coops, J.; Jessup, R.S.; van Nes, K. Calibration of calorimeters for reactions in a bomb at constant volume. In Experimental Thermochemistry; Rossini, F.D., Ed.; Interscience: New York, NY, USA, 1956; Volume 1. [Google Scholar]
- Mendoza-Ruiz, E.A.; Mentado-Morales, J.; Flores-Segura, H. Standard molar enthalpies of formation and phase changes of Tetra-N-phenylbenzidine and 4,4′-Bis (N-carbazolyl)-1,1′-biphenyl. J. Therm. Anal. Calorim. 2019, 135, 2337–2345. [Google Scholar] [CrossRef]
- Flores, H.; Amador, P. Standard molar enthalpies of formation of crystalline stereoisomers of aldono-1,4-lactones. J. Chem. Thermodyn. 2004, 36, 1019–1024. [Google Scholar] [CrossRef]
- Good, W.D.; Smith, N.K. Enthalpies of combustion of toluene, benzene, cyclohexane, cyclohexene, methylcyclopentane, 1-methylcyclopentene, and n-hexane. J. Chem. Eng. Data 1969, 14, 102–106. [Google Scholar] [CrossRef]
- Wadsö, I. Calculation methods in reaction calorimetry. Sci. Tools 1966, 13, 33–39. [Google Scholar]
- Flores, H.; Mentado, J.; Amador, P.; Torres, L.A.; Campos, M.; Rojas, A. Redesigning the rotating-bomb combustion calorimeter. J. Chem. Thermodyn. 2006, 38, 756–759. [Google Scholar] [CrossRef]
- Mentado, J. Standard molar enthalpy of combustion and formation of enantiomers: (S)-(+)-3,5-Dinitro-N-(1-phenylethyl)benzamide and (R)-(–)-3,5-Dinitro-N-(1-phenylethyl)benzamide. J. Chem. Thermodyn. 2013, 64, 134–136. [Google Scholar] [CrossRef]
- Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Halow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L. The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 1982, 11, 73. [Google Scholar] [CrossRef]
- Good, W.D.; Lacina, J.L.; McCullough, J.P. Sulfuric acid: Heat of formation of aqueous solutions by rotating-bomb calorimetry. J. Am. Chem. Soc. 1960, 82, 5589–5591. [Google Scholar] [CrossRef]
- Washburn, E.W. Standards states for bomb calorimetry. J. Res. Nat. Bur. Stand. 1933, 10, 525–558. [Google Scholar] [CrossRef]
- Hubbard, W.N.; Scott, D.W.; Waddington, G. Experimental Thermochemistry; Rossini, F.D., Ed.; Interscience: New York, NY, USA, 1956; Chapter 5. [Google Scholar]
- Meija, J.; Coplen, T.B.; Berglund, M.; Brand, W.A.; De Bièvre, P.; Gröning, M.; Holden, N.E.; Irrgeher, J.; Loss, R.D.; Walczyk, T.; et al. Atomic weights of the elements 2013 (IUPAC Technical Report). Pure Appl. Chem. 2016, 88, 265–291. [Google Scholar] [CrossRef]
- Langmuir, I. The vapor pressure of metallic tungsten. Phys. Rev. 1913, 2, 329–342. [Google Scholar] [CrossRef]
- Langmuir, I. Phenomena, Atoms and Molecules; Philosophical Library, Inc.: New York, NY, USA, 1950. [Google Scholar]
- Price, D.M.; Hawkins, M. Calorimetry of two disperse dyes using thermogravimetry. Thermochim. Acta 1998, 315, 19–24. [Google Scholar] [CrossRef]
- Tesconi, M.S.; Morris, R.H.; Yalkowsky, S.H. A practical method for the estimation of ambient vaporization rates of compounds. Chemosphere 1999, 38, 3193–3209. [Google Scholar] [CrossRef]
- Phang, P.; Dollimore, D.; Evans, S.J. A comparative method for developing vapor pressure curves based on evaporation data obtained from a simultaneous TG–DTA unit. Thermochim. Acta 2002, 392–393, 119–125. [Google Scholar] [CrossRef]
- Wright, S.F.; Dollimore, D.; Dunn, J.G.; Alexander, K. Determination of the vapor pressure curves of adipic acid and triethanolamine using thermogravimetric analysis. Thermochim. Acta 2004, 421, 25–30. [Google Scholar] [CrossRef]
- Pieterse, N.; Focke, W.W. Diffusion-controlled evaporation through a stagnant gas: Estimating low vapour pressures from thermogravimetric data. Thermochim. Acta 2003, 406, 191–198. [Google Scholar] [CrossRef]
- Ramos, F.; Ledo, J.M.; Flores, H.; Camarillo, E.A.; Carvente, J.; Amador, M.P. Evaluation of sublimation enthalpy by thermogravimetry: Analysis of the diffusion effects in the case of methyl and phenyl substituted hydantoins. Thermochim. Acta 2017, 655, 181–193. [Google Scholar] [CrossRef]
- Vieyra-Eusebio, M.T.; Rojas, A. Vapor pressures and sublimation enthalpies of nickelocene and cobaltocene measured by thermogravimetry. J. Chem. Eng. Data 2011, 56, 5008–5018. [Google Scholar] [CrossRef]
- Flores, H.; Ledo, J.M.; Camarillo, E.A.; Solano-Altamirano, J.M.; Hernández-Pérez, J.M.; Ramos, F.; Rabell, B. Thermochemical study of methyl n-methoxybenzoates: An experimental and computational approach. J. Chem. Eng. Data 2019, 64, 1898–1908. [Google Scholar] [CrossRef]
- Ximello, A.; Flores, H.; Rojas, A.; Camarillo, E.A.; Amador, M.P. Gas phase enthalpies of formation of nitrobenzamides using combustion calorimetry and thermal analysis. J. Chem. Thermodyn. 2014, 79, 33–40. [Google Scholar] [CrossRef]
- Price, D.M. Vapor pressure determination by thermogravimetry. Thermochim. Acta 2001, 367–368, 253–262. [Google Scholar] [CrossRef]
- Price, D.M. Volatilisation, evaporation and vapour pressure studies using a thermobalance. J. Therm. Anal. Calorim. 2001, 64, 315–322. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Zaitsau, D.H.; Emel̀yanenko, V.N.; Heintz, A. A new method for the determination of vaporization enthalpies of ionic liquids at low temperatures. J. Phys. Chem. B 2011, 115, 12889–12895. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Ralys, R.V.; Zaitsau, D.H.; Emel̀yanenko, V.N.; Schick, C. Express thermo-gravimetric method for the vaporization enthalpies appraisal for very low volatile molecular and ionic compounds. Thermochim. Acta 2012, 538, 55–62. [Google Scholar] [CrossRef]
- Pena, R.; Ribet, J.P.; Maurel, J.L.; Valat, L.; Lacoulonche, F.; Chauvet, A. Sublimation and vaporisation processes of S(–)efaroxan hydrochloride. Thermochim. Acta 2003, 408, 85–96. [Google Scholar] [CrossRef]
- Sánchez-Bulás, T.; Cruz-Vásquez, O.; Hernández-Obregón, J.; Rojas, A. Enthalpies of fusion, vaporisation and sublimation of crown ethers determined by thermogravimetry and differential scanning calorimetry. Thermochim. Acta 2016, 650, 123–133. [Google Scholar] [CrossRef]
- Baboul, A.G.; Curtiss, L.A.; Redfern, P.C.; Raghavachari, K. Gaussian-3 theory using density functional geometries and zero-point energies. J. Chem. Phys. 1999, 110, 7650–7657. [Google Scholar] [CrossRef]
- Ribeiro da Silva, M.D.M.C.; Freitas, V.L.S.; Gomes, J.R.B.; Vieira, M.A.A.; Sottomayor, M.J.; Acree, W.E., Jr. Energetic and Structural Properties of 4-Nitro-2,1,3-benzothiadiazole. J. Chem. Thermodyn. 2012, 49, 146–153. [Google Scholar] [CrossRef]
- Freitas, V.L.S.; Gomes, J.R.B.; Ribeiro da Silva, M.D.M.C. A computational study on the energetics and reactivity of some xanthene and thioxanthene derivatives. Struct. Chem. 2013, 24, 661–670. [Google Scholar] [CrossRef]
- Freitas, V.L.S.; Gomes, J.R.B.; Ribeiro da Silva, M.D.M.C. Structural, energetic and reactivity properties of phenoxazine and phenothiazine. J. Chem. Thermodyn. 2014, 73, 110–120. [Google Scholar] [CrossRef]
Commercial Name (Acronym) | CAS Number | Source | Initial Mass Fraction Purity 1 | Purification Method 2 | Final Mass Fraction Purity 3 |
---|---|---|---|---|---|
1,3-bis(N-carbazolyl)benzene (NCB) | 550378-78-4 | Sigma Aldrich® | 0.97 | recrystallization | 0.9996 ± 0.0003 |
1,4-bis(diphenylamino)benzene (DAB) | 14118-16-2 | 0.97 | recrystallization | 0.9997 ± 0.0001 |
Compound | |||
---|---|---|---|
NCB | 15,003.3 ± 6.6 1 | 15,013.2 ± 6.6 1 | 349.6 ± 7.7 2 |
DAB | 15,599.3 ± 6.7 1 | 15,611.7 ± 6.7 1 | 376.4 ± 7.8 2 |
550.0 | 16.6151 | 0.6021 | 1.818 | 14.921 |
555.0 | 16.5950 | 0.7384 | 1.802 | 14.708 |
560.0 | 16.5695 | 0.9424 | 1.786 | 14.455 |
565.0 | 16.5376 | 1.1899 | 1.770 | 14.213 |
570.0 | 16.4976 | 1.4724 | 1.754 | 13.991 |
575.0 | 16.4478 | 1.8404 | 1.739 | 13.759 |
580.0 | 16.3861 | 2.2805 | 1.724 | 13.536 |
585.0 | 16.3098 | 2.8146 | 1.709 | 13.317 |
590.0 | 16.2163 | 3.4351 | 1.695 | 13.109 |
595.0 | 16.1018 | 4.1887 | 1.681 | 12.902 |
600.0 | 15.9623 | 5.0904 | 1.667 | 12.699 |
605.0 | 15.7934 | 6.1669 | 1.653 | 12.499 |
610.0 | 15.5897 | 7.4318 | 1.639 | 12.304 |
615.0 | 15.3450 | 8.8927 | 1.626 | 12.116 |
620.0 | 15.0535 | 10.6169 | 1.613 | 11.931 |
625.0 | 14.7053 | 12.6390 | 1.600 | 11.749 |
630.0 | 14.2936 | 14.8808 | 1.587 | 11.577 |
635.0 | 13.8080 | 17.4926 | 1.575 | 11.408 |
640.0 | 13.2393 | 20.4814 | 1.563 | 11.242 |
645.0 | 12.5737 | 23.8926 | 1.550 | 11.080 |
650.0 | 11.7970 | 27.8601 | 1.538 | 10.919 |
= 11.3–14,396.9/T; r2 = 0.9997; σa = 0.10; σb = 58.5; (600.0 K)/kJ⋅mol−1 = 119.7 ± 0.5 | ||||
= 10.9–14,198.1/T; r2 = 0.9998; σa = 0.07; σb = 42.2; (600.0 K)/kJ⋅mol−1 = 118.0 ± 0.4 | ||||
= 11.1–14,281.6/T; r2 = 0.9997; σa = 0.10; σb = 59.3; (600.0 K)/kJ⋅mol−1 = 118.7 ± 0.5 | ||||
= 11.1–14,240.9/T; r2 = 0.9997; σa = 0.10; σb = 59.2; (600.0 K)/kJ⋅mol−1 = 118.4 ± 0.5 | ||||
(NCB, 600 K)>/kJ⋅mol−1 = 118.6 ± 0.4 |
500.00 | 10.6641 | 0.4411 | 2.000 | 15.327 |
505.00 | 10.6492 | 0.5658 | 1.980 | 15.068 |
510.00 | 10.6296 | 0.7364 | 1.961 | 14.795 |
515.00 | 10.6044 | 0.9464 | 1.942 | 14.534 |
520.00 | 10.5724 | 1.1944 | 1.923 | 14.292 |
525.00 | 10.5325 | 1.4796 | 1.905 | 14.068 |
530.00 | 10.4828 | 1.8358 | 1.887 | 13.843 |
535.00 | 10.4210 | 2.2892 | 1.869 | 13.613 |
540.00 | 10.3441 | 2.8443 | 1.852 | 13.386 |
545.00 | 10.2492 | 3.5138 | 1.835 | 13.166 |
550.00 | 10.1321 | 4.2965 | 1.818 | 12.956 |
555.00 | 9.9888 | 5.2672 | 1.802 | 12.743 |
560.00 | 9.8140 | 6.4049 | 1.786 | 12.538 |
565.00 | 9.6021 | 7.7353 | 1.770 | 12.341 |
570.00 | 9.3460 | 9.3120 | 1.754 | 12.146 |
575.00 | 9.0390 | 11.1517 | 1.739 | 11.957 |
580.00 | 8.6720 | 13.2946 | 1.724 | 11.773 |
585.00 | 8.2371 | 15.7318 | 1.709 | 11.596 |
590.00 | 7.7230 | 18.5333 | 1.695 | 11.424 |
595.00 | 7.1203 | 21.6737 | 1.681 | 11.259 |
600.00 | 6.4172 | 25.1040 | 1.667 | 11.103 |
= 10.1–12,705.0/T; r2 = 0.9997; σa = 0.09; σb = 51.7; (550.0 K)/kJ⋅mol−1 = 105.6 ± 0.4 | ||||
= 10.7–13,059.5/T; r2 = 0.9993; σa = 0.15; σb = 80.0; (550.0 K)/kJ⋅mol−1 = 108.6 ± 0.7 | ||||
= 10.7–13,042.7/T; r2 = 0.9993; σa = 0.14; σb = 77.1; (550.0 K)/kJ⋅mol−1 = 108.4 ± 0.6 | ||||
= 10.8–13,049.3/T; r2 = 0.9992; σa = 0.15; σb = 84.3; (550.0 K)/kJ⋅mol−1 = 108.5 ± 0.7 | ||||
(DAB, 550 K)>/kJ⋅mol−1 = 107.2 ± 0.6 |
Compound | |||||||
---|---|---|---|---|---|---|---|
NCB | 450.84 ± 0.08 1,2 | 600.0 | 31.5 ± 0.1 1,2 | 118.6 ± 0.4 3 | 128.2 ± 0.8 4,6 | 159.6 ± 0.8 5,7 | 164.5 ± 1.5 4,8 |
DAB | 475.72 ± 0.04 1,2 | 550.0 | 45.9 ± 0.2 1,2 | 107.2 ± 0.6 3 | 112.0 ± 1.2 4,6 | 157.9 ± 1.2 5,7 | 163.6 ± 2.3 4,8 |
Compound | |||
---|---|---|---|
NCB | 164.5 ± 1.5 | 349.6 ± 7.7 | 514.1 ± 7.8 |
DAB | 163.6 ± 2.3 | 376.4 ± 7.8 | 540.0 ± 8.1 |
Hypothetical Gas-Phase Reactions | ||||
---|---|---|---|---|
(R7.1) | 0.95 | 548.65 | ||
(R7.2) | −20.31 | 541.41 | ||
(R7.3) | −11.50 | 529.50 | ||
(R7.4) | −2.54 | 534.54 | ||
Mean value: | 539 ± 26 1 |
Hypothetical Gas-Phase Reactions | ||||
---|---|---|---|---|
(R8.1) | −0.29 | 571.69 | ||
(R8.2) | −24.29 | 568.99 | ||
(R8.3) | −48.29 | 566.29 | ||
(R8.4) | −39.32 | 571.32 | ||
(R8.5) | −36.78 | 575.28 | ||
Mean value: | 570.7 ± 8.3 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mentado-Morales, J.; Ximello-Hernández, A.; Salinas-Luna, J.; Freitas, V.L.S.; Ribeiro da Silva, M.D.M.C. A Promising Thermodynamic Study of Hole Transport Materials to Develop Solar Cells: 1,3-Bis(N-carbazolyl)benzene and 1,4-Bis(diphenylamino)benzene. Molecules 2022, 27, 381. https://doi.org/10.3390/molecules27020381
Mentado-Morales J, Ximello-Hernández A, Salinas-Luna J, Freitas VLS, Ribeiro da Silva MDMC. A Promising Thermodynamic Study of Hole Transport Materials to Develop Solar Cells: 1,3-Bis(N-carbazolyl)benzene and 1,4-Bis(diphenylamino)benzene. Molecules. 2022; 27(2):381. https://doi.org/10.3390/molecules27020381
Chicago/Turabian StyleMentado-Morales, Juan, Arturo Ximello-Hernández, Javier Salinas-Luna, Vera L. S. Freitas, and Maria D. M. C. Ribeiro da Silva. 2022. "A Promising Thermodynamic Study of Hole Transport Materials to Develop Solar Cells: 1,3-Bis(N-carbazolyl)benzene and 1,4-Bis(diphenylamino)benzene" Molecules 27, no. 2: 381. https://doi.org/10.3390/molecules27020381
APA StyleMentado-Morales, J., Ximello-Hernández, A., Salinas-Luna, J., Freitas, V. L. S., & Ribeiro da Silva, M. D. M. C. (2022). A Promising Thermodynamic Study of Hole Transport Materials to Develop Solar Cells: 1,3-Bis(N-carbazolyl)benzene and 1,4-Bis(diphenylamino)benzene. Molecules, 27(2), 381. https://doi.org/10.3390/molecules27020381