Research Progress of Bonding Agents and Their Performance Evaluation Methods
Abstract
:1. Introduction
2. Progress of Different Types of Bonding Agents
2.1. Alcohol Amine Bonding Agent
2.2. Polyamine Bonding Agent
2.3. Titanate Bonding Agent
2.4. Borate Ester Bonding Agent
2.5. Aziridine Bonding Agent
2.6. Hydantoin/Triazine Bonding Agent
2.7. Organosilane Bonding Agent
2.8. Neutral Polymer Bonding Agent
2.9. Other Types of Novel Bonding Agents
3. Progress on Evaluation Method of the Interfacial Interactions of Bonding Agents
3.1. Basic Qualitative Methods
3.1.1. Mechanical Analysis
3.1.2. Conventional Structural Characterization Methods
3.2. Semi-Quantitative Surface Analysis Methods
3.2.1. X-ray Photoelectron Spectroscopy (XPS)
3.2.2. Micromorphological Analysis
3.2.3. Contact Angle
3.3. Simulation and Calculation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, Z.F.; Chen, B.; Lu, T.T.; Pan, Y.F.; Ding, F.; Wang, Y.L. Progress in Bonding Agent for Composite Solid Propellant. Chem. World 2019, 60, 833–844. [Google Scholar] [CrossRef]
- Oberth, A.E.; Bruenner, R.S. Polyurethane Based Propellants. In Advances in Chemistry Series 88-Propellants Manufacture, Hazards, and Testing; Gould, R.F., Ed.; ACS Publication: Washington, DC, USA, 1969; pp. 84–121. [Google Scholar] [CrossRef]
- Sun, L.J.; Chang, S.J.; Yang, X.Q.; Liu, X. Research progress of neutral polymeric bonding agent. Chem. Propellants Polym. Mater. 2016, 14, 44–49. [Google Scholar] [CrossRef]
- Conyers, J.A.; Oberth, A.E.; Santerre, G.M. Solid Propellant Composition. U.S. Patent 4332632, 1 June 1982. [Google Scholar]
- Chen, L.L. Synthesis and Application of Alkanolamine Polyester Bonding Agent. Liming Chem. 1994, 5, 12–15. [Google Scholar]
- Zheng, T.T.; Li, M.M.; Chen, J.J.; Ji, M.W.; Li, H. Influence of Bonding Agent on Mechanical Properties of HTPE Propellant. Chem. Propellants Polym. Mater. 2018, 16, 39–42. [Google Scholar] [CrossRef]
- Tang, H.X.; Liu, X.L.; Wu, Q. Action Mechanism of Special Functional Agents in Composite Solid Propellants—(II)HTPB/Al System. J. Solid Rocket. Technol. 2002, 3, 41–44. [Google Scholar]
- Tang, H.X.; Liu, X.L.; Wu, Q. Action Mechanisms of Special Functional Agents in Composite Solid Propellants—(I)HTPB/AP system. J. Solid Rocket. Technol. 2002, 1, 41–45. [Google Scholar]
- Shen, Y.W.; Zhang, Y.C.; Tong, T.T. Study on Adjustment Technology for High Temperature Mechanical Properties of PBT Insensitive High Energy Propellant. J. Propuls. Technol. 2018, 39, 2595–2600. [Google Scholar] [CrossRef]
- Oberth, A.E. Principle of Strength Reinforcement in Filled Rubbers. Rubber Chem. Technol. 1967, 40, 1337. [Google Scholar] [CrossRef]
- Oberth, A.E.; Bruenner, R.S. Bonding Agents for Polyurethane. U.S. Patent 4000023, 28 December 1976. [Google Scholar]
- Oberth, A.E.; Bruenner, R.S. Solid Propellant Composition with a Polyurethane Binder. U.S. Patent 3919011, 11 November 1975. [Google Scholar]
- Li, H.X.; Deng, J.R.; Tang, H.X. Chelated Titanate Aids Used in Nitrate Plasticized Polyether Propellant. J. Propuls. Technol. 2000, 21, 73–76. [Google Scholar] [CrossRef]
- Thomas, J.C.; Demko, A.R.; Sammet, T. Mechanical Properties of Composite AP/HTPB Propellants Containing Novel Titania Nanoparticles. Propellants Explos. Pyrotech. 2016, 41, 822–934. [Google Scholar] [CrossRef]
- Pereira, C.A.; Oliveira, F.G.; Villar, L.D. Association of Castor Oil and Tepanol as a Filler-binder Bonding Agent for Solid Rocket Propellant. In Proceedings of the Joint Propulsion Conference, Cincinnati, OH, USA, 9–11 July 2018. [Google Scholar] [CrossRef]
- Li, H.L.; Dong, B.; Han, Y.A.; Lou, S.F.; Li, J.; Li, W.J. The Coupling Mechanism and Research Progress on Titanate Coupling Agents. Surf. Technol. 2012, 41, 99–102. [Google Scholar] [CrossRef]
- Lin, G.M.; Chang, Y.X.; Chen, Y.; Zhang, W.; Ye, Y.C.; Guo, Y.W.; Jin, S.H. Synthesis of a Series of Dual-Functional Chelated Titanate Bonding Agents and Their Application Performances in Composite Solid Propellants. Molecules 2020, 25, 5353. [Google Scholar] [CrossRef]
- Liu, X.; Pang, A.M.; Hong, X.L.; Qiao, Y.K.; Li, Z.Y.; Hu, B. Research Progress of Bonding Agents for Nitramine-based Composite Solid Propellants. J. Solid Rocket. Technol. 2017, 40, 714–719. [Google Scholar] [CrossRef]
- Zhang, X.L.; Liu, M.E.; Wang, X.D.; Duan, J.H.; Yu, Y. Study on high efficiency bonding agents for less smoke and low characteristic signal propellant. Chem. Propellants Polym. Mater. 2019, 17, 54–57. [Google Scholar] [CrossRef]
- Wang, Z.H.; Liang, B. Synthesis and Application of Novel Borate Coupling Agent. Plastics 2019, 48, 100–104. [Google Scholar]
- Cui, R.X.; Zhang, W.; Chen, L. Synthesis and Application of Borate Bonding Agents for AP/RDX/Al/HTPB Propellant. J. Solid Rocket. Technol. 2012, 35, 372–375. [Google Scholar]
- Liu, M.E.; Zhang, X.L.; Deng, J.R. Synthesis and Application of Modified Borate Ester Bonding Agent for HTPB Propellant. Chin. J. Energetic Mater. 2016, 24, 550–554. [Google Scholar]
- Zhang, X.L.; Liu, M.E.; Tan, X.L.; Peng, J.; Deng, J.R. Synthesis and Application of Borate Ester Bonding Agents for a Four-Component Hydroxy-Terminated Polybutadiene Propellant. Propellants Explos. Pyrotech. 2015, 40, 831–837. [Google Scholar] [CrossRef]
- Zhang, X.L.; Liu, M.E.; Liu, W.Z.; Deng, J.R. Synthesis and Interfacial Adhesion Interaction of Borate Ester Bonding Agents Used for HTPB Propellants. Propellants Explos. Pyrotech. 2016, 41, 814–821. [Google Scholar] [CrossRef]
- Zhang, X.L.; Liu, M.E.; Wang, Z.Y.; Deng, J.R. Study on Interfacial Adhesion Interaction of BEBA Used for HTPB Propellant. J. Solid Rocket. Technol. 2016, 39, 667–671. [Google Scholar]
- Li, X.F.; Jia, C.H.; Liu, T.; Bai, G.Q.; Chen, L.L. Synthesis and Application of Novel Fluorine-containing Borate Bonding Agents. Chem. Propellants Polym. Mater. 2018, 16, 40–44. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zhang, X.L.; Deng, J.R. Synthesis and Characterization of Series of Heterocyclic Chelating Borate Ester Bonding Agents. J. Solid Rocket. Technol. 2016, 39, 231–235. [Google Scholar]
- Chen, L.L. Synthesis and Application of Aziridine Bonding Agents. Liming Chem. 1992, 2, 23–24. [Google Scholar]
- Hu, W.; Li, S.H.; Tang, G.; Xu, S.L. Study on Interaction Between Bonding Agent MAPO and Oxidizers AP, HMX and RDX. J. Solid Rocket. Technol. 2010, 33, 533–536. [Google Scholar]
- Wei, Z.L.; Hao, X.; Liu, J.Q.; Duan, H.J.; Kang, L.Y. Improving Mechanical Property of Low-burning Rate AP/AL/HTPB Propellants. Ordnance Mater. Sci. Eng. 2012, 35, 60–62. [Google Scholar] [CrossRef]
- Jiao, D.M.; Yang, Y.C.; Qiang, H.F.; Wu, W.M. Molecular Simulation of Effect of Bonding Agents on Interface Interaction for HTPB and Al/Al2O3. Chin. J. Explos. Propellants 2009, 32, 60–63. [Google Scholar] [CrossRef]
- Hori, K.; Iwama, A.; Fukuda, T. FTIR Spectroscopic Study on the Interaction Between Ammonium Perchlorate and Bonding Agents. Propellants Explos. Pyrotech. 1990, 15, 99–102. [Google Scholar] [CrossRef]
- Elall, A.M.A.; Lin, G. Synthesis of Long Chain Bonding Agent of CSRP and its Effect on Propellant Mechanical Properties. Propellants Explos. Pyrotech. 2018, 43, 904–915. [Google Scholar] [CrossRef]
- Elall, A.M.A.; Lin, G. Effect of Long-Chain Bonding Agent on the Combustion of Composite Propellant and Modification of Combustion Performance Using Nano Additives. Combust. Sci. Technol. 2021, 193, 40–59. [Google Scholar] [CrossRef]
- Wu, Z.; Hou, Y.H.; Wu, Q.J.; Xu, S. Research Progress of Hydantoin/triazine Bonding Agents for Solid Propellant. Chem. Propellants Polym. Mater. 2018, 16, 29–31. [Google Scholar] [CrossRef]
- Consaga, J.P. Dimethyl Hydantoin Bonding Agents in Solid Propellants. U.S. Patent 4214928, 29 July 1980. [Google Scholar]
- Consaga, J.P. Bonding Agent for Composite Propellants. U.S. Patent 4944815, 31 July 1990. [Google Scholar]
- Pires, D.C.; Stockler-Pinto, D.V.B.; Jairo, S. Synthesis and Characterization by Infrared Spectroscopy of Hydantoin-based Bonding Agents, Used in Composite Propellants. J. Aerosp. Technol. Manag. 2009, 1, 177–184. [Google Scholar] [CrossRef]
- Luo, Y.J.; Li, G.P.; Zhang, B.; Tan, H.M. Mechanical Properties of NEPE Propellant Containing CL-20. Chin. J. Explos. Propellants 2005, 4, 28–31. [Google Scholar] [CrossRef]
- Li, J.C.; Jiao, Q.J.; Ren, H. RDX Coated with Hyantoin/Triazines Composite Bonding Agent. Chin. J. Energetic Mater. 2008, 16, 56–59. [Google Scholar]
- Brzić, S.J.; Ušćumlić, G.S.; Dimić, M.V. Viscoelastic Behaviour of Carboxyl-Terminated (Butadiene-co-Acrylonitrile)-Based Composite Propellant Binder Containing Polyglycidyl-type Bonding Agent. Hem. Ind. 2016, 70, 547–556. [Google Scholar] [CrossRef]
- Brzić, S.J.; Jelisavac, L.N.; Galovic, J.R.; Simic, D.M.; Petkovic, J.L. Viscoelastic Properties of Hydroxyl-Terminated Poly(butadiene)-Based Composite Rocket Propellants. Hem. Ind. 2014, 68, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.Y.; Zhang, J.Q.; Hang, T.Z.; Kang, X.M.; Zhang, Y. Synthesis and Performances of Polyether Heretocycle Amide Bonding Agent. Chin. J. Appl. Chem. 2010, 27, 1004–1007. [Google Scholar]
- Yao, Y.Y.; Zhang, J.Q.; Zhao, Q.P. Study on Interaction Between HMX and Bonding Agents Containing Polyether of Heterocycle Amide. Adhesive 2010, 31, 41–44. [Google Scholar] [CrossRef]
- Pan, B.F.; Luo, Y.J.; Tan, H.M. Study on Interaction Between CL-20 and Dendritic Bonding Agent. Energetic Mater. 2004, 4, 199–202. [Google Scholar] [CrossRef]
- Pan, B.F.; Luo, Y.J.; Tan, H.M. Interaction Between HMX and Dendritic Bonding Agent. Chin. J. Explos. Propellants 2004, 3, 25–28. [Google Scholar] [CrossRef]
- Pan, B.F.; Luo, Y.J.; Tan, H.M. Study on Interaction Between AP and Dendritic Bonding Agent. Energetic Mater. 2004, 1, 6–9. [Google Scholar] [CrossRef]
- Pan, B.F.; Zhang, L.; Luo, Y.J.; Tan, H.M. Study on Interaction Between RDX and Dendritic Bonding Agent. J. Propuls. Technol. 2003, 5, 470–473. [Google Scholar] [CrossRef]
- Yin, R.C.; Zhang, W.B. Production Situation and Research of Silane Coupling Agents. China Sci. Technol. Inf. 2010, 10, 44–46. [Google Scholar] [CrossRef]
- Arkles, B. Tailoring Surfaces with Silanes. Chem. Tech. 1977, 7, 766. [Google Scholar]
- Li, Y.H.; Zhang, C.X.; Li, Z.B.; Pan, G.Q. Controllable Synthesis and Characterization of 4HTPI-Si Liquid Rubber with High 1,4-Structure Content Applied to Rocket Solid Propellant Matrix. J. Macromol. Sci. Part A 2021, 58, 499–507. [Google Scholar] [CrossRef]
- Zhang, J.C.; Zhang, Z.K.; Li, J.; Yan, P.S. Synthesis of 2-acetate-thio-1-ethyl triethoxysilane. Mod. Chem. Ind. 2021, 41, 274–276. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Z.; Li, H.X.; Tao, B.W.; Li, S.W. Research Progress of Bonding Agents for Solid Propellants. Chem. Propellants Polym. Mater. 2017, 15, 8–14. [Google Scholar] [CrossRef]
- Zhang, X.D.; Li, J.M.; Yang, R.J.; Zhao, X.Q. Surface Modification of Phase Stabilized Ammonium Nitrate and Its Application in Solid Composite Propellants. Chin. J. Explos. Propellants 2009, 32, 5–8. [Google Scholar] [CrossRef]
- Grau, H.; Fadeev, A.Y. “Raincoat for Explosives”: Surface Chemistry Approach to Control Wetting of Nitrocellulose with Nitroglycerin. J. Colloid Interface Sci. 2019, 547, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.P.; Liu, Z.T.; Liu, Q.; Liao, X. Study on Improving the Mechanism Properties of Nitroguanidine Gun Propellant with KH550 at Low Temperature. Chin. J. Explos. Propellants 2016, 39, 90–93. [Google Scholar] [CrossRef]
- Wang, H.S.; Tao, B.W.; Zhang, X.P.; Gu, J.; Li, L.; Huang, D.C. Study of Synthesis and Properties of Organosilane Bonding Agents for Solid Propellants. J. Solid Rocket. Technol. 2020, 43, 23–28. [Google Scholar]
- Bruenner, R.S. Bonding Agents for Polyurethanes. U.S. Patent 4410376, 18 October 1983. [Google Scholar]
- Kim, C.S.; Youn, H.; Noble, P.N. The Mechanism of Filler Reinforcement from Addition of Neutral Polymeric Bonding Agents to Energetic Polar Propellants. Propellants Explos. Pyrotech. 1992, 17, 51–58. [Google Scholar] [CrossRef]
- Kim, C.S.; Youn, H.; Noble, P.N. Development of Neutral Polymeric Bonding Agents for Propellants with Polar Composites Filled with Organic Nitramine Crystals. Propellants Explos. Pyrotech. 1992, 17, 38–42. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, Q.; Wang, Y. Preliminary Application of Block Neutral Polymeric Bonding Agent in NEPE Propellant. Chem. Propellants Polym. Mater. 2017, 15, 50–53. [Google Scholar] [CrossRef]
- Wang, X.Y.; He, T.S.; Zhang, L.; Tang, Q.; Hu, X. Effect of Environment Pressure on the Uniaxial Tensile Mechanical Properties of NEPE Solid Propellants. J. Solid Rocket. Technol. 2017, 40, 466–470. [Google Scholar]
- Lin, C.M. Enhanced Non-linear Viscoelastic Properties of Polymer Bonded Explosives Based on Graphene and a Neutral Polymeric Bonding Agent. Cent. Eur. J. Energetic Mater. 2017, 14, 788–805. [Google Scholar] [CrossRef]
- Lin, C.M. Non-linear Viscoelastic Properties of TATB-based Polymer Bonded Explosives Modified by a Neutral Polymeric Bonding Agent. RSC Advances 2015, 45, 35811–35820. [Google Scholar] [CrossRef]
- Landsem, E.; Jensen, T.L.; Hansen, F.K. Neutral Polymeric Bonding Agents (NPBA) and Their Use in Smokeless Composite Rocket Propellants Based on HMX-GAP-BuNENA. Propellants Explos. Pyrotech. 2012, 37, 581–591. [Google Scholar] [CrossRef]
- Zhou, S.P.; Tang, G.; Pang, A.M. Synthesis of an Alkynyl Neutral Polymer-Bonding Agent and Its Enhancing Effect on Tensile Strength of Glycidyl Azide Polymer-Based Propellants. Iran. Polym. J. 2019, 28, 943–955. [Google Scholar] [CrossRef]
- Zhang, X.L.; Zhang, L.; Deng, J.R. Precision Synthesis Method of Neutral Polymeric Bonding Agent. J. Solid Rocket. Technol. 2013, 36, 368–370. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, H.L.; Liu, Y.F.; Yang, W.; Chen, H.; Yao, W.S.; Wang, Y.L.; Zhang, X. Investigations on the Structure and Properties of Neutral Polymer Bonding Agents (NPBA) Used for Composite Solid Propellant. I: Study of the Reactivity Ratios and Sequence Structure Control of Acrylonitrile (AN)/Methacrylate (MA)/Hydroxyethyl Acrylate (HEA) Terpolymer Type NPBA. Int. J. Polym. Anal. Charact. 2015, 20, 344–356. [Google Scholar] [CrossRef]
- Yu, Z.F.; Yao, W.S.; Tan, H.M.; Cui, G.L. Mesoscopic Molecular Simulation of Phase Separation of NPBA in Energetic Plasticizer/Prepolymer. Chin. J. Energetic Mater. 2016, 24, 469–478. [Google Scholar] [CrossRef]
- Wang, Y.L.; Zhang, W.; Xiao, K.C.; Yao, W.S.; Xie, W.X.; Liu, Y.F.; Yan, J.Y.; Chen, Y. Experimental and Simulation Study of the Phase Separation of Neutral Polymeric Bonding Agent in Nitrate Ester Plasticized Polyether Propellant and Its Application. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125665. [Google Scholar] [CrossRef]
- Liu, Y.F.; Chen, Y.; Shi, L.; Yao, W.S. Synthesis of Three Novel Laurylamine-Derived Long-Chain Alkyl Bonding Agents and Their Interactions with RDX. Propellants Explos. Pyrotech. 2012, 37, 69–76. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.F.; Shi, L.; Yang, W.; Yao, W.S. Study on the Synthesis and Interfacial Interaction Performance of Novel Dodecylamine-Based Bonding Agents Used for Composite Solid Propellants. Propellants Explos. Pyrotech. 2015, 40, 50–59. [Google Scholar] [CrossRef]
- Xu, S.; Wu, Z.; Pang, A.M.; Li, H.X.; Tang, G. Application of Nitrile Butadiene Rubber Bonding Agents in CL-20/GAP System. Chin. J. Explos. Propellants 2018, 41, 578–581. [Google Scholar] [CrossRef]
- Deng, J. Effect of Bonding Agent on the Mechanical Properties of GAP High-Energy Propellant. Propellants Explos. Pyrotech. 2017, 42, 394–400. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Wang, X.Q.; Li, X.M.; Luo, Y.J.; Li, G.P. Study of the Interfacial Interaction Performance of Branched Bonding Agents and CL-20. Materials 2019, 12, 1402. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Sang, C.; Wang, Z. The Study of Mechanical and Creep Properties of Glycidyl Azide Polyol Energetic Thermoplastic Elastomer Binder with Bonding Group with RDX and Its Interface Reinforcement Mechanism. Mater. Res. Express 2018, 5, 025309. [Google Scholar] [CrossRef]
- He, G.; Yang, Z.; Pan, L. Bioinspired Interfacial Reinforcement of Polymer-Based Energetic Composites with a High Loading of Solid Explosive Crystals. J. Mater. Chem. A 2017, 5, 13499–13510. [Google Scholar] [CrossRef]
- Lin, C.M.; He, W.; Gong, F.Y. Research Progress of Bioinspired Interface Design in Energetic Materials Based on Polydopamine. Chin. J. Energetic Mater. 2020, 28, 576–586. [Google Scholar] [CrossRef]
- Zhu, Q.; Wu, S.L.; Xiao, C. Bioinspired Improving Interfacial Performances of HMX, TATB and Aluminum Powders with Polydopamine Coating. Chin. J. Energetic Mater. 2019, 27, 949–954. [Google Scholar] [CrossRef]
- Zeng, C.; Yang, Z.; Zhang, J. Enhanced Interfacial and Mechanical Properties of PBX Composites via Surface Modification on Energetic Crystals. Polymers 2019, 11, 1308. [Google Scholar] [CrossRef] [Green Version]
- He, G.; Li, X.; Bai, L. Multilevel Core-shell Strategies for Improving Mechanical Properties of Energetic Polymeric Composites by the “Grafting-from” Route. Compos. Part B Eng. 2020, 191, 107967. [Google Scholar] [CrossRef]
- Xie, W.X.; Zhao, Y.; Liu, Y.F.; Huang, H.T.; Zhang, W. Influence Factor for Mechanical Property of Azido-typed BAMO-THF Propellant. New Chem. Mater. 2020, 48, 163–165. [Google Scholar] [CrossRef]
- Zhang, X.L.; Gan, L.; Deng, A.H.; Niu, C.P.; Zhuang, R. Properties of Reduced Smoke Propellant Formulation Based on PBT. J. Solid Rocket. Technol. 2020, 44, 69–74. [Google Scholar] [CrossRef]
- Landsem, E.; Jensen, T.L.; Kristensen, T.E.; Hansen, F.K.; Benneche, T.; Unneberg, E. Isocyanate-Free and Dual Curing of Smokeless Composite Rocket Propellants. Propellants Explos. Pyrotech. 2013, 38, 75–86. [Google Scholar] [CrossRef]
- Petković, J.; Wali, A.; Mijin, D.; Ušćumlić, G. The Influence of Bonding Agents in Improving Interactions in Composite Propellants, Determined Using the FTIR Spectra. Sci. Tech. Rev. 2009, 59, 12–16. [Google Scholar] [CrossRef]
- Azoug, A.; Constantinescu, A.; Nevière, R.; Jacob, G. Microstructure and Deformation Mechanisms of a Solid Propellant Using 1H NMR Spectroscopy. Fuel 2015, 148, 39–47. [Google Scholar] [CrossRef]
- Zhang, J.; Jiao, Q.J.; Li, J.C.; Ren, H. Study on Properties of the Coated RDX with Different Material. Initiat. Pyrotech. 2006, 3, 23–26. [Google Scholar]
- Yang, X.Q.; Chang, S.J.; Zhao, L.K.; Liu, A.C.; Gao, Y.M. Coating of RDX and its application in CMDB propellant. Explos. Mater. 2014, 43, 22–25. [Google Scholar] [CrossRef]
- Zhao, J.L.; Qiang, H.F. Effects of MAPO Contents and AP Size Distribution on Mechanical Behavior of HTPB Propellant. J. Solid Rocket. Technol. 2011, 34, 614–618. [Google Scholar]
- Benedetto, D.G.L.; Van, R.; Marthinus, C.J.; Willem, D. In-Situ Tensile Testing of Propellants in SEM: Influence of Temperature. Propellants Explos. Pyrotech. 2017, 42, 1396–1400. [Google Scholar] [CrossRef]
- Van, R.; Benedetto, D.G.L.; Duvalois, W. Investigation of the Failure Mechanism of HTPB/AP/Al Propellant by In-Situ Uniaxial Tensile Experimentation in SEM. Propellants Explos. Pyrotech. 2016, 41, 700–708. [Google Scholar] [CrossRef]
- Toulemonde, P.A.; Diani, J.; Pierre, G. Roles of the Interphase Stiffness and Percolation on the Behavior of Solid Propellants. Propellants Explos. Pyrotech. 2016, 41, 978–986. [Google Scholar] [CrossRef]
- Shi, R.; Sun, B.Y.; Liu, X.H.; Yao, W.S.; Jia, X.W.; Tan, H.M.; Luo, W.; Xi, H.J.; Chen, Y. A Mesoscopic Damage Model of Solid Propellants Under Thermo-Mechanical Coupling Loads. Polym. Test. 2019, 79, 105927. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.F.; Xia, J.D.; Tan, H.M. Quantitative Experimental Study on Effect of Bonding Agents on the Dewetting Damage of NEPE Solid Propellant. J. Solid Rocket. Technol. 2010, 33, 299–301. [Google Scholar] [CrossRef]
- Wang, Y.; Li, G.C.; Zhang, X.; Han, Y.H.; Li, X. Analysis Crack Tip Propagation Process of HTPB Propellant Based on SEM and Digital Image Correlation Method. Chin. J. Explos. Propellants 2019, 42, 73–78. [Google Scholar] [CrossRef]
- Wu, P.; Li, G.C.; Hang, Y.H.; Wang, Z.J.; Liu, L.; Wang, X. Analysis of Meso-Damage Process of Solid Rocket Motor Adhesive Interface Based on SEM and Digital Image Correlation. Chin. J. Explos. Propellants 2021, 44, 106–112. [Google Scholar] [CrossRef]
- Wang, S.M.; Zhang, L.H.; Dai, S.L. Research Progress in the Determination of Solid Surface Energy. Appl. Chem. Ind. 2020, 49, 3155–3161. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Zhang, J.Q.; Dou, R.R.; Shi, H.M.; Kang, S.Y. Surfacial and Interfacial Performance Between PAN-b-PHEA and PAN-b-P(HEA-g-AEFC) with Composite Solid Propellant Components. Chem. Propellants Polym. Mater. 2014, 14, 53–56. [Google Scholar] [CrossRef]
- Zhao, Y.; Xie, W.X.; Qi, X.F.; Liu, Y.F.; Tang, Q.F.; Song, K.G.; Zhang, W. Comparison of the Interfacial Bonding Interaction Between GAP Matrix and Ionic/Non-Ionic Explosive: Computation Simulation and Experimental Study. Appl. Surf. Sci. 2019, 497, 143813. [Google Scholar] [CrossRef]
- Qi, X.F.; Xie, W.X.; Yan, Q.L.; Liu, Q.; Liu, C. Interfacial Interaction Between NPBA and HMX. Acta Armamentarll 2017, 38, 1942–1949. [Google Scholar]
- Zhu, W.; Liu, D.M.; Xiao, J.J.; Chi, X.H.; Pang, A.M.; Xiao, H.M. Molecular Dynamics Simulation of the Structures and Properties of NEPE Propellant/Liner(II)—Demonstrating Component Molecule Migrating and Formulation for Complex System. J. Solid Rocket. Technol. 2014, 37, 678–683. [Google Scholar] [CrossRef]
- Zhang, P.A.; Pang, A.M.; Tang, G.; Deng, J.R. Effects of NPBA on Interface Interaction and Mechanical Properties of NEPE Propellant: Insight from Molecular Dynamics Simulation. Comput. Mater. Sci. 2020, 171, 109135. [Google Scholar] [CrossRef]
- Zhang, L.N.; Li, D.H.; Yao, W.S. Molecular Dynamics Simulation of Interaction Between GAP Grafted Hydantoin and Solid Oxidizers in for GAP Propellant. J. Propuls. Technol. 2010, 31, 587–592. [Google Scholar] [CrossRef]
- Qu, B.; Pan, Q.; Tang, Q.F.; Qi, X.F.; Wei, H.J.; Li, J.Z. Molecular Dynamics Simulation and Experimental Study on Migration of Nitric Ester in NEPE Propellant. Chin. J. Explos. Propellants 2018, 41, 278–284. [Google Scholar] [CrossRef]
Types | General Structure | Illustration | Application Cases |
---|---|---|---|
Alcohol Amine | R: hydrogen, benzene ring, alkyl, ketone | [4] | |
Polyamine | n:1–12, X: hydrogen, cyanoethyl, hydroxypropyl | [10,11,12] | |
Titanate | R1: bifunctional acid group; R2, R3: alkoxy or oleic acid group | [13] |
Interconnecting Monomer | Structure [22,25] | External Monomer | Structure [23,24] |
---|---|---|---|
N-Methyl-N,N-diethanolamine | Polyepichlorohydrin | ||
N-Butyl-N,N-diethanolamine | Poly(Propylene Oxide) | ||
N-(2-Cyanoethyl)diethanolamine | Poly(Ethylene Glycol Adipate) | ||
N,N-Dihydroxyl-3-aminmethyl Propionate | Poly(Butylene Adipate) | ||
N,N-Dihydroxyethyl-3-amino methyl Propionate | Polyethylene glycol |
Name | Structure | Polar Group | Applicable Propellant System |
---|---|---|---|
Hx-752 | C=O | HTPB, PU | |
Hx-868 | C=O | HTPB, PU | |
TAZ | C=O | HTPB, PU | |
MAPO | P=O | HTPB, PU |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, J.; Zhang, X.; Zhang, W.; Hang, R.; Xie, W.; Liu, Y.; Luo, W.; Chen, Y. Research Progress of Bonding Agents and Their Performance Evaluation Methods. Molecules 2022, 27, 340. https://doi.org/10.3390/molecules27020340
Gan J, Zhang X, Zhang W, Hang R, Xie W, Liu Y, Luo W, Chen Y. Research Progress of Bonding Agents and Their Performance Evaluation Methods. Molecules. 2022; 27(2):340. https://doi.org/10.3390/molecules27020340
Chicago/Turabian StyleGan, Junyan, Xue Zhang, Wei Zhang, Rui Hang, Wuxi Xie, Yunfei Liu, Wen Luo, and Yu Chen. 2022. "Research Progress of Bonding Agents and Their Performance Evaluation Methods" Molecules 27, no. 2: 340. https://doi.org/10.3390/molecules27020340
APA StyleGan, J., Zhang, X., Zhang, W., Hang, R., Xie, W., Liu, Y., Luo, W., & Chen, Y. (2022). Research Progress of Bonding Agents and Their Performance Evaluation Methods. Molecules, 27(2), 340. https://doi.org/10.3390/molecules27020340