Solvent-Free Synthesis, In Vitro and In Silico Studies of Novel Potential 1,3,4-Thiadiazole-Based Molecules against Microbial Pathogens
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antimicrobial Screening
2.3. Molecular Docking
2.4. Molecular Dynamics Simulations
3. Experimental Section
3.1. Chemistry
3.1.1. Experimental Instrumentation
3.1.2. Synthesis
General Procedures for Synthesis of 3–7
3.2. Antimicrobial Activity of Thiadiazole Derivatives
3.3. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rashdan, H.R.M.; Abdel-Aziem, A.; El-Naggar, D.H.; Nabil, S. Synthesis and biological evaluation of some new pyridines, isoxazoles and isoxazolopyridazines bearing 1,2,3-triazole moiety. Acta Pol. Pharm.-Drug Res. 2019, 76, 469–482. [Google Scholar] [CrossRef]
- Rashdan, H.R.M.; Shehadi, I.A.; Abdelrahman, M.T.; Hemdan, B.A. Antibacterial Activities and Molecular Docking of Novel Sulfone Biscompound Containing Bioactive 1, 2, 3-Triazole Moiety. Molecules 2021, 26, 4817. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.M.; El-Saadony, M.T.; El-Tahan, A.M.; Sayed, S.; Moustafa, M.A.M.; Taha, A.E.; Taha, T.F.; Ramadan, M.M. Polyphenolic extracts from pomegranate and watermelon wastes as substrate to fabricate Sustainable Silver nanoparticles with larvicidal effect against Spodoptera littorali s. Saudi J. Biol. Sci. 2021, 28, 5647–5683. [Google Scholar] [CrossRef]
- Rashdan, H.R.M.; Roaiah, H.M.F.; Muhammad, Z.A.; Wietrzyk, J.; Milczarek, M.; Soliman, A.M.M. Design, efficient synthesis, mechanism of reaction and antiproliferative activity against cancer and normal cell lines of a novel class of fused pyrimidine derivatives. Acta Pol. Pharm.-Drug Res. 2018, 75, 679–688. [Google Scholar]
- El-Hashash, M.A.; Sherif, S.M.; Badawy, A.A.; Rashdan, H.R. Synthesis of some new antimicrobial 5, 6, 7, 8-tetrahydro-pyrimido [4,5-b] quinolone derivatives. Der Pharm. Chem. 2014, 6, 23–29. [Google Scholar]
- El-Naggar, M.; Abd El-All, A.S.; El-Naem, S.I.A.; Abdalla, M.M.; Rashdan, H.R.M. New potent 5α-Reductase and aromatase inhibitors derived from 1,2,3-triazole derivative. Molecules 2020, 25, 672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Önkol, T.; Doğruer, D.S.; Uzun, L.; Adak, S.; Özkan, S.; Fethi Şahin, M. Synthesis and antimicrobial activity of new 1, 2, 4-triazole and 1, 3, 4-thiadiazole derivatives. J. Enzym. Inhib. Med. Chem. 2008, 23, 277–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbuceanu, S.-F.; Saramet, G.; Almajan, G.L.; Draghici, C.; Barbuceanu, F.; Bancescu, G. New heterocyclic compounds from 1, 2, 4-triazole and 1, 3, 4-thiadiazole class bearing diphenylsulfone moieties. Synthesis, characterization and antimicrobial activity evaluation. Eur. J. Med. Chem. 2012, 49, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Abu-Hashem, A.A. Synthesis and antimicrobial activity of new 1, 2, 4-triazole, 1, 3, 4-oxadiazole, 1, 3, 4-thiadiazole, thiopyrane, thiazolidinone, and azepine derivatives. J. Heterocycl. Chem. 2021, 58, 74–92. [Google Scholar] [CrossRef]
- Pintilie, O.; Profire, L.; Sunel, V.; Popa, M.; Pui, A. Synthesis and antimicrobial activity of some new 1, 3, 4-thiadiazole and 1, 2, 4-triazole compounds having a D, L-methionine moiety. Molecules 2007, 12, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Yan Guo, F.; Ji Zheng, C.; Wang, M.; Ai, J.; Ying Han, L.; Yang, L.; Fang Lu, Y.; Xuan Yang, Y.; Guan Piao, M.; Piao, H. Synthesis and antimicrobial activity evaluation of imidazole-fused imidazo [2,1-b][1,3,4] thiadiazole analogues. ChemMedChem 2021, 16, 2354–2365. [Google Scholar] [CrossRef]
- Askin, S.; Tahtaci, H.; Türkeş, C.; Demir, Y.; Ece, A.; Çiftçi, G.A.; Beydemir, Ş. Design, synthesis, characterization, in vitro and in silico evaluation of novel imidazo [2,1-b][1,3,4] thiadiazoles as highly potent acetylcholinesterase and non-classical carbonic anhydrase inhibitors. Bioorg. Chem. 2021, 113, 105009. [Google Scholar] [CrossRef]
- Rashdan, H.R.M.; Abdelmonsef, A.H.; Shehadi, I.A.; Gomha, S.M.; Soliman, A.M.M.; Mahmoud, H.K. Synthesis, Molecular Docking Screening and Anti-Proliferative Potency Evaluation of Some New Imidazo[2,1-b]Thiazole Linked Thiadiazole Conjugates. Molecules 2020, 25, 4997. [Google Scholar] [CrossRef]
- Rashdan, H.R.M.; El-Naggar, M.; Abdelmonsef, A.H. Synthesis, Molecular Docking Studies and In Silico ADMET Screening of New Heterocycles Linked Thiazole Conjugates as Potent Anti-Hepatic Cancer Agents. Molecules 2021, 26, 1705. [Google Scholar] [CrossRef]
- Rashdan, H.R.M.; Farag, M.M.; El-Gendey, M.S.; Mounier, M.M. Toward rational design of novel anti-cancer drugs based on targeting, solubility, and bioavailability exemplified by 1,3,4-thiadiazole derivatives synthesized under solvent-free conditions. Molecules 2019, 24, 2371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elnaggar, D.H.; Abdel Hafez, N.A.; Rashdan, H.R.M.; Abdelwahed, N.A.M.; Awad, H.M.; Ali, K.A. Synthesis, Antimicrobial and Antitumor Evaluations of a New Class of Thiazoles Substituted on the Chromene Scaffold. Mini Rev. Med. Chem. 2019, 19, 1717–1725. [Google Scholar] [CrossRef] [PubMed]
- Hussein, H.S.; Bollinger, L.M. Influence of selective media on successful detection of Shiga toxin–producing Escherichia coli in food, fecal, and environmental samples. Foodborne Pathog. Dis. 2008, 5, 227–244. [Google Scholar] [CrossRef] [PubMed]
- Faria, N.R.; Mellan, T.A.; Whittaker, C.; Claro, I.M.; da Candido, D.S.; Mishra, S.; Crispim, M.A.E.; Sales, F.C.S.; Hawryluk, I.; McCrone, J.T. Genomics and epidemiology of the P. 1 SARS-CoV-2 lineage in Manaus, Brazil. Science 2021, 372, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Foroumadi, A.; Davood, A.; Mirzaei, M.; Emami, S.; Moshafi, M.H. Synthesis and antibacterial activity of some novel N-substituted piperazinyl-quinolones. Boll. Chim. Farm. 2001, 140, 411–416. [Google Scholar]
- Rashdan, H.R.M.; Abdelmonsef, A.H.; Abou-Krisha, M.M.; Yousef, T.A. Synthesis, Identification, Computer-Aided Docking Studies, and ADMET Prediction of Novel Benzimidazo-1, 2, 3-triazole Based Molecules as Potential Antimicrobial Agents. Molecules 2021, 26, 7119. [Google Scholar] [CrossRef]
- Rashdan, H.R.M.; Gomha, S.M.; El-Gendey, M.S.; El-Hashash, M.A.; Soliman, A.M.M. Eco-friendly one-pot synthesis of some new pyrazolo[1,2-b]phthalazinediones with antiproliferative efficacy on human hepatic cancer cell lines. Green Chem. Lett. Rev. 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Abdelhamid, A.O.; El-Idreesy, T.T.; Abdelriheem, N.A.; Dawoud, H.R.M. Green One-Pot Solvent-Free Synthesis of Pyrazolo[1,5-a]pyrimidines, Azolo[3,4-d]pyridiazines, and Thieno[2,3-b]pyridines Containing Triazole Moiety. J. Heterocycl. Chem. 2016, 53. [Google Scholar] [CrossRef]
- Sousa, R.R.; Silva, A.S.; Fernandez-Lafuente, R.; Ferreira-Leitão, V.S. Solvent-free esterifications mediated by immobilized lipases: A review from thermodynamic and kinetic perspectives. Catal. Sci. Technol. 2021, 11, 5696–5711. [Google Scholar] [CrossRef]
- Jarszak-Tyl, A.; Pigulski, B.; Szafert, S. Solvent-free C–H alkynylation of azulenes. Org. Chem. Front. 2021, 8, 5674–5680. [Google Scholar] [CrossRef]
- Qader, M.M.; Hamed, A.A.; Soldatou, S.; Abdelraof, M.; Elawady, M.E.; Hassane, A.S.I.; Belbahri, L.; Ebel, R.; Rateb, M.E. Antimicrobial and Antibiofilm Activities of the Fungal Metabolites Isolated from the Marine Endophytes Epicoccum nigrum M13 and Alternaria alternata 13A. Mar. Drugs 2021, 19, 232. [Google Scholar] [CrossRef]
- Kamoutsis, C.; Fesatidou, M.; Petrou, A.; Geronikaki, A.; Poroikov, V.; Ivanov, M.; Soković, M.; Ćirić, A.; Carazo, A.; Mladěnka, P. Triazolo Based-Thiadiazole Derivatives. Synthesis, Biological Evaluation and Molecular Docking Studies. Antibiotics 2021, 10, 804. [Google Scholar] [CrossRef]
- Zhu, N.; Lin, Y.; Li, D.; Gao, N.; Liu, C.; You, X.; Jiang, J.; Jiang, W.; Si, S. Identification of an anti-TB compound targeting the tyrosyl-tRNA synthetase. J. Antimicrob. Chemother. 2015, 70, 2287–2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arooj, M.; Shehadi, I.; Nassab, C.N.; Mohamed, A.A. Physicochemical stability study of protein–benzoic acid complexes using molecular dynamics simulations. Amino Acids 2020, 52, 1353–1362. [Google Scholar] [CrossRef]
- Nassab, C.N.; Arooj, M.; Shehadi, I.A.; Parambath, J.B.M.; Kanan, S.M.; Mohamed, A.A. Lysozyme and Human Serum Albumin Proteins as Potential Nitric Oxide Cardiovascular Drug Carriers: Theoretical and Experimental Investigation. J. Phys. Chem. B 2021, 125, 7750–7762. [Google Scholar] [CrossRef] [PubMed]
- Arooj, M.; Arrigan, D.W.M.; Mancera, R.L. Characterization of protein-facilitated ion-transfer mechanism at a polarized aqueous/organic interface. J. Phys. Chem. B 2019, 123, 7436–7444. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Abdel-Naby, M.A.; Abdel-Fattah, A.F. Kinetic, Catalytic and Thermodynamic Properties of Immobilized Milk Clotting Enzyme on Activated Chitosan Polymer and its Application in Cheese Making. 2021. Available online: https://www.researchsquare.com/article/rs-704571/v1 (accessed on 24 November 2021).
- Fadel, M.; Hamed, A.A.; Abd-Elaziz, A.M.; Ghanem, M.M.E.; Roshdy, A.M. Cellulases and animal feed production by solid-state fermentation by Aspergillus fumigatus NRCF-122 mutant. Egypt. J. Chem. 2021, 64, 3511–3520. [Google Scholar] [CrossRef]
- Abdelraof, M.; Hasanin, M.S.; Farag, M.M.; Ahmed, H.Y. Green synthesis of bacterial cellulose/bioactive glass nanocomposites: Effect of glass nanoparticles on cellulose yield, biocompatibility and antimicrobial activity. Int. J. Biol. Macromol. 2019, 138, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Masubuchi, M.; Ebiike, H.; Kawasaki, K.; Sogabe, S.; Morikami, K.; Shiratori, Y.; Tsujii, S.; Fujii, T.; Sakata, K.; Hayase, M. Synthesis and biological activities of benzofuran antifungal agents targeting fungal N-myristoyltransferase. Bioorg. Med. Chem. 2003, 11, 4463–4478. [Google Scholar] [CrossRef]
Sample No. | Minimal Inhibitory Concentration (MIC, µg/mL) | |||||
---|---|---|---|---|---|---|
Escherichia coli | Pseudomonas aeruginosa | Proteus vulgaris | Bacillus subtilis | Staphylococcus aureus | Candida albicans | |
1 | ND | ND | ND | ND | ND | ND |
2 | 320 | ND | ND | ND | ND | ND |
3 | 20 | 40 | 20 | 10 | 20 | 20 |
4 | ND | ND | ND | 40 | 80 | ND |
5 | 40 | 160 | 80 | 40 | 20 | 20 |
6 | 160 | ND | ND | 80 | 160 | ND |
7 | ND | ND | ND | ND | ND | 80 |
Ciprofloxacin | 5 | 7 | 1.25 | 2.5 | 1.25 | ND |
Nystatin | ND | ND | ND | ND | ND | 5 |
Entry | Binding Energy (kcal/mol) | H-Bonds | Residual Interactions | |
---|---|---|---|---|
Number | Residues | |||
3 | −8.4 | 6 | Asp195, gly196, asp80, gly38, tyr170, gln174 | His50, leu70, asp195, pro53 |
4 | −8.4 | 4 | Gly38, thr75, gly38, asp40 | His50, leu70, asp195, pro53 |
5 | −8.4 | 1 | Gly193 | His50, leu70, asp195, asp80, tyr170, gln174, asp40, gly192 |
6 | −7.7 | 0 | NA | His50, leu70, asp195, pro53 asp80, cys37, tyr170, tyr36 Ala39, asp40, gln174 |
Cocrystalized inhibitor | −9.7 | 9 | Asp195, gly193, asp80, asp40, tyr170, gln174, tyr36, asp177 | His50, leu70, cys37, pro53 |
Entry | Binding Energy (kcal/mol) | H-Bonds | Residual Interactions | |
---|---|---|---|---|
Number | Residues | |||
3 | −9.1 | 5 | Thr211, tyr225, thr211, asn392, thr211 | His227, leu394, leu415, val108, tyr107 |
5 | −9.1 | 4 | Tyr354, leu451, Tyr354, gln226 | His227, leu394, ile111, val108, tyr119, phe117, phe115 |
7 | −8.0 | 2 | Tyr107, leu451 | Thr211, val108, leu177, tyr210, ile193, ile174, |
Cocrystalized inhibitor | −10 | 2 | Asn392, tyr119 | His227, phe117, Tyr354, phe240, phe115, ile352, tyr225, phe339 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shehadi, I.A.; Abdelrahman, M.T.; Abdelraof, M.; Rashdan, H.R.M. Solvent-Free Synthesis, In Vitro and In Silico Studies of Novel Potential 1,3,4-Thiadiazole-Based Molecules against Microbial Pathogens. Molecules 2022, 27, 342. https://doi.org/10.3390/molecules27020342
Shehadi IA, Abdelrahman MT, Abdelraof M, Rashdan HRM. Solvent-Free Synthesis, In Vitro and In Silico Studies of Novel Potential 1,3,4-Thiadiazole-Based Molecules against Microbial Pathogens. Molecules. 2022; 27(2):342. https://doi.org/10.3390/molecules27020342
Chicago/Turabian StyleShehadi, Ihsan A., Mohamad T. Abdelrahman, Mohamed Abdelraof, and Huda R. M. Rashdan. 2022. "Solvent-Free Synthesis, In Vitro and In Silico Studies of Novel Potential 1,3,4-Thiadiazole-Based Molecules against Microbial Pathogens" Molecules 27, no. 2: 342. https://doi.org/10.3390/molecules27020342
APA StyleShehadi, I. A., Abdelrahman, M. T., Abdelraof, M., & Rashdan, H. R. M. (2022). Solvent-Free Synthesis, In Vitro and In Silico Studies of Novel Potential 1,3,4-Thiadiazole-Based Molecules against Microbial Pathogens. Molecules, 27(2), 342. https://doi.org/10.3390/molecules27020342