Discrimination of Adulterated Ginkgo Biloba Products Based on 2T2D Correlation Spectroscopy in UV-Vis Range
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chromatographic Fingerprints
2.2. UV-Vis Spectra
2.3. Two-Trace Two-Dimensional Correlation Spectroscopy (2T2D COS)
2.4. Chemometric Analysis of 2T2D Correlation Spectra
3. Materials and Methods
3.1. Standards, Samples, and Reagents
3.2. UV-Vis Spectroscopy
3.3. Two-Trace Two-Dimensional Correlation Spectroscopy (2T2D COS) and Chemometric Methods
3.4. Chromatographic Fingerprint Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Wang, Y.; Zhang, J.; Wang, S. Advances in the chemical constituents and chemical analysis of Ginkgo biloba leaf, extract, and phytopharmaceuticals. J. Pharm. Biomed. Anal. 2021, 193, 113704. [Google Scholar] [CrossRef]
- Yang, G.Y.; Wang, Y.Y.; Sun, J.; Zhang, K.; Liu, J.P. Ginkgo biloba for mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis of randomized controlled trials. Curr. Top. Med. Chem. 2016, 16, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-F.; Huang, L.-B.; Zhong, Y.-B.; Zhou, Q.-H.; Wang, H.-L.; Zheng, G.-Q.; Lin, Y. An overview of systematic reviews of ginkgo biloba extracts for mild cognitive impairment and dementia. Front. Aging Neurosci. 2016, 8, 276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, F.; Ortigoza, A. Ginkgo biloba for the treatment of tinnitus. Medwave 2018, 18, e7294. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Solis, I.; Acero, N.; Bosch-Morell, F.; Castillo, E.; Gonzalez-Rosende, M.E.; Munoz-Mingarro, D.; Ortega, T.; Sanahuja, M.A.; Villagrasa, V. Neuroprotective potential of Ginkgo biloba in retinal diseases. Planta Med. 2019, 85, 1292–1303. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Mao, W.; Guo, X.; Wu, Y.; Li, C.; Lu, Z.; Su, G.; Li, X.; Liu, Z.; Gou, R.; et al. Ginkgo biloba extract for patients with early diabetic nephropathy. A systematic review. Evid. Based Complement. Altern. Med. 2013, 2013, 689142. [Google Scholar]
- Oskouei, D.S.; Rikhtegar, R.; Hashemilar, M.; Sadeghi-Bazargani, H.; Sharifi-Bonab, M.; Sadeghi-Hokmabadi, E.; Zarrintan, S.; Sharifipour, E. The effect of Ginkgo biloba on functional outcome of patients with acute ischemic stroke: A double-blind, placebo-controlled, randomized clinical trial. J. Stroke Cerebrovasc. Dis. 2013, 22, e557–e563. [Google Scholar] [CrossRef]
- Rodriguez, M.; Ringstad, L.; Schaefer, P.; Just, S.; Hofer, H.W.; Malmsten, M.; Siegel, M. Reduction of atherosclerotic nanoplaque formation and size by Ginkgo biloba (EGb 761) in cardiovascular high-risk patients. Atherosclerosis 2007, 192, 438–444. [Google Scholar] [CrossRef]
- Wohlmuth, H.; Savage, K.; Dowell, A.; Mouatt, P. Adulteration of Ginkgo biloba products and a simple method to improve its detection. Phytomedicine 2014, 21, 912–918. [Google Scholar] [CrossRef]
- Lu, X.; Chen, L.; Liu, T.; Ke, H.; Gong, X.; Wang, Q.; Zhang, J.; Fan, X. Chemical analysis, pharmacological activity and process optimization of the proportion of bilobalide and ginkgolides in Ginkgo biloba extract. J. Pharm. Biomed. Anal. 2018, 160, 46–54. [Google Scholar]
- Booker, A.; Frommewiler, D.; Reich, E.; Horsfield, S.; Heinrich, M. Adulteration and poor quality of Ginkgo biloba supplements. J. Herb. Med. 2016, 6, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Bampali, E.; Germer, S.; Bauer, R.; Kulić, Ż. HPLC-UV/HRMS methods for the unambiguous detection of adulterations of Ginkgo biloba leaves with Sophora japonica fruits on an extract level. Pharm. Biol. 2021, 59, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Avula, B.; Sagi, S.; Gafner, S.; Upton, R.; Wang, Y.H.; Wang, M.; Khan, I.A. Identification of Ginkgo biloba supplements adulteration using high performance thin layer chromatography and ultrahigh performance liquid chromatography-diode array detector- quadrupole time of flight-mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 7733–7746. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shen, Y.; Yao, C.-L.; Guo, D.-A. Quality assessment of herbal medicines based on chemical fingerprints combined with chemometrics approach: A review. J. Pharm. Biomed. Anal. 2020, 185, 113215. [Google Scholar] [CrossRef]
- Kharbach, M.; Marmouzi, I.; El Jemli, M.; Bouklouze, A.; Vander Heyden, Y. Recent advances in untargeted and targeted approaches applied in herbal-extracts and essential-oils fingerprinting—A review. J. Pharm. Biomed. Anal. 2020, 177, 112849. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-G.; Wu, S.-Q.; Li, P.; Yang, H. Advancement in the chemical analysis and quality control of flavonoid in Ginkgo biloba. J. Pharm. Biomed. 2015, 113, 212–225. [Google Scholar] [CrossRef]
- Paíga, P.; Rodrigues, M.J.; Correia, M.; Amaral, J.S.; Oliveira, M.B.P.; Delerue-Matos, C. Analysis of pharmaceutical adulterants in plant food supplements by UHPLC-MS/MS. Eur. J. Pharm. Sci. 2017, 99, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.-L.; Wan, J.; Xiong, J.; Yang, G.-X.; Hu, J.-F. Simultaneous identification of characteristic components in HPLC-PDA-ELSD fingerprint profile of Ginkgo biloba leaves extract. Nat. Prod. Commun. 2019, 14, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Milanez, D.K.; Nobrega, T.C.; Nascimento, D.S.; Insausti, M.; Fernandez Band, B.S.; Pontes, M.J.C. Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV-Vis spectroscopies: A preliminary approach. LWT-Food Sci. Technol. 2017, 85, 9–15. [Google Scholar] [CrossRef]
- Ferreiro-González, M.; Barbero, G.F.; Álvarez, J.A.; Ruiz, A.; Palma, M.; Ayuso, J. Authentication of virgin olive oil by a novel curve resolution approach combined with visible spectroscopy. Food Chem. 2017, 220, 331–336. [Google Scholar] [CrossRef]
- Yulia, M.; Suhandy, D. Quantification of Corn Adulteration in Wet and Dry-Processed Peaberry Ground Roasted Coffees by UV–Vis Spectroscopy and Chemometrics. Molecules 2021, 26, 6091. [Google Scholar] [CrossRef]
- Kucharska-Ambrożej, K.; Martyna, A.; Karpińska, J.; Kiełtyka-Dadasiewicz, A.; Kubat-Sikorska, A. Quality control of mint species based on UV-VIS and FTIR spectral data supported by chemometric tools. Food Control 2021, 129, 108228. [Google Scholar] [CrossRef]
- Chai, Z.; Wang, C.; Bi, H. Rapid Identification between Two Fish Species Using UV-Vis Spectroscopy for Substitution Detection. Molecules 2021, 26, 6529. [Google Scholar] [CrossRef]
- Alamprese, C.; Casale, M.; Sinelli, N.; Lanteri, S.; Casiraghi, E. Detection of minced beef adulteration with turkey meat by UV–vis, NIR and MIR spectroscopy. LWT-Food Sci. Technol. 2013, 53, 225–232. [Google Scholar] [CrossRef]
- Contreras, U.; Barbosa-García, O.; Pichardo-Molina, J.L.; Ramos-Ortíz, G.; Maldonado, J.L.; Meneses-Nava, M.A.; Ornelas-Soto, N.E.; López-de-Alba, P.L. Screening method for identification of adulterate and fake tequilas by using UV–VIS spectroscopy and chemometrics. Food Res. Int. 2010, 43, 2356–2362. [Google Scholar] [CrossRef]
- Diniz, P.H.; Barbosa, M.F.; Milanez, K.D.T.M.; Pistonesi, M.F.; Araújo, M.C.U. Using UV–Vis spectroscopy for simultaneous geographical and varietal classification of tea infusions simulating a home-made tea cup. Food Chem. 2016, 192, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Li, T.; Li, J.Q.; Liu, H.G.; Wang, Y.Z. Geographic identification of Boletus mushrooms by data fusion of FT-IR and UV spectroscopies combined with multivariate statistical analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 198, 257–263. [Google Scholar] [CrossRef] [PubMed]
- D’Archivio, A.A.; Maggi, M.A. Geographical identification of saffron (Crocus sativus L.) by linear discriminant analysis applied to the UV–visible spectra of aqueous extracts. Food Chem. 2017, 219, 408–413. [Google Scholar] [CrossRef]
- Yang, R.J.; Liu, C.Y.; Yang, Y.R.; Wu, H.Y.; Jin, H.; Shan, H.Y.; Liu, H. Two-trace two-dimensional (2T2D) correlation spectroscopy application in food safety: A review. J. Mol. Struct. 2020, 1214, 128219. [Google Scholar] [CrossRef]
- Yang, R.; Liu, R.; Xu, K.; Yang, Y.; Dong, G.; Zhang, W. Classification of adulterated milk with the parameterization of 2D correlation spectroscopy and least squares suport vector machines. Anal. Methods 2013, 5, 5949–5953. [Google Scholar] [CrossRef]
- Yang, R.; Dong, G.; Sun, X.; Yu, Y.; Liu, H.; Yang, Y.; Zhang, W. Synchronous—asynchronous two-dimensional correlation spectroscopy for the discrimination of adulterated milk. Anal. Methods 2015, 7, 4302–4307. [Google Scholar] [CrossRef]
- Yang, R.; Liu, R.; Dong, G.; Xu, K.; Yang, Y.; Zhang, W. Two-dimensional hetero-spectral mid-infrared and near-infrared correlation spectroscopy for discrimination adulterated milk. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 157, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Chen, J.-B.; Zhang, G.-J.; Sun, S.-Q.; Zheng, J. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy. Spectrochim. Acta Mol. Biomol. Spectrosc. 2017, 174, 177–182. [Google Scholar] [CrossRef]
- Qu, L.; Chen, J.-B.; Zhou, Q.; Zhang, G.-J.; Sun, S.-Q.; Guo, Y.-Z. Identification of authentic and adulterated Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation analysis. J. Mol. Struct. 2016, 1124, 216–220. [Google Scholar] [CrossRef]
- Lei, Y.; Zhou, Q.; Zhang, Y.; Chen, J.; Sun, S.; Noda, I. Analysis of crystallized lactose in milk powder by Fourier-transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy. J. Mol. Struct. 2010, 974, 88–93. [Google Scholar] [CrossRef]
- Chen, X.; Choong, Y.K.; Zhang, W.; Li, G.; Lan, J. Discrimination of authentic Polyporus umbellatus and counterfeit by Fourier Transform Infrared and two dimensional infrared correlation Spectroscopy. J. Mol. Struct. 2020, 1199, 126917. [Google Scholar] [CrossRef]
- Noda, I. Two-trace two-dimensional (2T2D) correlation spectroscopy—A method for extracting useful information from a pair of spectra. J. Mol. Struct. 2018, 1160, 471–478. [Google Scholar] [CrossRef]
- Noda, I. Closer examination of two-trace two-dimensional (2T2D) correlation spectroscopy. J. Mol. Struct. 2020, 1213, 128194. [Google Scholar] [CrossRef]
- Shinzawa, H.; Mizukado, J. Water absorption by polyamide (PA) 6 studied with two-trace two-dimensional (2T2D) near-infrared (NIR) correlation spectroscopy. J. Mol. Struct. 2020, 1217, 128389. [Google Scholar] [CrossRef]
- Gozdzialski, L.; Hore, D.K. Detection of surface structural changes during adsorption events using two-trace two-dimensional (2T2D) correlation spectroscopy. J. Mol. Struct. 2020, 1216, 128246. [Google Scholar] [CrossRef]
- Watanabe, R.; Hagihara, H.; Sato, H.; Mizukado, J.; Shinzawa, H. Rheo-optical near-infrared (NIR) characterization of hydroxyl-functionalized polypropylene (PPOH)-mesoporous silica nanocomposites using two-trace twodimensional (2T2D) correlation analysis. Appl. Spectrosc. 2019, 73, 1317–1326. [Google Scholar]
- Ma, Y.; Seol, D.; Nam, K.; Sohng, W.; Chung, H. Enhanced identification of defective pre-coated paints on metal through simple temperature-perturbed infrared measurement in conjunction with two-trace two-dimensional correlation analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 260, 119936. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.D.; Sohng, W.; Jang, E.; Choi, D.; Chung, H. Feasibility of discrimination of gall bladder (GB) stone and GB polyp using voltage-applied SERS measurement of bile juice samples in conjunction with two-trace two-dimensional (2T2D) correlation analysis. Analyst 2021, 146, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Sohng, W.; Eum, C.; Chung, H. Exploring two-trace two-dimensional (2T2D) correlation spectroscopy as an effective approach to improve accuracy of discriminant analysis by highlighting asynchronous features in two separate spectra of a sample. Anal. Chim. Acta 2021, 1152, 338255. [Google Scholar] [CrossRef] [PubMed]
- Kavitha, E.; Stephen, L.D.; Brishti, F.H.; Karthikeyan, S. Two-trace two-dimensional (2T2D) correlation infrared spectral analysis of Spirulina platensis and its commercial food products coupled with chemometric analysis. J. Mol. Struct. 2021, 1244, 130964. [Google Scholar] [CrossRef]
- Walkowiak, A.; Ledziński, Ł.; Zapadka, M.; Kupcewicz, B. Detection of adulterants in dietary supplements with Ginkgo biloba extract by attenuated total reflectance Fourier transform infrared spectroscopy and multivariate methods PLS-DA and PCA. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 208, 222–228. [Google Scholar] [CrossRef]
Food Supplement | %R | %Q | %K |
---|---|---|---|
S1 | 11.67 | 5.05 | 9.62 |
S2 | 5.73 | 6.44 | 24.88 |
S3 | 4.03 | 29.13 | 21.36 |
S4 | 87.42 | 1.88 | 0.00 |
S5 | 3.16 | 3.96 | 11.36 |
S6 | 58.43 | 5.20 | 10.95 |
S7 | 3.99 | 26.91 | 13.80 |
S8 | 3.16 | 29.39 | 24.92 |
S9 | 5.51 | 24.38 | 3.07 |
S10 | 4.88 | 57.85 | 3.09 |
S11 | 8.77 | 30.98 | 28.64 |
S12 | 4.24 | 37.44 | 4.80 |
S13 | 4.33 | 22.85 | 9.76 |
S14 | 4.39 | 44.74 | 1.62 |
S15 | 6.26 | 48.57 | 2.30 |
S16 | 6.34 | 36.38 | 2.62 |
S17 | 2.95 | 28.35 | 18.93 |
S18 | 3.17 | 0.76 | 0.00 |
S19 | 86.52 | 0.00 | 0.00 |
S20 | 86.77 | 0.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walkowiak, A.; Wnuk, K.; Cyrankiewicz, M.; Kupcewicz, B. Discrimination of Adulterated Ginkgo Biloba Products Based on 2T2D Correlation Spectroscopy in UV-Vis Range. Molecules 2022, 27, 433. https://doi.org/10.3390/molecules27020433
Walkowiak A, Wnuk K, Cyrankiewicz M, Kupcewicz B. Discrimination of Adulterated Ginkgo Biloba Products Based on 2T2D Correlation Spectroscopy in UV-Vis Range. Molecules. 2022; 27(2):433. https://doi.org/10.3390/molecules27020433
Chicago/Turabian StyleWalkowiak, Agata, Kacper Wnuk, Michał Cyrankiewicz, and Bogumiła Kupcewicz. 2022. "Discrimination of Adulterated Ginkgo Biloba Products Based on 2T2D Correlation Spectroscopy in UV-Vis Range" Molecules 27, no. 2: 433. https://doi.org/10.3390/molecules27020433
APA StyleWalkowiak, A., Wnuk, K., Cyrankiewicz, M., & Kupcewicz, B. (2022). Discrimination of Adulterated Ginkgo Biloba Products Based on 2T2D Correlation Spectroscopy in UV-Vis Range. Molecules, 27(2), 433. https://doi.org/10.3390/molecules27020433