The Effect of Salvia hispanica and Nigella sativa Seed on the Volatile Profile and Sensory Parameters Related to Volatile Compounds of Dry Fermented Sausage
Abstract
:1. Introduction
2. Results
2.1. Proximate Chemical Composition of Dry Fermented Sausages
2.2. Volatile Compounds in Dry Fermented Sausages
2.3. Sensory Parameters of Dry Fermented Sausages
3. Discussion
3.1. Sensory Characteristic of Fermented Sausage with Particular Emphasis on Odor and Flavor
3.2. Volatile Compounds
4. Materials and Methods
4.1. Dry Fermented Sausage Preparation
4.2. Proximate Chemical Composition
4.3. Determination of Volatile Compounds
4.4. Sensory Analysis
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Campbell-Platt, G. Fermented meats—A world perspective. In Fermented Meats; Springer: New York, NY, USA, 1995; pp. 39–52. [Google Scholar]
- Karwowska, M.; Stadnik, J.; Stasiak, D.; Wójciak, K.; Lorenzo, J. Strategies to improve the nutritional value of meat products: Incorporation of bioactive compounds, reduction or elimination of harmful components and alternative technologies. Int. J. Food Sci. Technol. 2021, 56, 6142–6156. [Google Scholar] [CrossRef]
- Ursachi, C.S.; Perta-Crisan, S.; Munteanu, F.-D. Strategies to improve meat products’ quality. Foods 2020, 9, 1883. [Google Scholar] [CrossRef] [PubMed]
- Bahareh, A.; Hossein, H. Black cumin (Nigella sativa) and its active constituent, thymoquinone: An overview on the analgesic and anti-inflammatory effects. Planta Med. 2016, 82, 8–16. [Google Scholar]
- Bordoni, L.; Fedeli, D.; Nasuti, C.; Maggi, F.; Papa, F.; Wabitsch, M.; De Caterina, R.; Gabbianelli, R. Antioxidant and Anti-Inflammatory Properties of Nigella sativa Oil in Human Pre-Adipocytes. Antioxidants 2019, 8, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zielińska, M.; Dereń, K.; Polak-Szczybyło, E.; Stępień, A.E. The Role of Bioactive Compounds of Nigella sativa in Rheumatoid Arthritis Therapy—Current Reports. Nutrients 2021, 13, 3369. [Google Scholar] [CrossRef]
- Cheikh-Rouhou, S.; Besbes, S.; Hentati, B.; Blecker, C.; Deroanne, C.; Attia, H. Nigella sativa L.: Chemical composition and physicochemical characteristics of lipid fraction. Food Chem. 2007, 101, 673–681. [Google Scholar] [CrossRef]
- Zúñiga-López, M.C.; Maturana, G.; Campmajó, G.; Saurina, J.; Núñez, O. Determination of Bioactive Compounds in Sequential Extracts of Chia Leaf (Salvia hispanica L.) Using UHPLC-HRMS (Q-Orbitrap) and a Global Evaluation of Antioxidant In Vitro Capacity. Antioxidants 2021, 10, 1151. [Google Scholar] [CrossRef]
- Ghafoor, K.; Al Juhaimi, F.; Özcan, M.M.; Uslu, N.; Hussain, S.; Babiker, E.E.; Fadimu, G.J. Effects of roasting on bioactive compounds, fatty acid, and mineral composition of chia seed and oil. J. Food Proc. Preserv. 2018, 42, e13710. [Google Scholar] [CrossRef]
- Borrajo, P.; Karwowska, M.; Stasiak, D.M.; Lorenzo, J.M.; Żyśko, M.; Solska, E. Comparison of the Effect of Enhancing Dry Fermented Sausages with Salvia hispanica and Nigella sativa Seed on Selected Physicochemical Properties Related to Food Safety during Processing. Appl. Sci. 2021, 11, 9181. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Temperán, S.; Bermúdez, R.; Cobas, N.; Purriños, L. Changes in physico-chemical, microbiological, textural and sensory attributes during ripening of dry-cured foal salchichón. Meat Sci. 2012, 90, 194–198. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Bedia, M.; Bañón, S. Relationship between flavour deterioration and the volatile compound profile of semi-ripened sausage. Meat Sci. 2013, 93, 614–620. [Google Scholar] [CrossRef]
- Mariutti, L.R.B.; Bragagnolo, N. Influence of salt on lipid oxidation in meat and seafood products: A review. Food Res. Int. 2017, 94, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Tayengwa, T.; Chikwanha, O.C.; Neethling, J.; Dugan, M.E.R.; Mutsvangwa, T.; Mapiye, C. Polyunsaturated fatty acid, volatile and sensory profiles of beef from steers fed citrus pulp or grape pomace. Food Res. Int. 2021, 139, 109923. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaral, A.B.; Silva, M.V.; Lannes, S.C. Lipid oxidation in meat: Mechanisms and protective factors—A review. Food Sci. Technol. 2018, 38 (Suppl. 1), 1–15. [Google Scholar] [CrossRef] [Green Version]
- Argyri, A.A.; Mallouchos, A.; Panagou, E.Z.; Nychas, G.E. The dynamics of the HS/SPME–GC/MS as a tool to assess the spoilage of minced beef stored under different packaging and temperature conditions. Int. J. Food Microbiol. 2015, 193, 51–58. [Google Scholar] [CrossRef]
- Karwowska, M.; Kononiuk, A.; Borrajo, P.; Lorenzo, J.M. Comparative Studies on the Fatty Acid Profile and Volatile Compounds of Fallow Deer and Beef Fermented Sausages without Nitrite Produced with the Addition of Acid Whey. Appl. Sci. 2021, 11, 1320. [Google Scholar] [CrossRef]
- Domínguez, R.; Purriños, L.; Pérez-Santaescolástica, C.; Pateiro, M.; Barba, F.J.; Tomasevic, I.; Lorenzo, J.M. Characterization of volatile compounds of dry-cured meat products using HS-SPME-GC/MS technique. Food Anal. Methods 2019, 12, 1263–1284. [Google Scholar] [CrossRef]
- Lv, J.; Xu, W.; Ji, C.; Lin, X. Relationships between the bacterial diversity and metabolites of a Chinese fermented pork product, sour meat. Int. J. Food Sci. Technol. 2021, 56, 2742–2750. [Google Scholar] [CrossRef]
- Popova, T.; Marinova, P.; Vasileva, V.; Gorinov, Y.; Lidji, K. Oxidative changes in lipids and proteins in beef during storage. Arch. Zootech. 2009, 12, 30–38. [Google Scholar]
- Hu, Y.; Zhang, L.; Liu, Q.; Wang, Y.; Chen, Q.; Kong, B. The potential correlation between bacterial diversity and the characteristic volatile flavour of traditional dry sausages from Northeast China. J. Food Microbiol. 2020, 91, 103505. [Google Scholar] [CrossRef] [PubMed]
- Belleggia, L.; Ferrocino, I.; Reale, A.; Boscaino, F.; Di, T.; Rita, M.; Cocolin, L.; Milanovi, V.; Cardinali, F.; Garofalo, C.; et al. Portuguese cacholeira blood sausage: A first taste of its microbiota and volatile organic compounds. Food Res. Int. 2020, 136, 109567. [Google Scholar] [CrossRef]
- Solomando, J.C.; Antequera, T.; Martín, A.; Perez-Palacios, T. Effect of Omega-3 Microcapsules Addition on the Profile of Volatile Compounds in Enriched Dry-Cured and Cooked Sausages. Foods 2020, 9, 1683. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Cheng, Y.; Liu, Y. Volatile components of deep—Fried soybean oil as indicator indices of lipid oxidation and quality degradation. Eur. Food Res. Technol. 2020, 246, 1183–1192. [Google Scholar] [CrossRef]
- Beyzi, E. Chemometric methods for fatty acid compositions of fenugreek (Trigonella foenum-graecum L.) and black cumin (Nigella sativa L.) seeds at different maturity stages. Ind. Crops Prod. 2020, 151, 112488. [Google Scholar] [CrossRef]
- Juhaimi, F.A.; Uslu, N.; Ozcan, M.M. The effect of preultrasonic process on oil content and fatty acid composition of hazelnut, peanut and black cumin seeds. J. Food Proc. Pres. 2018, 42, 1–4. [Google Scholar] [CrossRef]
- Kabir, Y.; Shirakawa, H.; Komai, M. Nutritional composition of the indigenous cultivar of black cumin seeds from Bangladesh. Prog. Nutr. 2019, 21, 428–434. [Google Scholar]
- Caponio, F.; Difonzo, G.; Squeo, G.; Fortunato, S.; Silletti, R.; Summo, C.; Paradiso, V.M.; Pasqualone, A. Influence of homogenization time and speed on rheological and volatile composition in olive-based pâtés. Foods 2019, 8, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di, A.E.; Ixtaina, V.Y.; Tom, M.C. Inclusion complexes of high amylose corn starch with essential fatty acids from chia seed oil as potential delivery systems in food. Food Hydrocol. 2020, 108, 106030. [Google Scholar]
- Bordon, G.; Meriles, S.P.; Ribotta, P.D.; Martinez, M.L. Enhancement of composition and oxidative stability of Chia (Salvia hispanica L.) seed oil by blending with specialty oils. J. Food Sci. 2019, 84, 1035–1044. [Google Scholar] [CrossRef]
- Knez Hrnčič, M.; Ivanovski, M.; Cör, D.; Knez, Ž. Chia Seeds (Salvia hispanica L.): An Overview—Phytochemical Profile, Isolation Methods, and Application. Molecules 2020, 25, 11. [Google Scholar] [CrossRef] [Green Version]
- Sirtori, F.; Dimauro, C.; Bozzi, R.; Aquilani, C.; Franci, O.; Calamai, L.; Pezzati, A.; Pugliese, C. Evolution of volatile compounds and physical, chemical and sensory characteristics of Toscano PDO ham from fresh to dry-cured product. Eur. Food Res. Technol. 2020, 246, 409–424. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wu, S.; Peng, Y.; Jin, Y.; Xu, D. Effect of lactic acid bacteria on mackerel (Pneumatophorus japonicus) seasoning quality and flavor during fermentation. Food Biosci. 2021, 41, 100971. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, Y.; Chen, C.; Xie, T.; Li, P. Effect of Lactobacillus plantarum and Staphylococcus xylosus on flavour development and bacterial communities in Chinese dry fermented sausages. Food Res. Int. 2020, 135, 109247. [Google Scholar] [CrossRef]
- Abera, S.; Hirko, B. Chemical composition of essential oils of released Black cumin varieties grown in Ethiopia. Chem. Mat. Res. 2020, 12, 9–14. [Google Scholar]
- Martínez-Zamora, L.; Peñalver, R.; Ros, G.; Nieto, G. Substitution of synthetic nitrates and antioxidants by spices, fruits and vegetables in Clean label Spanish chorizo. Food Res. Int. 2021, 139, 109835. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Li, C.; Li, L.; Yang, X.; Wu, Y.; Chen, S.; Zhao, Y. Novel insight into physicochemical and flavor formation in naturally fermented tilapia sausage based on microbial metabolic network. Food Res. Int. 2021, 141, 110122. [Google Scholar] [CrossRef] [PubMed]
- Cardoso Merlo, T.; Lorenzo, J.M.; Saldaña, E.; Patinho, I.; Oliveira, A.C.; Menegali, B.S.; Mabel, M.M.; Domínguez, R.; Contreras-Castillo, C.J. Relationship between volatile organic compounds, free amino acids, and sensory profile of smoked bacon. Meat Sci. 2021, 181, 108596. [Google Scholar] [CrossRef] [PubMed]
- Alarcón, M.; Pérez-Coello, M.S.; Díaz-Maroto, M.C.; Alañón, M.E.; García-ruiz, A.; Soriano, A. Inactive dry yeast to improve the oxidative stability of Spanish dry-fermented sausage “salchichón”. LWT—Food Sci. Technol. 2021, 146, 111385. [Google Scholar] [CrossRef]
- Ma, R.; Liu, X.; Tian, H.; Han, B.; Li, Y.; Tang, C.; Zhu, K.; Li, C.; Meng, Y. Odor-active volatile compounds profile of triploid rainbow trout with different marketable sizes. Aquac. Rep. 2020, 17, 100312. [Google Scholar] [CrossRef]
- Fernández-López, J.; Viuda-Martos, M.; Pérez-Alvarez, J.A. Quinoa and chia products as ingredients for healthier processed meat products: Technological strategies for their application and effects on the final product. Cur. Opin. Food Sci. 2021, 40, 26–32. [Google Scholar] [CrossRef]
- Zhou, C.; Le, Y.; Zheng, Y.; Wang, J.; Li, G.; Bai, Y.; Li, C.; Xu, X.; Zhou, G.; Cao, J. Characterizing the effect of free amino acids and volatile compounds on excessive bitterness and sourness in defective dry-cured ham. LWT—Food Sci. Technol. 2020, 123, 109071. [Google Scholar] [CrossRef]
- Han, G.; Zhang, L.; Li, Q.; Wang, Y.; Chen, Q.; Kong, B. Impacts of different altitudes and natural drying times on lipolysis, lipid oxidation and flavour profile of traditional Tibetan yak jerky. Meat Sci. 2020, 162, 108030. [Google Scholar] [CrossRef]
- Yan, Q.; Simmons, T.R.; Cordell, W.T.; Lozada, N.J.H.; Breckner, C.J.; Chen, X.; Jindra, M.A.; Pfleger, B.F. Metabolic engineering of β-oxidation to leverage thioesterases for production of 2-heptanone, 2-nonanone and 2-undecanone. Metab. Eng. 2020, 61, 335–343. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, L.; Zhang, H.; Wang, Y.; Chen, Q.; Kong, B. Physicochemical properties and flavour profile of fermented dry sausages with a reduction of sodium chloride. LWT—Food Sci. Technol. 2020, 124, 109061. [Google Scholar] [CrossRef]
- Aquilani, C.; Sirtori, F.; Flores, M.; Bozzi, R.; Lebret, B.; Pugliese, C. Effect of natural antioxidants from grape seed and chestnut in combination with hydroxytyrosol, as sodium nitrite substitutes in Cinta Senese dry-fermented sausages. Meat Sci. 2018, 145, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Unal, E.; Zerrin, T.; Serkan, E. The effect of microencapsulated Lactobacillus rhamnosus and storage period on aroma properties of Turkish dry-fermented sausage (sucuk). J. Food Meas. Charact. 2017, 11, 2131–2141. [Google Scholar]
- Jung, H.; Kim, I.; Jung, S.; Lee, J. Oxidative stability of chia seed oil and flax seed oil and impact of rosemary (Rosmarinus officinalis L.) and garlic (Allium cepa L.) extracts on the prevention of lipid oxidation. Appl. Biol. Chem. 2021, 64, 1–16. [Google Scholar] [CrossRef]
- Ahamad Bustamam, M.S.; Hadithon, K.A.; Mediani, A.; Abas, F.; Rukayadi, Y.; Lajis, N.; Shaari, K.; Ismail, I.S. Stability study of Algerian Nigella sativa seeds stored under different conditions. J. Anal. Methods Chem. 2017, 2017, 7891434. [Google Scholar] [CrossRef]
- Hannan, M.A.; Rahman, M.A.; Sohag, A.A.M.; Uddin, M.J.; Dash, R.; Sikder, M.H.; Rahman, M.S.; Timalsina, B.; Munni, Y.A.; Sarker, P.P.; et al. Black Cumin (Nigella sativa L.): A comprehensive review on phytochemistry, health benefits, molecular pharmacology, and Safety. Nutrient 2020, 13, 1784. [Google Scholar] [CrossRef]
- Kabir, Y.; Akasaka-Hashimoto, Y.; Kubota, K.; Komai, M. Volatile compounds of black cumin (Nigella sativa L.) seeds cultivated in Bangladesh and India. Heliyon 2020, 6, e05343. [Google Scholar] [CrossRef]
- Edris, A.E. Thymoquinone: Chemistry and Functionality. In Black Cumin (Nigella sativa) Seeds: Chemistry, Technology, Functionality, and Applications; Ramadan, M.F., Ed.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 81–96. [Google Scholar]
- Pateiro, M.; Gómez-Salazar, J.A.; Jaime-Patlán, M.; Sosa-Morales, M.E.; Lorenzo, J.M. Plant extracts obtained with green solvents as natural antioxidants in fresh meat products. Antioxidants 2021, 10, 181. [Google Scholar] [CrossRef]
- Li, F.; Feng, X.; Zhang, D.; Li, C.; Xu, X.; Zhou, G.; Liu, Y. Physical properties, compositions and volatile profiles of Chinese dry-cured hams from different regions. J. Food Meas. Charact. 2020, 14, 492–504. [Google Scholar] [CrossRef]
- Salaritabar, A.; Darvish, B.; Hadjiakhoondi, F.; Manayi, A. Methylsulfonylmethane (MSM). In Nonvitamin and Nonmineral Nutritional Supplements; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 93–98. [Google Scholar]
- Yan, H.L.; Cao, S.C.; Hu, Y.D.; Zhang, H.F.; Liu, J.B. Effects of methylsulfonylmethane on growth performance, immunity, antioxidant capacity, and meat quality in Pekin ducks. Poult. Sci. 2008, 99, 1069–1074. [Google Scholar] [CrossRef] [PubMed]
- Echegaray, N.; Domínguez, R.; Cadavez, V.A.P.; Bermúdez, R.; Purriños, L.; Gonzales-Barron, U.; Hoffman, E.; Lorenzo, J.M. Influence of the production system (intensive vs. Extensive) at farm level on proximate composition and volatile compounds of Portuguese lamb meat. Foods 2021, 10, 1450. [Google Scholar] [CrossRef]
- Pérez-Santaescolástica, C.; Carballo, J.; Fulladosa, E.; Munekata, P.E.S.; Bastianello Campagnol, P.C.; Gómez, B.; Lorenzo, J.M. Influence of high-pressure processing at different temperatures on free amino acid and volatile compound profiles of dry-cured ham. Food Res. Int. 2019, 116, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Polish Committee for Standardization. Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile; ISO/DIS 13299.2; Polish Committee for Standardization: Warsaw, Poland, 1998. [Google Scholar]
Component | SK | SCh 1% | SCh 2% | SBC 1% | SBC 2% |
---|---|---|---|---|---|
Fat | 13.32 ± 1.15 a | 16.48 ± 1.42 b | 16.96 ± 1.46 b | 16.14 ± 1.41 b | 17.05 ± 1.36 b |
Protein | 51.01 ± 1.21 c | 52.52 ± 1.25 c | 52.44 ± 1.24 c | 36.28 ± 0.86 b | 29.93 ± 0.71 a |
Moisture | 29.84 ± 1.2 a | 29.06 ± 1.18 a | 30.23 ± 1.23 a | 36.26 ± 1.46 b | 39.78 ± 1.62 c |
Collagen | 1.95 ± 0.32 a | 2.97 ± 0.81 a | 2.65 ± 0.65 a | 1.90 ± 0.83 a | 1.85 ± 0.72 a |
Salt | 6.17 ± 0.54 a | 6.38 ± 0.49 a | 5.48 ± 0.71 a | 6.09 ± 0.56 a | 5.94 ± 0.67 a |
Family | Compound | m/z | LRI | SK | SCh 1% | SCh 2% | SBC 1% | SBC 2% | SEM | Sig. |
Alcohols | Glycidol | 44 | 481 | 137.62 b | 96.15 a | 188.33 c | 80.22 a | 106.47 ab | 8.97 | *** |
Isopropyl alcohol | 45 | 514 | 282.02 c | 155.72 b | 101.02 ab | 63.28 a | 40.28 a | 18.33 | *** | |
2-Methyl-1-propanol | 43 | 636 | 401.65 b | 15.18 a | 10.19 a | 2.74 a | 1.58 a | 32.63 | *** | |
2-Pentanol | 45 | 743 | 111.22 b | 47.70 a | 50.42 a | 32.19 a | 26.19 a | 6.67 | *** | |
3-Methyl-3-buten-1-ol | 68 | 796 | 30.50 b | 38.90 c | 40.86 c | 9.94 a | 5.09 a | 2.86 | *** | |
3-Methyl-1-butanol | 55 | 801 | 1464.56 b | 125.61 a | 105.12 a | 20.38 a | 8.24 a | 106.64 | *** | |
2-Methyl-1-butanol | 56 | 805 | 499.76 b | 28.56 a | 22.70 a | 4.38 a | 1.52 a | 37.37 | *** | |
1-Pentanol | 55 | 841 | 90.77 bc | 48.61 ab | 131.11 c | 17.58 a | 4.29 a | 10.93 | *** | |
2,3-Butanediol | 45 | 906 | 2473.58 c | 1204.35 b | 621.19 ab | 98.95 a | 3.07 a | 197.16 | *** | |
1-Hexanol | 56 | 951 | 174.55 d | 82.89 b | 128.20 c | 27.68 a | 18.86 a | 11.67 | *** | |
Benzyl alcohol | 108 | 1128 | 177.03 c | 162.15 bc | 147.50 b | 51.99 a | 35.91 a | 11.24 | *** | |
Phenylethyl alcohol | 91 | 1187 | 95.13 b | 31.13 a | 24.76 a | 7.84 a | 3.51 a | 7.76 | *** | |
Total alcohols | 5938.40 c | 2036.95 b | 1571.40 b | 417.17 a | 255.00 a | 389.49 | *** | |||
Aldehydes | 2-Methylpropanal | 72 | 540 | 12.32 | 10.32 | 14.68 | 11.8 | 15.46 | 0.65 | ns |
Butanal | 72 | 569 | 3.54 a | 3.18 a | 9.55 b | 1.21 a | 0.95 a | 0.67 | *** | |
3-Methylbutanal | 58 | 649 | 92.44 a | 92.59 a | 149.74 b | 68.66 a | 76.13 a | 7.02 | *** | |
2-Methylbutanal | 58 | 663 | 42.01 a | 49.26 ab | 64.41 b | 39.96 a | 43.10 a | 2.90 | * | |
Pentanal | 57 | 720 | 179.70 a | 362.99 a | 1431.66 b | 14.73 a | 10.51 a | 117.37 | *** | |
Hexanal | 56 | 861 | 1979.82 b | 600.15 a | 2266.79 b | 366.30 a | 150.31 a | 217.12 | *** | |
Heptanal | 70 | 972 | 189.67 c | 57.88 a | 103.99 b | 49.47 a | 22.88 a | 12.31 | *** | |
Benzaldehyde | 106 | 1045 | 60.27 a | 114.67 b | 153.03 c | 73.53 a | 60.25 a | 6.98 | *** | |
Propanal | 58 | 1073 | 10.06 a | 24.58 a | 21.98 a | 3040.14 c | 1597.42 b | 263.24 | *** | |
Benzeneacetaldehyde | 91 | 1122 | 71.40 ab | 50.36 a | 84.62 b | 63.42 ab | 63.74 ab | 3.75 | * | |
Family | Compound | m/z | LRI | SK | SCh 1% | SCh 2% | SBC 1% | SBC 2% | SEM | Sig. |
3-Ethylbenzeneacetaldehyde | 133 | 1215 | 2.68 a | 5.73 a | 14.87 b | 1.69 a | 1.35 a | 1.12 | *** | |
Pentadecanal | 82 | 1530 | 6.67 a | 16.22 c | 13.12 b | 10.58 b | 10.48 b | 0.69 | *** | |
Total aldehydes | 2650.58 abc | 1387.93 a | 4328.44 c | 3741.47 bc | 2052.57 ab | 316.86 | * | |||
Carboxylic acids | Acetic acid | 60 | 679 | 1770.23 a | 15,484.76 c | 16,003.69 c | 10,861.63 b | 14,797.66 c | 1025.12 | *** |
Butanoic acid | 73 | 913 | 472.87 a | 694.52 b | 773.81 b | 697.67 b | 686.99 b | 22.85 | *** | |
Butanedioic acid, phenyl- | 104 | 951 | 21.95 | 24.24 | 19.85 | 18.65 | 20.86 | 0.67 | ns | |
Propanoic acid anhydride | 57 | 1065 | 308.55 | 335.01 | 312.02 | 327.68 | 307.77 | 14.31 | ns | |
Total carboxylic acids | 2573.61 a | 16,538.52 c | 17,109.37 c | 11,905.62 b | 15,813.28 c | 1042.31 | *** | |||
Esters | Ethyl ethanoate | 43 | 584 | 2050.51 | 1906.52 | 1357.93 | 1217.62 | 957.25 | 144.52 | ns |
Ethyl propanoate | 57 | 728 | 121.23 a | 75.00 a | 370.81 b | 23.39 a | 11.63 a | 29.85 | *** | |
Ethyl isobutyrate | 116 | 794 | 14.77 b | 3.01 a | 2.12 a | 1.31 a | 0.23 a | 1.24 | *** | |
Ethyl butyrate/Ethyl butanoate | 88 | 849 | 482.17 | 243.04 | 210.19 | 208.05 | 178.27 | 37.73 | ns | |
Ethyl lactate | 45 | 889 | 787.15 | 1015.63 | 1135.63 | 512.55 | 485.76 | 89.,91 | ns | |
3-Methylbutylacetate | 70 | 936 | 45.05 b | 12.61 a | 11.33 a | 6.31 a | 5.29 a | 2.97 | *** | |
Oxalic acid, butyl cyclobutyl ester | 55 | 1184 | 10.4 | 9.33 | 8.78 | 10.08 | 10.58 | 0.41 | ns | |
Total esters | 3511.28 | 3265.13 | 3096.81 | 1979.32 | 1649.01 | 260.68 | ns | |||
Ethers | Dimethyl ether | 45 | 499 | 12,980.42 b | 4753.12 a | 4737.93 a | 4162.37 a | 2850.05 a | 989.60 | ** |
Trimethylene oxide | 58 | 508 | 42.61 a | 46.89 a | 244.81 b | 13.44 a | 25.18 a | 19.58 | *** | |
2-Ethyl-furan | 81 | 694 | 10.55 a | 40.94 a | 152.60 b | 5.82 a | 3.85 a | 12.54 | *** | |
3,3-Dimethyl-1,2-epoxybutane | 70 | 778 | 3.44 a | 3.85 a | 16.99 b | 1.32 a | 0.41 a | 1.41 | *** | |
1-Butoxy-2-propanol | 87 | 1010 | 192.1 | 138.89 | 122.02 | 79.59 | 52.72 | 18.78 | ns | |
2-Pentyl-furan | 81 | 1036 | 33.37 a | 44.38 a | 124.58 b | 49.32 a | 63.90 a | 7.96 | *** | |
cis-4-methoxy thujane | 153 | 1154 | 0.58 a | 6.52 a | 9.92 a | 1663.94 b | 2874.28 c | 219.91 | *** | |
Total ethers | 13,263.06 b | 5034.60 a | 5408.85 a | 5975.80 a | 5870.40 a | 913.42 | * | |||
Hydrocarbons | Pentane | 42 | 497 | 566.89 b | 13.95 a | 20.93 a | 185.81 a | 127.00 a | 58.33 | ** |
Pentane, 3-methyl- | 57 | 534 | 2.98 a | 6.92 a | 20.57 b | 3.71 a | 1.76 a | 2.08 | * | |
n-Hexane | 56 | 544 | 490.80 a | 1028.76 ab | 1888.38 b | 959.12 ab | 574.69 a | 162.51 | * | |
Isobutane | 42 | 637 | 212.93 b | 10.11 a | 7.10 a | 1.90 a | 0.59 a | 16.94 | *** | |
Heptane | 57 | 663 | 101.80 a | 98.09 a | 175.62 b | 57.53 a | 60.85 a | 10.05 | *** | |
Octane | 85 | 814 | 230.69 bc | 273.00 c | 420.07 d | 121.95 ab | 71.91 a | 29.33 | *** | |
Octane, 2,3-dimethyl- | 98 | 900 | 21.82 bc | 25.79 c | 20.57 bc | 15.93 b | 8.95 a | 1.35 | *** | |
Heptane, 3-ethyl- | 57 | 900 | 66.23 b | 79.02 b | 66.57 b | 45.25 a | 25.55 a | 4.50 | *** | |
Nonane | 85 | 931 | 15.16 | 18.03 | 17.6 | 18.55 a | 14.06 a | 0.69 | ns | |
Butane, 2,2,3-trimethyl- | 57 | 962 | 17.60 c | 22.66 d | 15.08 c | 10.97 b | 5.18 a | 1.21 | *** | |
3-Ethyl-3-methylheptane | 85 | 984 | 21.21 cd | 23.69 d | 18.81 bc | 17.64 b | 8.01 a | 1.08 | *** | |
Octane, 3-ethyl- | 71 | 1000 | 36.05 d | 30.84 c | 26.55 b | 39.19 d | 21.15 a | 1.31 | *** | |
Undecane, 6,6-dimethyl- | 57 | 1002 | 24.96 a | 26.89 a | 24.21 a | 34.28 b | 23.03 a | 0,93 | *** | |
Nonane, 3-methylene- | 70 | 1019 | 96.75 ab | 111.92 b | 83.36 a | 169.33 d | 132.73 c | 6.03 | *** | |
Decane | 71 | 1028 | 155.99 a | 998.98 b | 781.27 ab | 1187.57 b | 255.46 a | 120.53 | * | |
Hexane, 2,2-dimethyl- | 56 | 1044 | 135.71 b | 162.53 c | 93.81 a | 126.67 b | 76.37 a | 6.58 | *** | |
2,2,4,4-Tetramethyloctane | 57 | 1060 | 4058.55 b | 4348.46 b | 3115.53 a | 4000.35 b | 2752.89 a | 162.57 | ** | |
Dodecane, 2,6,10-trimethyl- | 57 | 1067 | 1245.39 bc | 1515.65 d | 1020.92 ab | 1277.64 c | 863.18 a | 53.27 | *** | |
Tridecane, 6-methyl- | 57 | 1072 | 240.31 c | 242.09 c | 200.19 b | 34.12 a | 25.42 a | 18.69 | *** | |
Undecane, 3,6-dimethyl- | 57 | 1079 | 1132.69 c | 1131.42 c | 814.13 b | 926.54 b | 572.25 a | 43.00 | *** | |
Undecane, 3,5-dimethyl- | 71 | 1079 | 444.29 b | 451.81 b | 332.49 a | 411.86 b | 297.98 a | 13.04 | *** | |
Hexane, 2,2,5-trimethyl- | 56 | 1082 | 58.78 a | 60.93 a | 63.97 a | 57.40 a | 42.17 a | 3.54 | ns | |
Pentane, 2,2,4-trimethyl- | 57 | 1084 | 166.14 c | 168.61 c | 127.88 b | 174.49 c | 96.71 a | 6.19 | *** | |
Decane, 2,6,7-trimethyl- | 71 | 1084 | 56.18 b | 26.32 a | 43.64 ab | 40.23 ab | 31.36 a | 3.15 | * | |
Heptane, 3,3,4-trimethyl- | 71 | 1088 | 178.24 b | 203.41 b | 178.85 b | 182.57 b | 113.31 a | 7.00 | *** | |
Heptane, 3-methyl- | 56 | 1095 | 7.2 | 6.51 | 6.17 | 5.85 | 5.91 | 0.30 | ns | |
Cyclobutane, 1,1,2,3,3-pentamethyl- | 70 | 1105 | 25.55 | 22.98 | 23.64 | 25.57 | 21.89 | 1.11 | ns | |
Undecane | 57 | 1114 | 1171.85 b | 1130.56 b | 834.97 a | 1140.39 b | 828.49 a | 35.20 | *** | |
Decane, 3,3,5-trimethyl- | 71 | 1128 | 71.4 | 73.52 | 69.75 | 93.29 | 86.6 | 3.39 | ns | |
Decane, 3,3,8-trimethyl- | 57 | 1128 | 118.12 | 129.84 | 117.83 | 125.09 | 122.25 | 6.84 | ns | |
Octane, 2,3,3-trimethyl- | 57 | 1158 | 41.99 | 36.98 | 31.47 | 42.39 | 32.86 | 2.37 | ns | |
Dodecane | 57 | 1191 | 615.92 | 561.54 | 549.14 | 637.36 | 527.67 | 33.30 | ns | |
Cyclopentane, butyl- | 83 | 1229 | 16.83 b | 12.85 a | 12.24 a | 17.32 b | 16.72 b | 0.54 | *** | |
Tridecane | 57 | 1263 | 175.85 bc | 147.08 ab | 149.87 ab | 192.83 c | 133.80 a | 6.19 | ** | |
Total branched hydrocarbons | 8455.52 b | 8895.94 b | 6499.45 a | 7836.66 b | 5346.20 a | 300.73 | *** | |||
Total lineal hydrocarbons | 3524.95 ab | 4269.97 bc | 4837.84 c | 4501.11 bc | 2593.93 a | 222.12 | ** | |||
Total cyclic hydrocarbons | 42.39 | 35.83 | 35.88 | 42.88 | 38.6 | 1.43 | ns | |||
Total hydrocarbons | 12,022.86 b | 13,201.73 b | 11,373.17 b | 12,380.65 b | 7978.73 a | 413.91 | *** | |||
Ketones | 2-Butanone | 72 | 579 | 15.13 a | 24.42 bc | 30.72 c | 21.13 ab | 20.23 ab | 1.46 | ** |
2,3-Pentanedione | 100 | 728 | 25.43 a | 34.49 a | 196.98 b | 5.18 a | 2.82 a | 16.30 | *** | |
Acetoin | 45 | 782 | 85.71 a | 187.05 ab | 263.31 b | 114.53 a | 106.11 a | 21.06 | * | |
Cyclobutanone | 70 | 801 | 1039.22 b | 92.72 a | 69.96 a | 13.77 a | 5.41 a | 76.55 | *** | |
3,4-Hexanedione, 2,2,5-trimethyl- | 57 | 893 | 4.20 b | 4.71 b | 4.65 b | 3.87 ab | 2.48 a | 0.26 | * | |
2-Heptanone | 58 | 965 | 26.34 a | 16.95 a | 33.12 a | 56.07 b | 57.79 b | 4.23 | ** | |
3,5-Octadien-2-one | 95 | 1138 | 2.39 a | 14.17 a | 95.67 b | 2.43 a | 1.69 a | 8.52 | *** | |
Total ketones | 1198.43 c | 374.50 a | 694.41 b | 216.98 a | 196.52 a | 74.85 | *** | |||
Terpenoids | α-Phellandrene | 93 | 967 | 0.00 a | 256.18 ab | 440.91 b | 43,144.03 c | 46,901.02 d | 4081.00 | *** |
α-Thujene | 77 | 967 | 0.00 a | 82.27 a | 135.61 a | 16,026.38 b | 18,933.94 c | 1593.57 | *** | |
α-Pinene | 93 | 975 | 0.00 a | 340.86 b | 591.76 c | 7423.01 d | 9565.12 e | 756.40 | *** | |
Dehydrosabinene | 91 | 993 | 0.00 a | 0.00 a | 0.00 a | 362.01 b | 496.82 c | 39.94 | *** | |
Sabinene | 93 | 1019 | 0.00 a | 0.00 a | 4685.18 b | 6208.70 c | 511.49 | *** | ||
(-)-β-Pinene | 93 | 1021 | 0.00 a | 127.34 a | 207.24 a | 6752.91 b | 7041.00 b | 623.97 | *** | |
β-Myrcene | 93 | 1030 | 0.00 a | 0.00 a | 0.00 a | 134.53 b | 257.13 c | 19.25 | *** | |
(+)-4-Carene | 121 | 1058 | 0.00 a | 0.00 a | 0.00 a | 2430.25 b | 3712.91 c | 289.94 | *** | |
D-Limonene | 68 | 1067 | 0.00 a | 64.25 a | 82.24 a | 4701.64 b | 7617.69 c | 582.84 | *** | |
o-Cymene | 119 | 1071 | 0.00 a | 988.55 a | 1499.90 a | 71,876.77 c | 63,249.49 b | 6160,39 | *** | |
γ-Terpinene | 91 | 1092 | 0.00 a | 8.43 a | 13.32 a | 3339.94 b | 5566.69 c | 426.26 | *** | |
α-Terpinolene | 121 | 1117 | 0.00 a | 0.00 a | 0.00 a | 337.77 b | 558.84 c | 43.08 | *** | |
m-Cymenene | 132 | 1131 | 0.00 a | 0.00 a | 0.00 a | 1370.95 b | 2068.40 c | 162.17 | *** | |
Thujone | 110 | 1175 | 0.00 a | 0.00 a | 0.00 a | 20.81 b | 36.99 c | 2.81 | *** | |
Terpinen-4-ol | 111 | 1213 | 0.00 a | 0.00 a | 0.00 a | 160.03 b | 286.70 c | 21.81 | *** | |
(E)-Longipinene | 119 | 1324 | 0.00 a | 0.00 a | 0.00 a | 236.66 b | 455.97 c | 34.11 | *** | |
Thymol | 135 | 1328 | 0.00 a | 0.00 a | 0.00 a | 389.44 b | 761.60 c | 56.88 | *** | |
Longifolene | 161 | 1367 | 0.00 a | 0.00 a | 0.00 a | 401.08 b | 755.84 c | 56.73 | *** | |
Total terpenoids | 0.00 a | 1867.87 a | 2970.97 a | 163,793.39 b | 174,474.86 c | 15,279.80 | *** | |||
Others | Methanethiol | 72 | 579 | 11.52 ab | 17.48 c | 15.66 c | 12.91 b | 9.92 a | 0.59 | *** |
Diazene, dimethyl- | 100 | 728 | 33.30 ab | 26.75 a | 23.22 a | 42.16 b | 42.05 b | 2.14 | ** | |
Carbon disulfide | 45 | 782 | 133.71 a | 481.46 c | 305.58 b | 537.10 c | 532.28 c | 31.85 | *** | |
Fumaronitrile | 70 | 801 | 5.11 ab | 11.46 b | 22.35 c | 2.36 a | 1.71 a | 1.73 | *** | |
Butane, 1-chloro-3-methyl- | 57 | 893 | 33.91 b | 9.21 a | 10.07 a | 3.93 a | 3.22 a | 2.29 | *** | |
Dimethyl sulfone | 58 | 965 | 219.78 b | 248.35 b | 220.22 b | 134.41 a | 134.30 a | 12.47 | ** | |
2,3-Dimethyl-aziridine | 95 | 1138 | 28.19 a | 28.53 a | 25.04 a | 22.69 a | 21.21 a | 1.63 | ns | |
Total others | 465.52 a | 823.24 c | 622.14 b | 755.55 bc | 744.70 bc | 30.39 | *** | |||
Total compounds | 41,623.72 a | 44,530.47 a | 47,175.56 a | 201,165.95 b | 209,035.07 b | 14,687.11 | ** |
Parameter (c.u.) | SK | SCh 1% | SCh 2% | SBC 1% | SBC 2% |
---|---|---|---|---|---|
Meat color | 8.54 ± 1.48 a | 8.26 ± 1.57 a | 7.88 ± 1.64 a | 7.58 ± 1.29 a | 7.18 ± 1.66 a |
Hardness | 7.94 ± 1.33 a | 7.78 ± 1.63 a | 8.16 ± 1.09 a | 8.44 ± 1.03 a | 8.34 ± 1.18 a |
Overall quality | 8.16 ± 1.23 b | 8.06 ± 1.40 b | 7.28 ± 1.59 b | 7.12 ± 0.52 b | 5.28 ± 0.84 a |
Rancid odor | 0.80 ± 0.22 b | 0.72 ± 0.14 b | 1.16 ± 0.54 c | 0.52 ± 0.15 b | 0.24 ± 0.11 a |
Sour odor | 2.46 ± 0.56 a | 2.68 ± 0.71 a | 2.96 ± 0.63 a | 1.76 ± 0.72 a | 2.86 ± 0.32 a |
Herbal odor | 0.10 ± 0.02 a | 0.44 ± 0.21 b | 0.36 ± 0.11 b | 5.42 ± 0.85 c | 6.96 ± 0.38 c |
Rancid flavor | 0.60 ± 0.11 c | 0.80 ± 0.20 c | 0.10 ± 0.12 a | 0.15 ± 0.09 a | 0.40 ± 1.30 b |
Sour flavor | 0.15 ± 0.09 a | 0.23 ± 0.11 a | 0.18 ± 0.10 a | 0.09 ± 0.10 a | 0.18 ± 0.08 a |
Metallic flavor | 0.10 ± 0.07 a | 0.12 ± 0.08 a | 0.42 ± 0.14 b | 0.10 ± 0.11 a | 0.25 ± 0.10 ab |
Herbal flavor | 0.05 ± 0.07 a | 0.05 ± 0.04 a | 0.10 ± 0.07 a | 3.40 ± 0.12 b | 5.30 ± 0.18 c |
Bitter flavor | 0.01 ± 0.00 a | 0.02 ± 0.01 a | 0.01 ± 0.01 a | 0.02 ± 0.01 a | 0.01 ± 0.01 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borrajo, P.; Karwowska, M.; Lorenzo, J.M. The Effect of Salvia hispanica and Nigella sativa Seed on the Volatile Profile and Sensory Parameters Related to Volatile Compounds of Dry Fermented Sausage. Molecules 2022, 27, 652. https://doi.org/10.3390/molecules27030652
Borrajo P, Karwowska M, Lorenzo JM. The Effect of Salvia hispanica and Nigella sativa Seed on the Volatile Profile and Sensory Parameters Related to Volatile Compounds of Dry Fermented Sausage. Molecules. 2022; 27(3):652. https://doi.org/10.3390/molecules27030652
Chicago/Turabian StyleBorrajo, Paula, Małgorzata Karwowska, and Jose M. Lorenzo. 2022. "The Effect of Salvia hispanica and Nigella sativa Seed on the Volatile Profile and Sensory Parameters Related to Volatile Compounds of Dry Fermented Sausage" Molecules 27, no. 3: 652. https://doi.org/10.3390/molecules27030652
APA StyleBorrajo, P., Karwowska, M., & Lorenzo, J. M. (2022). The Effect of Salvia hispanica and Nigella sativa Seed on the Volatile Profile and Sensory Parameters Related to Volatile Compounds of Dry Fermented Sausage. Molecules, 27(3), 652. https://doi.org/10.3390/molecules27030652