Quality of Emulsions Based on Modified Watermelon Seed Oil, Stabilized with Orange Fibres
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Emulsion Preparation
3.2.2. Determination of Destabilisation Changes in Emulsions Using the Turbiscan
3.2.3. Centrifuge Stability Test
3.2.4. Measurement of the Mean Particle Size of Emulsions
3.2.5. Colorimetric Study
3.2.6. Viscosity Measurement
3.2.7. Texture Measurement
3.2.8. Assessment of Skin Hydration
3.2.9. Sensory Evaluation of Emulsions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vortel, V.A.L.; Wiechers, J.W. Skin sensory performance of individual personal care ingredients and marketed personal care products. Food Qual. Prefer. 2000, 11, 121–127. [Google Scholar]
- Tal-Figiel, B.; Figiel, W.; Michno, M. Effect of aqueous phase composition on rheological properties and stability of cosmetic emulsions. Inżynieria i Aparatura Chemiczna 2015, 2, 51–52. (In Polish) [Google Scholar]
- Lin, T.-K.; Zhong, L.; Santiago, J.L. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int. J. Mol. Sci. 2017, 19, 70. [Google Scholar] [CrossRef] [Green Version]
- Prokopowicz, M.; Różycki, K.M. Innovation in cosmetics. World Sci. News. 2017, 72, 448–456. [Google Scholar]
- Amberg, N.; Fogarassy, C. Green Consumer Behavior in the Cosmetics Market. Resources 2019, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Petchsomrit, A.; McDermott, M.I.; Chanroj, S.; Choksawangkarn, W. Watermelon seeds and peels: Fatty acid composition and cosmeceutical potential. OCL 2020, 27, 54. [Google Scholar] [CrossRef]
- Sui, X.; Jiang, L.; Li, Y.; Liu, S. The research on extracting oil from watermelon seeds by aqueous enzymatic extraction method. Procedia Eng. 2011, 15, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- McClements, D.J. Critical Review of Techniques and Methodologies for Characterization of Emulsion Stability. Crit. Rev. Food Sci. Nutr. 2007, 47, 611–649. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, E. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocoll. 2009, 23, 1473–1482. [Google Scholar] [CrossRef]
- Palaniraj, A.; Jayaraman, V. Production, recovery and applications of xanthan gum by Xanthomonas campestris. J. Food Eng. 2011, 106, 1–12. [Google Scholar] [CrossRef]
- Sun, C.; Gunasekaran, S.; Richards, M.P. Effect of xanthan gum on physicochemical properties of whey protein isolate stabilized oil-in-water emulsions. Food Hydrocoll. 2007, 21, 555–564. [Google Scholar] [CrossRef]
- Desplanques, S.; Renou, F.; Grisel, M.; Malhiac, C. Impact of chemical composition of xanthan and acacia gums on the emulsification and stability of oil-in-water emulsions. Food Hydrocoll. 2012, 27, 401–410. [Google Scholar] [CrossRef]
- Huang, L.; Liu, J.; Addy, M.; Ding, B.; Cheng, Y.; Peng, P.; Wang, Y.; Liu, Y.; Chen, P.; Ruan, R. Physicochemical and emulsifying properties of orange fibers stabilized oil-in-water emulsions. LWT 2020, 133, 110054. [Google Scholar] [CrossRef]
- Wallecan, J.; McCrae, C.; Debon, S.; Dong, J.; Mazoyer, J. Emulsifying and stabilizing properties of functionalized orange pulp fibers. Food Hydrocoll. 2015, 47, 115–123. [Google Scholar] [CrossRef]
- Chatsisvili, N.T.; Amvrosiadis, I.; Kiosseoglou, V. Physicochemical properties of a dressing-type o/w emulsion as influenced by orange pulp fiber incorporation. LWT 2012, 46, 335–340. [Google Scholar] [CrossRef]
- Wozniak, M.; Kowalska, M.; Tavernier, S.; Zbikowska, A. Enzymatically Modified Fats Applied in Emulsions Stabilized by Poly-saccharides. Biomolecules 2021, 11, 49. [Google Scholar] [CrossRef]
- McClements, D.J.; Jafari, S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci. 2017, 251, 55–79. [Google Scholar] [CrossRef] [PubMed]
- Ravera, F.; Dziza, K.; Santini, E.; Cristofolini, L.; Liggieri, L. Emulsification and emulsion stability: The role of the interfacial prop-erties. Adv. Colloid Interface Sci. 2020, 288, 102344. [Google Scholar] [CrossRef]
- Qi, X.; Dong, Y.; Wang, H.; Wang, C.; Li, F. Application of Turbiscan in the homoaggregation and heteroaggregation of copper nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2017, 535, 96–104. [Google Scholar] [CrossRef]
- Iyer, V.; Cayatte, C.; Guzman, B.; Schneider-Ohrum, K.; Matuszak, R.; Snell, A.; Rajani, G.M.; McCarthy, M.P.; Muralidhara, B. Impact of formulation and particle size on stability and immunogenicity of oil-in-water emulsion adjuvants. Hum. Vaccines Immunother. 2015, 11, 1853–1864. [Google Scholar] [CrossRef] [Green Version]
- Kowalska, M.; Woźniak, M.; Żbikowska, A.; Kozłowska, M. Physicochemical characterization and evaluation of emulsions con-taining chemically modified fats and different hydrocolloids. Biomolecules 2020, 10, 115. [Google Scholar] [CrossRef] [Green Version]
- Kowalska, M.; Wozniak, M.; Pazdzior, M. Assessment of the sensory and moisturizing properties of emulsions with hemp oil. Acta Polytech. Hung. 2017, 14, 183–195. [Google Scholar]
- Lemarchand, C.; Couvreur, P.; Vauthier, C.; Costantini, D.; Gref, R. Study of emulsion stabilization by graft copolymers using the optical analyzer Turbiscan. Int. J. Pharm. 2003, 254, 77–82. [Google Scholar] [CrossRef]
- Navarro-Pérez, Y.M.; Cedeño-Linares, E.; Norman-Montenegro, O.; Ruz-Sanjuan, V.; Mondeja-Rivera, Y.; Hernández-Monzón, A.M.; González-Bedia, M.M. Prediction of the physical stability and quality of O/W cosmetic emulsions using full factorial design. J. Pharm. Pharmacogn. 2021, 9, 98–112. [Google Scholar]
- Pathare, P.; Opara, U.L.; Al-Said, F.A.-J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess. Technol. 2012, 6, 36–60. [Google Scholar] [CrossRef]
Emulsion | Mean Particle Size (µm) | Increase in Mean Particle Size after Storage Period (µm) | Mean Value of the Particle Size Variation According to the Type of Fat Phase Used (µm) | |
---|---|---|---|---|
24 h | 30 Days | |||
I | 2.47 | 3.24 | 0.77 | 0.69 |
II | 2.06 | 2.82 | 0.75 | |
III | 2.00 | 2.91 | 0.91 | |
IV | 2.02 | 2.67 | 0.65 | |
V | 2.23 | 2.59 | 0.36 | |
VI | 2.95 | 3.02 | 0.07 | 0.07 |
VII | 2.41 | 2.47 | 0.06 | |
VIII | 2.27 | 2.32 | 0.05 | |
IX | 2.33 | 2.49 | 0.16 | |
X | 2.08 | 2.09 | 0.01 | |
XI | 2.61 | 2.63 | 0.02 | - |
XII | 2.38 | 2.49 | 0.11 | |
XIII | 2.44 | 2.51 | 0.07 | |
XIV | 1.99 | 2.35 | 0.36 | |
XV | 2.10 | 2.42 | 0.32 |
Emulsion | Time Point | ||||||
---|---|---|---|---|---|---|---|
24 h | 30 Days | ||||||
L* | a* | b* | L* | a* | b* | TCD | |
I | 63.51 | −0.59 | 9.79 | 56.86 | 0.10 | 12.68 | 7.28 |
II | 65.17 | −0.58 | 9.79 | 59.68 | 0.05 | 12.59 | 6.19 |
III | 62.54 | −0.59 | 10.04 | 58.05 | 0.17 | 13.11 | 5.49 |
IV | 64.78 | −0.61 | 10.07 | 61.40 | 0.11 | 12.42 | 4.17 |
V | 63.80 | −0.62 | 9.77 | 59.03 | 0.02 | 12.43 | 5.49 |
VI | 64.14 | −0.58 | 9.74 | 61.42 | −0.22 | 9.60 | 2.74 |
VII | 64.55 | −0.57 | 9.61 | 61.80 | −0.22 | 9.54 | 2.77 |
VIII | 65.00 | −0.64 | 8.89 | 62.09 | −0.33 | 9.39 | 2.96 |
IX | 64.11 | −0.64 | 9.16 | 61.72 | −0.43 | 9.37 | 2.41 |
X | 65.85 | −0.69 | 8.47 | 61.98 | −0.30 | 9.28 | 3.97 |
XI | 65.11 | −0.59 | 9.67 | 61.19 | −0.17 | 10.68 | 4.06 |
XII | 63.26 | −0.50 | 9.82 | 60.43 | −0.23 | 10.34 | 2.89 |
XIII | 62.83 | −0.56 | 9.58 | 59.11 | 0.03 | 10.65 | 3.91 |
XIV | 65.48 | −0.65 | 9.55 | 61.79 | −0.05 | 10.59 | 3.88 |
XV | 64.88 | −0.69 | 9.12 | 60.61 | −0.08 | 10.82 | 4.63 |
Emulsion | Adhesive Force (g) | Hardness (g) | ||
---|---|---|---|---|
24 h | 30 Days | 24 h | 30 Days | |
I | −18.0 | −5.5 | 40.5 | 33.0 |
II | −10.5 | −5.5 | 33.5 | 28.0 |
III | −11.0 | −5.5 | 32.5 | 24.5 |
IV | −10.5 | −9.0 | 33.5 | 25.0 |
V | −8.0 | −7.0 | 30.5 | 26.5 |
VI | −34.0 | −89.0 | 74.5 | 254.0 |
VII | −38.5 | −159.5 | 107.0 | 221.5 |
VIII | −20.5 | −124.0 | 55.0 | 222.5 |
IX | −34.5 | −147.0 | 45.0 | 240.0 |
X | −77.0 | −128.0 | 105.5 | 239.5 |
XI | −20.0 | −23.0 | 54.5 | 56.0 |
XII | −37.5 | −38.5 | 53.5 | 55.5 |
XIII | −33.5 | −39.0 | 46.5 | 48.5 |
XIV | −33.5 | −38.0 | 57.5 | 65.5 |
XV | −43.0 | −48.5 | 80.0 | 72.5 |
Skin Hydration [CU] | Emulsion | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | XIII | XIV | XV | |
Before application | 31.6 | 36.4 | 32.5 | 34.3 | 30.3 | 30.7 | 30.1 | 27.5 | 25.7 | 28.7 | 27.8 | 28.9 | 21.2 | 19.9 | 18.5 |
Immediately after application | 30.4 | 33.8 | 32.2 | 31.7 | 33.8 | 20.4 | 17.8 | 24.7 | 20.6 | 24.3 | 22.5 | 26.7 | 28.8 | 28.6 | 35.8 |
After 30 min | 30.3 | 31.4 | 36.3 | 39.0 | 37.0 | 21.1 | 23.8 | 29.6 | 23.2 | 32.6 | 27.1 | 29.5 | 29.4 | 31.0 | 35.1 |
After 60 min | 31.7 | 33.9 | 41.9 | 41.2 | 37.5 | 21.8 | 23.6 | 36.7 | 26.4 | 30.3 | 26.4 | 21.4 | 31.9 | 38.8 | 35.4 |
After 90 min | 31.3 | 35.4 | 42.9 | 43.6 | 42.6 | 20.3 | 24.1 | 30.9 | 26.8 | 26.6 | 36.8 | 20.0 | 26.6 | 41.9 | 35.2 |
After 120 min | 40.5 | 39.1 | 47.6 | 37.8 | 39.7 | 28.7 | 26.6 | 33.9 | 32.0 | 32.4 | 30.8 | 22.4 | 26.9 | 36.1 | 31.9 |
After 165 min | 36.6 | 33.8 | 36.9 | 33.5 | 33.2 | 31.5 | 28.7 | 35.0 | 29.9 | 38.0 | 28.3 | 34.0 | 23.2 | 29.6 | 27.0 |
Components | Emulsion | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | XIII | XIV | XV | ||
Variable components (% w/w) | XG | 1.0 | 0.8 | 0.5 | 0.2 | 0.0 | 1.0 | 0.8 | 0.5 | 0.2 | 0.0 | 1.0 | 0.8 | 0.5 | 0.2 | 0.0 |
OF | 0.0 | 0.2 | 0.5 | 0.8 | 1.0 | 0.0 | 0.2 | 0.5 | 0.8 | 1.0 | 0.0 | 0.2 | 0.5 | 0.8 | 1.0 | |
WO | 18.375 | 6.125 | 12.25 | |||||||||||||
MT | 6.125 | 18.375 | 12.25 | |||||||||||||
Constant components (% w/w) | W | 69.0 | ||||||||||||||
L | 5.5 | |||||||||||||||
BS | q.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalska, M.; Żbikowska, A.; Woźniak, M.; Amanowicz, A. Quality of Emulsions Based on Modified Watermelon Seed Oil, Stabilized with Orange Fibres. Molecules 2022, 27, 513. https://doi.org/10.3390/molecules27020513
Kowalska M, Żbikowska A, Woźniak M, Amanowicz A. Quality of Emulsions Based on Modified Watermelon Seed Oil, Stabilized with Orange Fibres. Molecules. 2022; 27(2):513. https://doi.org/10.3390/molecules27020513
Chicago/Turabian StyleKowalska, Małgorzata, Anna Żbikowska, Magdalena Woźniak, and Aleksandra Amanowicz. 2022. "Quality of Emulsions Based on Modified Watermelon Seed Oil, Stabilized with Orange Fibres" Molecules 27, no. 2: 513. https://doi.org/10.3390/molecules27020513
APA StyleKowalska, M., Żbikowska, A., Woźniak, M., & Amanowicz, A. (2022). Quality of Emulsions Based on Modified Watermelon Seed Oil, Stabilized with Orange Fibres. Molecules, 27(2), 513. https://doi.org/10.3390/molecules27020513