From Plant to Yeast—Advances in Biosynthesis of Artemisinin
Abstract
:1. Introduction
2. The Artemisinin Biosynthesis Pathway
3. Metabolic Engineering in Microorganisms
4. Production of Artemisinin in Genetically Engineered Plants
4.1. Genetic Engineering in A. annua
4.1.1. Overexpression of Key Genes in Artemisinin Biosynthesis
Gene Name | Expression Mode | Artemisinin (mg/g DW) | Fold Change | Reference | |
---|---|---|---|---|---|
Control | Transgenic | ||||
MVA or MEP pathway key genes | |||||
CrHMGR1 | Overexpression | 0.32 | 0.39 | 1.22 | [52] |
0.37 | 0.60 | 1.62 | [35] | ||
CrDXR1 | Overexpression | 0.52 | 1.21 | 2.33 | [36] |
IPPI1 | Overexpression | 0.75 | 2.5 | 3.33 | [38] |
HDR1 | Overexpression | 0.05 | 0.09 | 1.8 | [37] |
HDR1 | Down-regulation | 0.05 | 0.03 | 0.6 | |
GaFPPS2 | Overexpression | 3 | 10.08 | 3.36 | [42] |
FPPS | Overexpression | 6.5 | 0.9 | 1.38 | [40] |
5.3 | 13.3 | 2.5 | [41] | ||
Artemisinin biosynthesis pathway key genes | |||||
ADS | Overexpression | 0.6 | 1.2 | 2 | [45] |
DBR2 | Overexpression | 0.94 | 2.14 | 2.26 | [46] |
8 | 22.6 | 2.83 | [53] | ||
ALDH1 | Overexpression | 8 | 25.6 | 3.2 | [54] |
HMGR, FPPS | Overexpression | 5 | 9 | 1.8 | [55] |
HMGR, ADS | Overexpression | 0.2 | 1.73 | 8.65 | [47] |
ADS-FPPS fusion | Overexpression | 10 | 26 | 2.6 | [48] |
CYP71AV1, CPR | Overexpression | 0.91 | 2.44 | 2.68 | [36] |
0.71 (mg/g FW) | 0.98 (mg/g FW) | 1.38 | [49] | ||
FPPS, CYP71AV1, CPR | Overexpression | 0.83 (mg/g FW) | 2.98 (mg/g FW) | 3.6 | [50] |
ADS, CYP71AV1, CPR | Overexpression | 6.4 | 15.1 | 2.4 | [56] |
ADS, CYP71AV1, CPR, ALDH1 | Overexpression | 8 | 27 | 3.4 | [51] |
Competitive pathway key genes | |||||
SQS | Down-regulation | 10 | 31.4 | 3.14 | [57] |
CPS | Down-regulation | 2.32 | 3.6 | 1.55 | [58] |
CPS | Down-regulation | 6.26 | 11.08 | 1.77 | [59] |
BFS | Down-regulation | 6.26 | 11.08 | 1.77 | |
GAS | Down-regulation | 6.26 | 12.71 | 2.03 | |
SQS | Down-regulation | 6.26 | 10.70 | 1.71 |
4.1.2. Suppression of Competitive Metabolic Pathways
4.1.3. Regulation of Transcription Factors Expression
WRKY TF Family
bHLH TF Family
Name | Function | Expression Mode | Fold Change of Artemisinin Content | Reference |
---|---|---|---|---|
WRKY TF family | ||||
AaWRKY1 | AaWRKY1 activates the expression of ADS, CYP71AV1, DBR2 genes. | Overexpression | 1.30–2.00 | [68] |
AaWRKY4 | AaWRKY4 prompts the expression of ADS, CYP71AV1, DBR2, ALDH1 genes. | Overexpression | 1.35–1.50 | [69] |
AaWRKY9 | AaWRKY9 positively regulates the expression of AaDBR2 and AaGSW1 genes. | Overexpression | 1.60–2.20 | [70] |
Down-regulation | 0.55–0.65 | |||
AaWRKY17 | AaWRKY17 activates the transcription of ADS, PR5 and NHL10 genes and enhances the resistance of A. annua to the pathogen P. syringae. | Overexpression | 1.50–1.87 | [71] |
Down-regulation | 0.79–0.85 | |||
AaGSW1 | AaGSW1 is a GST-specific TF, and positively regulates the expression of CYP71AV1 and AaORA genes. | Overexpression | 1.55–2.00 | [72] |
AaGSW2 | As a GST-specific TF, AaGSW2 positively regulates the initiation of GST. | Overexpression | 2.00 | [74] |
Down-regulation | 0.54 | |||
bHLH TF family | ||||
AabHLH1 | AabHLH1 activates transcription of ADS and CYP71AV1 genes and responds to JA induction. | Overexpression | 1.30 | [77] |
Down-regulation | 0.60 | |||
AaMYC2 | AaMYC2 prompts the expression of CYP71AV1 and DBR2 genes and responses to JA induction. | Overexpression | 1.24 | [78] |
Down-regulation | 0.55 | |||
AabHLH112 | AabHLH112 promotes artemisinin biosynthesis by activating TF AaERF1. | Overexpression | 1.70 | [79] |
AabHLH2 | AabHLH2 and AabHLH3 suppress the expression of ADS and CYP71AV1 genes by antagonizing AaMYC2, and negatively regulate artemisinin biosynthesis. | Overexpression | 0.34–0.73 | [81] |
Down-regulation | 1.42–1.87 | |||
AabHLH3 | Overexpression | 0.39–0.79 | ||
Down-regulation | 1.35–1.60 | |||
AP2/ERF TF family | ||||
AaERF1 | AaERF1 and AaERF2 activate the transcription of ADS and CYP71AV1 genes and respond to JA signaling. | Overexpression | 1.19–1.67 | [80] |
AaERF2 | Overexpression | 1.24–1.51 | ||
AaORA | AaORA is a trichome-specific TF, which promotes the expression of ADS, CYP71AV1, DBR2 and AaERF1 genes, and improves the resistance of A. annua to the pathogen B. cinerea. | Overexpression | 1.40–1.53 | [82] |
Down-regulation | 0.64–0.52 | |||
AaTAR1 | AaTAR1 activates the transcription of ADS and CYP71AV1 genes and regulates trichome development. | Overexpression | 1.22–1.38 | [83] |
Down-regulation | 0.36–0.61 | |||
bZIP TF family | ||||
AabZIP1 | AabZIP1 activates the transcription of ADS and CYP71AV1 genes through ABA signaling, indirectly promotes the expression of AaDBR2 and AaALDH1 genes through AaMYC2 and improves the drought resistance of A. annua. | Overexpression | 1.40–1.60 | [84,85] |
AabZIP9 | AabZIP9 activates the expression of ADS gene and positively regulates artemisinin biosynthesis. | Overexpression | 1.23–1.67 | [86] |
AaHY5 | AaHY5 positively regulates light-induced artemisinin biosynthesis through interacting with TF AaGSW1. | Overexpression | 2.00 | [87] |
Down-regulation | 0.50 | |||
AaTGA6 | AaTGA6 takes part in artemisinin biosynthesis regulated by SA signaling and promotes artemisinin biosynthesis by activating the TF AaERF1. | Overexpression | 1.90–2.20 | [88] |
Down-regulation | 0.40–0.80 | |||
MYB TF family | ||||
AaMYB1 | AaMYB1 participates in the biosynthesis of artemisinin and GA and regulates the trichome development. | Overexpression | 2.00 | [89] |
AaMIXTA1 | AaMIXTA1 is a GST-specific TF, which regulates GST formation and cuticle biosynthesis. | Overexpression | 2.00 | [90] |
Down-regulation | 0.75 | |||
AaTAR2 | AaTAR2 positively regulates GST development, as well as artemisinin and flavonoid biosynthesis. | Overexpression | ~1.38–1.54 1 | [91] |
Down-regulation | ~0.57–0.84 1 | |||
AaMYB16 (AaMIXTA-like 2) | AaMYB5 and AaMYB16 show the antagonism and regulate the development of GST by competitively binding to the AaHD1 promoter to form AaHD1-AaMYB5 or AaHD1-AaMYB16 complexes. | Overexpression | 1.34–1.56 | [92] |
Down-regulation | 0.73–0.81 | |||
AaMYB5 | Overexpression | 0.73–0.85 | ||
Down-regulation | 1.45–1.84 | |||
AaMYB17 | AaMYB17 is a GST-specific TF and positively regulates artemisinin biosynthesis. | Overexpression | 1.88 | [93] |
Down-regulation | 0.75 | |||
AaMYB15 | As a GST-specific TF, AaMYB15 negatively regulates the biosynthesis of artemisinin by inhibiting the expression of AaORA gene. | Overexpression | ~0.60–0.74 1 | [94] |
Down-regulation | ~1.52 1 | |||
AaTLR1 | AaTLR1 and AaTLR2 interact with AaWOX1 to form the AaTLR1-AaWOX1-AaTLR2 complex to negatively regulate GST formation and artemisinin biosynthesis. | Overexpression | 0.51–0.88 | [95] |
Down-regulation | 1.32–1.84 | |||
AaTLR2 | Overexpression | 0.57–0.81 | ||
Other TF family | ||||
AaZFP1 | As a C2H2-type TF, AsZFP1 activates the transcription of AaIPPI1 gene and prompts artemisinin biosynthesis. | Overexpression | 1.60 | [96] |
AaSPL9 | AaSPL9 positively regulates glandular trichomes initiation and artemisinin biosynthesis by activating TF AaHD1. | Overexpression | 1.33–1.60 | [97] |
AaSEP4 | AaSEP4, as a MADS TF, promotes artemisinin biosynthesis by directly activating TF AsGSW1. | Overexpression | 1.19–1.72 | [98] |
AP2/ERF TF Family
bZIP TF Family
MYB TF Family
Other TF Families
4.2. Genetic Engineering in Nicotiana Species
Gene Name | Plant Species | Expression System | Product Yield | Reference |
---|---|---|---|---|
ADS | N. tabacum | Nuclear | Amorpha-4,11-diene 1.7 ng/g FW | [118] |
FPPS, ADS, CYP71AV1, DBR2, ALDH1 | N. tabacum | Nuclear | Amorpha-4,11-diene 4 μg/g FW | [119] |
HMGR, ADS/mtADS, CYP71AV1, CPR, DBR2 | N. tabacum | Nuclear | Artemisinin 6.8 μg/g DW | [120] |
HMGR, FPPS, ADS, CYP71AV1 | N. benthamiana | Nuclear | Artemisinic acid-12-β-glucoside 39.5 μg/g FW | [121] |
AACT1, HMGS1, HMGR1, MVK1, PMK1, PMD1, IDI2, FPPS2, ADS, CYP71AV1, CPR, aadA 3 | N. tabacum | Chloroplast | Artemisinic acid 100 μg/g FW | [124] |
FPPS, ADS, CYP71AV1, CPR, CYPB5, ADH1, ALDH1, DBR2 | N. tabacum | Chloroplast and nuclear | Artemisinic acid 120 μg/g FW | [125] |
AACT1, HMGS1, HMGR1, MVK1, PMK1, PMD1, IDI2, FPPS2, ADS, CYP71AV1, CPR, DBR2 | N. tabacum | Chloroplast and nuclear | Artemisinin 0.8 mg/g DW | [126] |
ADS, CYP71AV1, ADH1, DBR2, ALDH1 | P. patens | Nuclear | Artemisinin 0.21 mg/g DW | [127] |
ADS, DBR2, ALDH1 | P. patens | Nuclear | Artemisinin 0.04 mg/g DW | [128] |
HMGR, ADS, CYP71AV1, CPR, DBR2 | C. morifolium | Nuclear | Artemisinin (Detect by GC-MS) | [129] |
4.3. Genetic Engineering in Physcomitrella patens and Chrysanthemum morifolium
5. Challenges and Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, L.; Yang, C.; Li, C.; Zhao, Q.; Liu, L.; Fang, X.; Chen, X.Y. Recent advances in biosynthesis of bioactive compounds in traditional Chinese medicinal plants. Sci. Bull. 2016, 61, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Zwenger, S.; Basu, C. Plant terpenoids: Applications and future potentials. Microbiol. Mol. Biol. Rev. 2008, 3, 1–7. [Google Scholar] [CrossRef]
- Nagegowda, D.A.; Gupta, P. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. Plant Sci. 2020, 294, 110457. [Google Scholar] [CrossRef]
- Alqahtani, F.Y.; Aleanizy, F.S.; El Tahir, E.; Alkahtani, H.M.; AlQuadeib, B.T. Chapter Three—Paclitaxel. In Profiles of Drug Substances, Excipients and Related Methodology; Academic Press: Cambridge, MA, USA, 2019; Volume 44, pp. 205–238. [Google Scholar]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A review of its effects on human health. Foods 2017, 6, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.; Ali, S.; Manghwar, H.; Saqib, S.; Ullah, F.; Ayaz, A.; Zaman, W. Melatonin function and crosstalk with other phytohormones under normal and stressful conditions. Genes 2022, 13, 1699. [Google Scholar] [CrossRef]
- Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med. 2011, 17, 1217–1220. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Malaria Report 2021. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021 (accessed on 6 December 2021).
- Wong, Y.K.; Xu, C.; Kalesh, K.A.; He, Y.; Lin, Q.; Wong, W.S.F.; Shen, H.M.; Wang, J. Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action. Med. Res. Rev. 2017, 37, 1492–1517. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Casteels, T.; Frogne, T.; Ingvorsen, C.; Honoré, C.; Courtney, M.; Huber, K.V.M.; Schmitner, N.; Kimmel, R.A.; Romanov, R.A.; et al. Artemisinins target GABAA receptor signaling and impair α cell identity. Cell 2017, 168, 86–100.e115. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Colvin, C.J.; Johnson, B.K.; Kirchhoff, P.D.; Wilson, M.; Jorgensen-Muga, K.; Larsen, S.D.; Abramovitch, R.B. Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence. Nat. Chem. Biol. 2017, 13, 218–225. [Google Scholar] [CrossRef]
- Wallaart, T.E.; Pras, N.; Beekman, A.C.; Quax, W. Seasonal variation of artemisinin and its biosynthetic precursors in plants of Artemisia annua of different geographical origin: Proof for the existence of chemotypes. Planta Med. 2000, 66, 57–62. [Google Scholar] [CrossRef]
- Schmid, G.; Hofheinz, W. Total synthesis of qinghaosu. J. Am. Chem. Soc. 1983, 105, 624–625. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, X.; Liu, T.; Wang, Y.; Ahmed, N.; Li, Z.; Jiang, H. Synthetic biology of plant natural products: From pathway elucidation to engineered biosynthesis in plant cells. Plant Commun. 2021, 2, 100229. [Google Scholar] [CrossRef] [PubMed]
- Vranová, E.; Coman, D.; Gruissem, W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant Biol. 2013, 64, 665–700. [Google Scholar] [CrossRef] [PubMed]
- Mercke, P.; Bengtsson, M.; Bouwmeester, H.J.; Posthumus, M.A.; Brodelius, P.E. Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Arch. Biochem. Biophys. 2000, 381, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Teoh, K.H.; Polichuk, D.R.; Reed, D.W.; Nowak, G.; Covello, P.S. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett. 2006, 580, 1411–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ro, D.K.; Paradise, E.M.; Ouellet, M.; Fisher, K.J.; Newman, K.L.; Ndungu, J.M.; Ho, K.A.; Eachus, R.A.; Ham, T.S.; Kirby, J.; et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 2006, 440, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Teoh, K.H.; Polichuk, D.R.; Reed, D.W.; Covello, P.S. Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 2009, 87, 635–642. [Google Scholar] [CrossRef]
- Zhang, Y.; Teoh, K.H.; Reed, D.W.; Maes, L.; Goossens, A.; Olson, D.J.H.; Ross, A.R.S.; Covello, P.S. The molecular cloning of artemisinic aldehyde Δ11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. J. Biol. Chem. 2008, 283, 21501–21508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikram, N.K.B.K.; Simonsen, H.T. A review of biotechnological artemisinin production in plants. Front. Plant Sci. 2017, 8, 1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Khayri, J.M.; Sudheer, W.N.; Lakshmaiah, V.V.; Mukherjee, E.; Nizam, A.; Thiruvengadam, M.; Nagella, P.; Alessa, F.M.; Al-Mssallem, M.Q.; Rezk, A.A.; et al. Biotechnological approaches for production of artemisinin, an anti-malarial drug from Artemisia annua L. Molecules 2022, 27, 3040. [Google Scholar] [CrossRef]
- Bryant, L.; Flatley, B.; Patole, C.; Brown, G.D.; Cramer, R. Proteomic analysis of Artemisia annua—Towards elucidating the biosynthetic pathways of the antimalarial pro-drug artemisinin. BMC Plant Biol. 2015, 15, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Shang, L.; Zhu, Q.H.; Fan, L.; Guo, L. Twenty years of plant genome sequencing: Achievements and challenges. Trends Plant Sci. 2022, 27, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Martin, V.J.J.; Pitera, D.J.; Withers, S.T.; Newman, J.D.; Keasling, J.D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 2003, 21, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.D.; Marshall, J.; Chang, M.; Nowroozi, F.; Paradise, E.; Pitera, D.; Newman, K.L.; Keasling, J.D. High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol. Bioeng. 2006, 95, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Tsuruta, H.; Paddon, C.J.; Eng, D.; Lenihan, J.R.; Horning, T.; Anthony, L.C.; Regentin, R.; Keasling, J.D.; Renninger, N.S.; Newman, J.D. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS ONE 2009, 4, e4489. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C.Y.; Eachus, R.A.; Trieu, W.; Ro, D.K.; Keasling, J.D. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat. Chem. Biol. 2007, 3, 274–277. [Google Scholar] [CrossRef]
- Anthony, J.R.; Anthony, L.C.; Nowroozi, F.; Kwon, G.; Newman, J.D.; Keasling, J.D. Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab. Eng. 2009, 11, 13–19. [Google Scholar] [CrossRef]
- Westfall, P.J.; Pitera, D.J.; Lenihan, J.R.; Eng, D.; Woolard, F.X.; Regentin, R.; Horning, T.; Tsuruta, H.; Melis, D.J.; Owens, A.; et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc. Natl. Acad. Sci. USA 2012, 109, E111–E118. [Google Scholar] [CrossRef] [Green Version]
- Paddon, C.J.; Westfall, P.J.; Pitera, D.J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M.D.; Tai, A.; Main, A.; Eng, D.; et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 2013, 496, 528–532. [Google Scholar] [CrossRef] [Green Version]
- Graham, I.A.; Besser, K.; Blumer, S.; Branigan, C.A.; Czechowski, T.; Elias, L.; Guterman, I.; Harvey, D.; Isaac, P.G.; Khan, A.M.; et al. The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science 2010, 327, 328–331. [Google Scholar] [CrossRef]
- Shen, Q.; Zhang, L.; Liao, Z.; Wang, S.; Yan, T.; Shi, P.; Liu, M.; Fu, X.; Pan, Q.; Wang, Y.; et al. The genome of Artemisia annua provides insight into the evolution of asteraceae family and artemisinin biosynthesis. Mol. Plant 2018, 11, 776–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ram, M.; Khan, M.A.; Jha, P.; Khan, S.; Kiran, U.; Ahmad, M.M.; Javed, S.; Abdin, M.Z. HMG-CoA reductase limits artemisinin biosynthesis and accumulation in Artemisia annua L. plants. Acta Physiol. Plant. 2010, 32, 859–866. [Google Scholar] [CrossRef]
- Nafis, T.; Akmal, M.; Ram, M.; Alam, P.; Ahlawat, S.; Mohd, A.; Abdin, M.Z. Enhancement of artemisinin content by constitutive expression of the HMG-CoA reductase gene in high-yielding strain of Artemisia annua L. Plant Biotechnol. Rep. 2011, 5, 53–60. [Google Scholar] [CrossRef]
- Xiang, L.; Zeng, L.; Yuan, Y.; Chen, M.; Wang, F.; Liu, X.; Zeng, L.; Lan, X.; Liao, Z. Enhancement of artemisinin biosynthesis by overexpressing dxr, cyp71av1 and cpr in the plants of Artemisia annua L. Plant Omics 2012, 5, 503–507. [Google Scholar]
- Ma, D.; Li, G.; Zhu, Y.; Xie, D. Overexpression and suppression of Artemisia annua 4-Hydroxy-3-methylbut-2-enyl diphosphate reductase 1 gene (AaHDR1) differentially regulate artemisinin and terpenoid biosynthesis. Front. Plant Sci. 2017, 8, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, D.; Li, G.; Alejos-Gonzalez, F.; Zhu, Y.; Xue, Z.; Wang, A.; Zhang, H.; Li, X.; Ye, H.; Wang, H.; et al. Overexpression of a type-I isopentenyl pyrophosphate isomerase of Artemisia annua in the cytosol leads to high arteannuin B production and artemisinin increase. Plant J. 2017, 91, 466–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsushita, Y.; Kang, W.; Charlwood, B.V. Cloning and analysis of a cDNA encoding farnesyl diphosphate synthase from Artemisia annua. Gene 1996, 172, 207–209. [Google Scholar] [CrossRef]
- Han, J.; Liu, B.; Ye, H.; Wang, H.; Li, Z.; Li, G. Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L. J. Integr. Plant Biol. 2006, 48, 482–487. [Google Scholar] [CrossRef]
- Banyai, W.; Kirdmanee, C.; Mii, M.; Supaibulwatana, K. Overexpression of farnesyl pyrophosphate synthase (FPS) gene affected artemisinin content and growth of Artemisia annua L. Plant Cell Tissue Organ Cult. 2010, 103, 255–265. [Google Scholar] [CrossRef]
- Chen, D.; Ye, H.; Li, G. Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation. Plant Sci. 2000, 155, 179–185. [Google Scholar] [CrossRef]
- Wang, H.; Olofsson, L.; Lundgren, A.; Brodelius, P. Trichome-specific expression of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L., as reported by a promoter-GUS fusion. Am. J. Plant Sci. 2011, 2, 619–628. [Google Scholar] [CrossRef]
- Liao, B.; Shen, X.; Xiang, L.; Guo, S.; Chen, S.; Meng, Y.; Liang, Y.; Ding, D.; Bai, J.; Zhang, D.; et al. Allele-aware chromosome-level genome assembly of Artemisia annua reveals the correlation between ADS expansion and artemisinin yield. Mol. Plant 2022, 15, 1310–1328. [Google Scholar] [CrossRef]
- Ma, C.; Wang, H.; Lu, X.; Wang, H.; Xu, G.; Liu, B. Terpenoid metabolic profiling analysis of transgenic Artemisia annua L. by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Metabolomics 2009, 5, 497–506. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, W.; Zhang, Q.; Xiang, L.; Liu, X.; Chen, M.; Lin, Z.; Wang, Q.; Liao, Z. Overexpression of artemisinic aldehyde Δ11 (13) reductase gene–enhanced artemisinin and its relative metabolite biosynthesis in transgenic Artemisia annua L. Biotechnol. Appl. Biochem. 2015, 62, 17–23. [Google Scholar] [CrossRef]
- Alam, P.; Abdin, M.Z. Over-expression of HMG-CoA reductase and amorpha-4,11-diene synthase genes in Artemisia annua L. and its influence on artemisinin content. Plant Cell Rep. 2011, 30, 1919–1928. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Wang, H.; Kanagarajan, S.; Hao, M.; Lundgren, A.; Brodelius, P.E. Promoting artemisinin biosynthesis in Artemisia annua plants by substrate channeling. Mol. Plant 2016, 9, 946–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Q.; Chen, Y.; Wang, T.; Wu, S.; Xu, L.; Zhang, L.; Zhang, F.; Jiang, W.; Wang, G.; Tang, K. Overexpression of the cytochrome P450 monooxygenase (cyp71av1) and cytochrome P450 reductase (cpr) genes increased artemisinin content in Artemisia annua (Asteraceae). Genet. Mol. Res. 2012, 11, 3298–3309. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shen, Q.; Wang, Y.; Wang, T.; Wu, S.; Zhang, L.; Lu, X.; Zhang, F.; Jiang, W.; Qiu, B.; et al. The stacked over-expression of FPS, CYP71AV1 and CPR genes leads to the increase of artemisinin level in Artemisia annua L. Plant Biotechnol. Rep. 2013, 7, 287–295. [Google Scholar] [CrossRef]
- Shi, P.; Fu, X.; Liu, M.; Shen, Q.; Jiang, W.; Li, L.; Sun, X.; Tang, K. Promotion of artemisinin content in Artemisia annua by overexpression of multiple artemisinin biosynthetic pathway genes. Plant Cell Tissue Organ Cult. 2017, 129, 251–259. [Google Scholar] [CrossRef]
- Aquil, S.; Husaini, A.M.; Abdin, M.Z.; Rather, G.M. Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis in transgenic Artemisia annua plants. Planta Med. 2009, 75, 1453–1458. [Google Scholar] [CrossRef] [Green Version]
- Tang, K.; Shen, Q.; Chen, Y.; Wang, T.; Wu, S.; Lu, X. Overexpression DBR2 Gene Increased Artemisinin Content in Artemisia annua L. China Patent Application CN201210014227, 8 July 2015. [Google Scholar]
- Tang, K.; Chen, Y.; Shen, Q.; Wang, T.; Wu, S.; Wang, G. Overexpression ALDH1 Gene Increased Artemisinin Content in Artemisia annua L. China Patent Application CN201210014242, 22 August 2012. [Google Scholar]
- Wang, Y.; Jing, F.; Yu, S.; Chen, Y.; Wang, T.; Liu, P.; Wang, G.; Sun, X.; Tang, K. Co-overexpression of the HMGR and FPS genes enhances artemisinin content in Artemisia annua L. J. Med. Plants Res. 2011, 5, 3396–3403. [Google Scholar]
- Lu, X.; Shen, Q.; Zhang, L.; Zhang, F.; Jiang, W.; Lv, Z.; Yan, T.; Fu, X.; Wang, G.; Tang, K. Promotion of artemisinin biosynthesis in transgenic Artemisia annua by overexpressing ADS, CYP71AV1 and CPR genes. Ind. Crops Prod. 2013, 49, 380–385. [Google Scholar] [CrossRef]
- Zhang, L.; Jing, F.; Li, F.; Li, M.; Wang, Y.; Wang, G.; Sun, X.; Tang, K. Development of transgenic Artemisia annua (Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing. Biotechnol. Appl. Biochem. 2009, 52, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Fang, H.; Ji, Y.; Pu, G.; Guo, Y.; Huang, L.; Du, Z.; Liu, B.; Ye, H.; Li, G.; et al. Artemisinin biosynthesis enhancement in transgenic Artemisia annua plants by downregulation of the β-caryophyllene synthase gene. Planta Med. 2011, 77, 1759–1765. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Zhang, F.; Pan, Q.; Fu, X.; Jiang, W.; Shen, Q.; Yan, T.; Shi, P.; Lu, X.; Sun, X.; et al. Branch pathway blocking in Artemisia annua is a useful method for obtaining high yield artemisinin. Plant Cell Physiol. 2016, 57, 588–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, K.; Shen, Q.; Yan, T.; Fu, X. Transgenic approach to increase artemisinin content in Artemisia annua L. Plant Cell Rep. 2014, 33, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Wani, K.I.; Choudhary, S.; Zehra, A.; Naeem, M.; Weathers, P.; Aftab, T. Enhancing artemisinin content in and delivery from Artemisia annua: A review of alternative, classical, and transgenic approaches. Planta 2021, 254, 29. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Jia, J.W.; Crock, J.; Lin, Z.X.; Chen, X.Y.; Croteau, R. A cDNA clone for β-caryophyllene synthase from Artemisia annua. Phytochemistry 2002, 61, 523–529. [Google Scholar] [CrossRef]
- Rydén, A.M.; Ruyter-Spira, C.; Quax, W.J.; Osada, H.; Muranaka, T.; Kayser, O.; Bouwmeester, H. The molecular cloning of dihydroartemisinic aldehyde reductase and its implication in artemisinin biosynthesis in Artemisia annua. Planta Med. 2010, 76, 1778–1783. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, M.; Naghavi, M.R.; Alizadeh, H.; Soltanloo, H. Expression of artemisinin biosynthesis genes in eight Artemisia species at three developmental stages. Ind. Crops Prod. 2015, 76, 836–843. [Google Scholar] [CrossRef]
- Rushton, P.J.; Somssich, I.E.; Ringler, P.; Shen, Q.J. WRKY transcription factors. Trends Plant Sci. 2010, 15, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, C.; Wang, H.; Guo, Z. WRKY transcription factors: Evolution, binding, and action. Phytopathol. Res. 2019, 1, 13. [Google Scholar] [CrossRef]
- Ma, D.; Pu, G.; Lei, C.; Ma, L.; Wang, H.; Guo, Y.; Chen, J.; Du, Z.; Wang, H.; Li, G.; et al. Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant Cell Physiol. 2009, 50, 2146–2161. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Fu, X.; Pan, Q.; Tang, Y.; Shen, Q.; Lv, Z.; Yan, T.; Shi, P.; Li, L.; Zhang, L.; et al. Overexpression of AaWRKY1 leads to an enhanced content of artemisinin in Artemisia annua. BioMed Res. Int. 2016, 2016, 7314971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Xing, S.; Tang, K.; Jiang, W. AaWRKY4 upregulates artemisinin content through boosting the expressions of key enzymes in artemisinin biosynthetic pathway. Plant Cell Tissue Organ Cult. 2021, 146, 97–105. [Google Scholar] [CrossRef]
- Fu, X.; Peng, B.; Hassani, D.; Xie, L.; Liu, H.; Li, Y.; Chen, T.; Liu, P.; Tang, Y.; Li, L.; et al. AaWRKY9 contributes to light- and jasmonate-mediated to regulate the biosynthesis of artemisinin in Artemisia annua. New Phytol. 2021, 231, 1858–1874. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Li, Y.; Xie, L.; Hao, X.; Liu, H.; Qin, W.; Wang, C.; Yan, X.; Wu-Zhang, K.; Yao, X.; et al. AaWRKY17, a positive regulator of artemisinin biosynthesis, is involved in resistance to Pseudomonas syringae in Artemisia annua. Hortic. Res. 2021, 8, 217. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yan, T.; Shen, Q.; Lu, X.; Pan, Q.; Huang, Y.; Tang, Y.; Fu, X.; Liu, M.; Jiang, W.; et al. GLANDULAR TRICHOME-SPECIFIC WRKY 1 promotes artemisinin biosynthesis in Artemisia annua. New Phytol. 2017, 214, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.N.; Xu, D.B.; Yan, X.; Wu, Z.K.; Kayani, S.I.; Shen, Q.; Fu, X.Q.; Xie, L.H.; Hao, X.L.; Hassani, D.; et al. Jasmonate- and abscisic acid-activated AaGSW1-AaTCP15/AaORA transcriptional cascade promotes artemisinin biosynthesis in Artemisia annua. Plant Biotechnol. J. 2021, 19, 1412–1428. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Yan, T.; Li, L.; Chen, M.; Ma, Y.; Hao, X.; Fu, X.; Shen, Q.; Huang, Y.; Qin, W.; et al. The WRKY transcription factor AaGSW2 promotes glandular trichome initiation in Artemisia annua. J. Exp. Bot. 2021, 72, 1691–1701. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wang, Y.; Sui, N. Transcriptional regulation of bHLH during plant response to stress. Biochem. Biophys. Res. Commun. 2018, 503, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Xiao, J.; Shen, Y.; Ma, D.; Li, Z.; Pu, G.; Li, X.; Huang, L.; Liu, B.; Ye, H.; et al. Cloning and characterization of AabHLH1, a bHLH transcription factor that positively regulates artemisinin biosynthesis in Artemisia annua. Plant Cell Physiol. 2014, 55, 1592–1604. [Google Scholar] [CrossRef]
- Li, L.; Hao, X.; Liu, H.; Wang, W.; Fu, X.; Ma, Y.; Shen, Q.; Chen, M.; Tang, K. Jasmonic acid-responsive AabHLH1 positively regulates artemisinin biosynthesis in Artemisia annua. Biotechnol. Appl. Biochem. 2019, 66, 369–375. [Google Scholar] [CrossRef]
- Shen, Q.; Lu, X.; Yan, T.; Fu, X.; Lv, Z.; Zhang, F.; Pan, Q.; Wang, G.; Sun, X.; Tang, K. The jasmonate-responsive AaMYC2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua. New Phytol. 2016, 210, 1269–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, L.; Jian, D.; Zhang, F.; Yang, C.; Bai, G.; Lan, X.; Chen, M.; Tang, K.; Liao, Z. The cold-induced transcription factor bHLH112 promotes artemisinin biosynthesis indirectly via ERF1 in Artemisia annua. J. Exp. Bot. 2019, 70, 4835–4848. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.X.; Li, J.X.; Yang, C.Q.; Hu, W.L.; Wang, L.J.; Chen, X.Y. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol. Plant 2012, 5, 353–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Q.; Huang, H.; Xie, L.; Hao, X.; Kayani, S.-I.; Liu, H.; Qin, W.; Chen, T.; Pan, Q.; Liu, P.; et al. Basic helix-loop-helix transcription factors AabHLH2 and AabHLH3 function antagonistically with AaMYC2 and are negative regulators in artemisinin biosynthesis. Front. Plant Sci. 2022, 13, 885622. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhang, L.; Zhang, F.; Jiang, W.; Shen, Q.; Zhang, L.; Lv, Z.; Wang, G.; Tang, K. AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol. 2013, 198, 1191–1202. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Xiao, L.; Gao, S.; Li, Q.; Chen, J.; Xiao, Y.; Ji, Q.; Chen, R.; Chen, W.; Zhang, L. TRICHOME AND ARTEMISININ REGULATOR 1 is required for trichome development and artemisinin biosynthesis in Artemisia annua. Mol. Plant 2015, 8, 1396–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Fu, X.; Lv, Z.; Lu, X.; Shen, Q.; Zhang, L.; Zhu, M.; Wang, G.; Sun, X.; Liao, Z.; et al. A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua. Mol. Plant 2015, 8, 163–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, G.; Tang, Y.; Yuan, M.; Wei, N.; Zhang, F.; Yang, C.; Lan, X.; Chen, M.; Tang, K.; Xiang, L.; et al. Molecular insights into AabZIP1-mediated regulation on artemisinin biosynthesis and drought tolerance in Artemisia annua. Acta Pharm. Sin. B 2022, 12, 1500–1513. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Huang, H.; Zhao, Y.; Xie, L.; He, Q.; Zhong, Y.; Wang, Y.; Wang, Y.; Tang, K. The transcription factor AabZIP9 positively regulates the biosynthesis of artemisinin in Artemisia annua. Front. Plant Sci. 2019, 10, 1294. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Zhong, Y.; Nützmann, H.W.; Fu, X.; Yan, T.; Shen, Q.; Chen, M.; Ma, Y.; Zhao, J.; Osbourn, A.; et al. Light-induced artemisinin biosynthesis is regulated by the bZIP transcription factor AaHY5 in Artemisia annua. Plant Cell Physiol. 2019, 60, 1747–1760. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Guo, Z.; Zhang, L.; Zhang, F.; Jiang, W.; Shen, Q.; Fu, X.; Yan, T.; Shi, P.; Hao, X.; et al. Interaction of bZIP transcription factor TGA6 with salicylic acid signaling modulates artemisinin biosynthesis in Artemisia annua. J. Exp. Bot. 2019, 70, 3969–3979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matías-Hernández, L.; Jiang, W.; Yang, K.; Tang, K.; Brodelius, P.E.; Pelaz, S. AaMYB1 and its orthologue AtMYB61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana. Plant J. 2017, 90, 520–534. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Fu, X.; Shen, Q.; Liu, M.; Pan, Q.; Tang, Y.; Jiang, W.; Lv, Z.; Yan, T.; Ma, Y.; et al. The roles of AaMIXTA1 in regulating the initiation of glandular trichomes and cuticle biosynthesis in Artemisia annua. New Phytol. 2018, 217, 261–276. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Tan, H.; Li, Q.; Li, Q.; Wang, Y.; Bu, Q.; Li, Y.; Wu, Y.; Chen, W.; Zhang, L. TRICHOME AND ARTEMISININ REGULATOR 2 positively regulates trichome development and artemisinin biosynthesis in Artemisia annua. New Phytol. 2020, 228, 932–945. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Yan, T.; Li, L.; Chen, M.; Hassani, D.; Li, Y.; Qin, W.; Liu, H.; Chen, T.; Fu, X.; et al. An HD-ZIP-MYB complex regulates glandular secretory trichome initiation in Artemisia annua. New Phytol. 2021, 231, 2050–2064. [Google Scholar] [CrossRef]
- Qin, W.; Xie, L.; Li, Y.; Liu, H.; Fu, X.; Chen, T.; Hassani, D.; Li, L.; Sun, X.; Tang, K. An R2R3-MYB transcription factor positively regulates the glandular secretory trichome initiation in Artemisia annua L. Front. Plant Sci. 2021, 12, 657156. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Li, L.; Liu, H.; Yan, X.; Ma, Y.; Li, Y.; Chen, T.; Wang, C.; Xie, L.; Hao, X.; et al. AaMYB15, an R2R3-MYB TF in Artemisia annua, acts as a negative regulator of artemisinin biosynthesis. Plant Sci. 2021, 308, 110920. [Google Scholar] [CrossRef]
- Lv, Z.; Li, J.; Qiu, S.; Qi, F.; Su, H.; Bu, Q.; Jiang, R.; Tang, K.; Zhang, L.; Chen, W. The transcription factors TLR1 and TLR2 negatively regulate trichome density and artemisinin levels in Artemisia annua. J. Integr. Plant Biol. 2022, 64, 1212–1228. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.A.; Li, L.; Peng, Q.; Feng, L.F.; Yang, J.F.; Zhan, R.T.; Ma, D.M. Isolation and characterization of AaZFP1, a C2H2 zinc finger protein that regulates the AaIPPI1 gene involved in artemisinin biosynthesis in Artemisia annua. Planta 2022, 255, 122. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Fu, X.; Li, L.; Sun, X.; Tang, K.; Zhao, J. AaSPL9 affects glandular trichomes initiation by positively regulating expression of AaHD1 in Artemisia annua L. Plant Sci. 2022, 317, 111172. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.T.; Yao, X.H.; Liu, H.; Li, Y.P.; Qin, W.; Yan, X.; Wang, X.Y.; Peng, B.W.; Zhang, Y.J.; Shao, J.; et al. MADS-box gene AaSEP4 promotes artemisinin biosynthesis in Artemisia annua. Front. Plant Sci. 2022, 13, 982317. [Google Scholar] [CrossRef]
- Agarwal, P.K.; Agarwal, P.; Reddy, M.K.; Sopory, S.K. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 2006, 25, 1263–1274. [Google Scholar] [CrossRef]
- Nakano, T.; Suzuki, K.; Fujimura, T.; Shinshi, H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 2006, 140, 411–432. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Li, Y.; Hou, X. Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genom. 2013, 14, 573. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Jiang, W.; Zhang, L.; Zhang, F.; Zhang, F.; Shen, Q.; Wang, G.; Tang, K. AaERF1 positively regulates the resistance to Botrytis cinerea in Artemisia annua. PLoS ONE 2013, 8, e57657. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.N.; Xu, D.B.; Li, L.; Zhang, F.; Fu, X.Q.; Shen, Q.; Lyu, X.Y.; Wu, Z.K.; Pan, Q.F.; Shi, P.; et al. Jasmonate promotes artemisinin biosynthesis by activating the TCP14-ORA complex in Artemisia annua. Sci. Adv. 2018, 4, eaas9357. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, X.; Li, B.; Zhao, X.; Shen, Y.; Yuan, Z. Genome-wide identification and characterization of bZIP gene family and cloning of candidate genes for anthocyanin biosynthesis in pomegranate (Punica granatum). BMC Plant Biol. 2022, 22, 170. [Google Scholar] [CrossRef]
- Yu, Y.; Qian, Y.; Jiang, M.; Xu, J.; Yang, J.; Zhang, T.; Gou, L.; Pi, E. Regulation mechanisms of plant basic leucine zippers to various abiotic stresses. Front. Plant Sci. 2020, 11, 1258. [Google Scholar] [CrossRef] [PubMed]
- Jakoby, M.; Weisshaar, B.; Dröge-Laser, W.; Vicente-Carbajosa, J.; Tiedemann, J.; Kroj, T.; Parcy, F. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 2002, 7, 106–111. [Google Scholar] [CrossRef]
- Choi, H.I.; Hong, J.H.; Ha, J.O.; Kang, J.Y.; Kim, S.Y. ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem. 2000, 275, 1723–1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, R.; Izawa, T.; Chua, N.H. Plant bZIP proteins gather at ACGT elements. FASEB J. 1994, 8, 192–200. [Google Scholar] [CrossRef]
- Jing, F.; Zhang, L.; Li, M.; Tang, Y.; Wang, Y.; Wang, Y.; Wang, Q.; Pan, Q.; Wang, G.; Tang, K. Abscisic acid (ABA) treatment increases artemisinin content in Artemisia annua by enhancing the expression of genes in artemisinin biosynthetic pathway. Biologia 2009, 64, 319–323. [Google Scholar] [CrossRef] [Green Version]
- Pu, G.B.; Ma, D.M.; Chen, J.L.; Ma, L.Q.; Wang, H.; Li, G.F.; Ye, H.C.; Liu, B.Y. Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. Plant Cell Rep. 2009, 28, 1127–1135. [Google Scholar] [CrossRef]
- Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, B.; Martin, C.; Lepiniec, L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010, 15, 573–581. [Google Scholar] [CrossRef]
- Pesch, M.; Hülskamp, M. One, two, three… models for trichome patterning in Arabidopsis? Curr. Opin. Plant Biol. 2009, 12, 587–592. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, X.; Luo, Y.; Gong, Z.; Hu, X.; Wu, M.; Liu, Y.; Yan, F.; Zhang, X.; Zhang, W.; et al. R2R3 MYB-dependent auxin signalling regulates trichome formation, and increased trichome density confers spider mite tolerance on tomato. Plant Biotechnol. J. 2021, 19, 138–152. [Google Scholar] [CrossRef] [PubMed]
- Dubos, C.; Le Gourrierec, J.; Baudry, A.; Huep, G.; Lanet, E.; Debeaujon, I.; Routaboul, J.M.; Alboresi, A.; Weisshaar, B.; Lepiniec, L. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J. 2008, 55, 940–953. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Liu, Y.; Shang, X.; Fang, S. Identification and expression analysis of R2R3-MYB family genes associated with salt tolerance in Cyclocarya paliurus. Int. J. Mol. Sci. 2022, 23, 3429. [Google Scholar] [CrossRef]
- Hassani, D.; Fu, X.; Shen, Q.; Khalid, M.; Rose, J.K.C.; Tang, K. Parallel transcriptional regulation of artemisinin and flavonoid biosynthesis. Trends Plant Sci. 2020, 25, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Molina-Hidalgo, F.J.; Vazquez-Vilar, M.; D’Andrea, L.; Demurtas, O.C.; Fraser, P.; Giuliano, G.; Bock, R.; Orzáez, D.; Goossens, A. Engineering metabolism in Nicotiana species: A promising future. Trends Biotech. 2021, 39, 901–913. [Google Scholar] [CrossRef] [PubMed]
- Wallaart, T.E.; Bouwmeester, H.J.; Hille, J.; Poppinga, L.; Maijers, N.C.A. Amorpha-4,11-diene synthase: Cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 2001, 212, 460–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Nowak, G.; Reed, D.W.; Covello, P.S. The production of artemisinin precursors in tobacco. Plant Biotechnol. J. 2011, 9, 445–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farhi, M.; Marhevka, E.; Ben-Ari, J.; Algamas-Dimantov, A.; Liang, Z.; Zeevi, V.; Edelbaum, O.; Spitzer-Rimon, B.; Abeliovich, H.; Schwartz, B.; et al. Generation of the potent anti-malarial drug artemisinin in tobacco. Nat. Biotechnol. 2011, 29, 1072–1074. [Google Scholar] [CrossRef]
- Van Herpen, T.W.J.M.; Cankar, K.; Nogueira, M.; Bosch, D.; Bouwmeester, H.J.; Beekwilder, J. Nicotiana benthamiana as a production platform for artemisinin precursors. PLoS ONE 2010, 5, e14222. [Google Scholar] [CrossRef] [PubMed]
- Ting, H.M.; Wang, B.; Rydén, A.M.; Woittiez, L.; van Herpen, T.; Verstappen, F.W.A.; Ruyter-Spira, C.; Beekwilder, J.; Bouwmeester, H.J.; van der Krol, A. The metabolite chemotype of Nicotiana benthamiana transiently expressing artemisinin biosynthetic pathway genes is a function of CYP71AV1 type and relative gene dosage. New Phytol. 2013, 199, 352–366. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Kashkooli, A.B.; Sallets, A.; Ting, H.M.; de Ruijter, N.C.A.; Olofsson, L.; Brodelius, P.; Pottier, M.; Boutry, M.; Bouwmeester, H.; et al. Transient production of artemisinin in Nicotiana benthamiana is boosted by a specific lipid transfer protein from A. annua. Metab. Eng. 2016, 38, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Saxena, B.; Subramaniyan, M.; Malhotra, K.; Bhavesh, N.S.; Potlakayala, S.D.; Kumar, S. Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth. J. Biosci. 2014, 39, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, P.; Zhou, F.; Erban, A.; Karcher, D.; Kopka, J.; Bock, R. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. eLife 2016, 5, e13664. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, K.; Subramaniyan, M.; Rawat, K.; Kalamuddin, M.; Qureshi, M.I.; Malhotra, P.; Mohmmed, A.; Cornish, K.; Daniell, H.; Kumar, S. Compartmentalized metabolic engineering for artemisinin biosynthesis and effective malaria treatment by oral delivery of plant cells. Mol. Plant 2016, 9, 1464–1477. [Google Scholar] [CrossRef] [PubMed]
- Khairul Ikram, N.K.B.; Beyraghdar Kashkooli, A.; Peramuna, A.V.; van der Krol, A.R.; Bouwmeester, H.; Simonsen, H.T. Stable production of the antimalarial drug artemisinin in the moss Physcomitrella patens. Front. Bioeng. Biotech. 2017, 5, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikram, N.K.; Kashkooli, A.B.; Peramuna, A.; Krol, A.R.v.d.; Bouwmeester, H.; Simonsen, H.T. Insights into heterologous biosynthesis of arteannuin B and artemisinin in Physcomitrella patens. Molecules 2019, 24, 3822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firsov, A.; Pushin, A.; Motyleva, S.; Pigoleva, S.; Shaloiko, L.; Vainstein, A.; Dolgov, S. Heterologous biosynthesis of artemisinin in Chrysanthemum morifolium Ramat. Separations 2021, 8, 75. [Google Scholar] [CrossRef]
- Reski, R.; Bae, H.; Simonsen, H.T. Physcomitrella patens, a versatile synthetic biology chassis. Plant Cell Rep. 2018, 37, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Rensing, S.A.; Lang, D.; Zimmer, A.D.; Terry, A.; Salamov, A.; Shapiro, H.; Nishiyama, T.; Perroud, P.-F.; Lindquist, E.A.; Kamisugi, Y.; et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 2008, 319, 64–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, D.; Ullrich, K.K.; Murat, F.; Fuchs, J.; Jenkins, J.; Haas, F.B.; Piednoel, M.; Gundlach, H.; Van Bel, M.; Meyberg, R.; et al. The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. Plant J. 2018, 93, 515–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, B.C.; Vavitsas, K.; Ikram, N.K.B.K.; Schrøder, J.; Scharff, L.B.; Bassard, J.-É.; Hamberger, B.; Jensen, P.E.; Simonsen, H.T. In vivo assembly of DNA-fragments in the moss, Physcomitrella patens. Sci. Rep. 2016, 6, 25030. [Google Scholar] [CrossRef] [PubMed]
- Reski, R.; Parsons, J.; Decker, E.L. Moss-made pharmaceuticals: From bench to bedside. Plant Biotechnol. J. 2015, 13, 1191–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anterola, A.; Shanle, E.; Perroud, P.F.; Quatrano, R. Production of taxa-4(5),11(12)-diene by transgenic Physcomitrella patens. Transgenic Res. 2009, 18, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Nuerbiye, A.; Cheng, P.; Wang, J.H.; Li, H. Analysis of floral volatile components and antioxidant activity of different varieties of Chrysanthemum morifolium. Molecules 2017, 22, 1790. [Google Scholar] [CrossRef] [PubMed]
- Firsov, A.; Mitiouchkina, T.; Shaloiko, L.; Pushin, A.; Vainstein, A.; Dolgov, S. Agrobacterium-mediated transformation of Chrysanthemum with artemisinin biosynthesis pathway genes. Plants 2020, 9, 537. [Google Scholar] [CrossRef] [PubMed]
Enzyme Name | Expression Mode | Gene Source | Host | Products | Reference |
---|---|---|---|---|---|
pMevT (atoB 1, HMGS, tHMGR) pMBIS (EGR12, EGR8, MVD1, idi 2, ispA 3) | Overexpression | Yeast | E. coli | Amorpha-4,11-diene 24 mg/L | [25] |
pSOE4 (dxs, ippHP 4, ispA) | Overexpression | E. coli | |||
ADS | Overexpression | A. annua | |||
pAM45 (atoB1, HMGS, tHMGR, MK, PMK, PMD, idi 2, ispA 3,) pAM94 (ADS 5, MK) | Overexpression | Yeast | E. coli | Amorpha-4,11-diene 293 mg/L | [29] |
pAM52 (atoB 1, mvaS, mvaA) 6 pMBIS (EGR12, EGR8, MVD1, idi 2, ispA 3) | Overexpression | Yeast | E. coli | Amorpha-4,11-diene 27.4 g/L | [27] |
ADS | Overexpression | A. annua | |||
pAM92 (atoB 1, HMGS, tHMGR, EGR12, EGR8, EGR19, idi 2, ispA 3, ADS 5) | Overexpression | Yeast | E. coli | Artemisinic acid 105 mg/L | [28] |
AMO, CPR | Overexpression | A. annua | |||
MVA pathway enzymes (EGR13, tHMGR, EGR12, EGR8, EGR20) | Overexpression | Yeast | Yeast | Artemisinic acid 100 mg/L | [18] |
EGR9 | Down-regulation | Yeast | |||
ADS, CYP71AV1, CPR | Overexpression | A. annua | |||
All enzymes of MVA pathway (EGR10, EGR13, tHMG1, EGR12, EGR8, EGR19, IDI1, EGR20) | Overexpression | Yeast | Yeast (CEN.PK2) | Amorpha-4,11-diene 40 g/L | [30] |
EGR9 | Down-regulation | Yeast | |||
ADS, CYP71AV1, CPR | Overexpression | A. annua | |||
Every gene of MVA pathway (EGR10, EGR13, tHMG1, EGR12, EGR8, EGR19, IDI1, EGR20) | Overexpression | Yeast | Yeast | Artemisinic acid 25 g/L | [31] |
EGR9 | Down-regulation | Yeast | |||
ADS, CYP71AV1, CPR1, CYB5, ADH1, ALDH1 | Overexpression | A. annua |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Zhu, Y.; Jia, H.; Han, Y.; Zheng, X.; Wang, M.; Feng, W. From Plant to Yeast—Advances in Biosynthesis of Artemisinin. Molecules 2022, 27, 6888. https://doi.org/10.3390/molecules27206888
Zhao L, Zhu Y, Jia H, Han Y, Zheng X, Wang M, Feng W. From Plant to Yeast—Advances in Biosynthesis of Artemisinin. Molecules. 2022; 27(20):6888. https://doi.org/10.3390/molecules27206888
Chicago/Turabian StyleZhao, Le, Yunhao Zhu, Haoyu Jia, Yongguang Han, Xiaoke Zheng, Min Wang, and Weisheng Feng. 2022. "From Plant to Yeast—Advances in Biosynthesis of Artemisinin" Molecules 27, no. 20: 6888. https://doi.org/10.3390/molecules27206888
APA StyleZhao, L., Zhu, Y., Jia, H., Han, Y., Zheng, X., Wang, M., & Feng, W. (2022). From Plant to Yeast—Advances in Biosynthesis of Artemisinin. Molecules, 27(20), 6888. https://doi.org/10.3390/molecules27206888