Lanostane Triterpenoids and Ergostane Steroids from Ganoderma luteomarginatum and Their Cytotoxicity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Elucidation of Compounds
2.2. Cytotoxic Activities of Compounds
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Isolation and Characterization of Compounds
3.4. Bioassay of Cytotoxic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paterson, R.R.M. Ganoderma-A therapeutic fungal biofactory. Phytochemistry 2006, 67, 1985–2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.L.; Guo, J.R.; Liao, Q.Z.; Xie, S.H.; Xiao, M. The resources and ecological distrbution of Ganodermataceae in Hainan island. Mycosystema 1998, 17, 122–129. [Google Scholar]
- Kladar, N.V.; Gavarić, N.S.; Božin, B.N. Ganoderma: Insights into anticancer effects. Eur. J. Cancer Prev. 2016, 25, 462–471. [Google Scholar] [CrossRef]
- Baby, S.; Johnson, A.J.; Govindan, B. Secondary metabolites from Ganoderma. Phytochemistry 2015, 114, 66–101. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Zhang, H.; Sun, X.; Zhao, H.; Wu, L.; Zhu, D.; Yang, G.; Shao, Y.; Zhang, X.; Mao, X.; et al. A comprehensive review of the structure elucidation and biological activity of triterpenoids from Ganoderma spp. Molecules 2014, 19, 17478–17535. [Google Scholar] [CrossRef] [PubMed]
- Cör, A.D.; Knez, Ž.; Knez, M.M. Antioxidant, antibacterial, antitumor, antifungal, antiviral, anti-inflammatory, and nevro-protective activity of Ganoderma lucidum: An overview. Front. Pharmacol. 2022, 13, 934982. [Google Scholar]
- Huang, S.Z.; Ma, Q.Y.; Kong, F.D.; Guo, Z.K.; Cai, C.H.; Hu, L.L.; Zhou, L.M.; Wang, Q.; Dai, H.F.; Mei, W.L.; et al. Lanostane-type triterpenoids from the fruiting body of Ganoderma calidophilum. Phytochemistry 2017, 143, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Amen, Y.M.; Zhu, Q.; Tran, H.B.; Afifi, M.S.; Halim, A.F.; Ashour, A.; Mira, A.; Shimizu, K. Lucidumol C, a new cytotoxic lanostanoid triterpene from Ganoderma lingzhi against human cancer cells. J. Nat. Med. 2016, 70, 661–666. [Google Scholar] [CrossRef]
- Zhang, J.J.; Wang, D.W.; Cai, D.; Lu, Q.; Cheng, Y.X. Meroterpenoids from Ganoderma lucidum mushrooms and their biological roles in insulin resistance and triple-negative breast cancer. Front. Chem. 2021, 9, 772740. [Google Scholar] [CrossRef]
- Liu, L.Y.; Chen, H.; Liu, C.; Wang, H.Q.; Kang, J.; Li, Y.; Chen, R.Y. Triterpenoids of Ganoderma theaecolum and their hepatoprotective activities. Fitoterapia 2014, 98, 254–259. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, X.; Long, G.; Yang, Y.; Chen, G.; Hou, G.; Huo, X.; Jia, J.; Wang, A.; Hu, G. Lanostane-type triterpenoids from the mycelial mat of Ganoderma lucidum and their hepatoprotective activities. Phytochemistry 2022, 198, 113131. [Google Scholar] [CrossRef]
- Wu, Y.L.; Han, F.; Luan, S.S.; Ai, R.; Zhang, P.; Li, H.; Chen, L.X. Triterpenoids from Ganoderma lucidum and their potential anti-inflammatory effects. J. Agric. Food Chem. 2019, 67, 5147–5158. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.R.; Wang, Q.; Wang, H.R.; Hu, K.; Xiong, W.Y.; Qiu, M.H. FPR2-based anti-inflammatory and anti-lipogenesis activities of novel meroterpenoid dimers from Ganoderma. Bioorg. Chem. 2021, 116, 105338. [Google Scholar] [CrossRef]
- Kou, R.W.; Gao, Y.Q.; Xia, B.; Wang, J.Y.; Liu, X.N.; Tang, J.J.; Yin, X.; Gao, J.M. Ganoderterpene A, a new triterpenoid from Ganoderma lucidum, attenuates LPS-induced inflammation and apoptosis via suppressing MAPK and TLR-4/NF-κB pathways in BV-2 cells. J. Agric. Food Chem. 2021, 69, 12730–12740. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.C.; Yang, L.; Ma, Q.Y.; Ge, Y.Z.; Kong, F.D.; Zhou, L.M.; Zhang, F.; Xie, Q.Y.; Yu, Z.F.; Dai, H.F.; et al. Triterpenoids and meroterpenoids with α-glucosidase inhibitory activities from the fruiting bodies of Ganoderma australe. Bioorg. Chem. 2021, 117, 105448. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Q.; Zhao, J.; Chen, L.X.; Wang, S.F.; Wang, Y.; Li, S.P. Lanostane triterpenes from the mushroom Ganoderma resinaceum and their inhibitory activities against α-glucosidase. Phytochemistry 2018, 149, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.Y.; Peng, X.R.; Dong, J.R.; Yan, H.; Kong, Q.H.; Shi, Q.Q.; Li, D.S.; Zhou, L.; Li, Z.R.; Qiu, M.H. Aromatic constituents from Ganoderma lucidum and their neuroprotective and anti-inflammatory activities. Fitoterapia 2019, 134, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.G.; Teoh, T.C.; Rizman-Idid, M. Chemical compounds and computational prediction of their inhibitory effects on the HIV-1 gp120 receptor by lingzhi or reishi medicinal mushroom, Ganoderma lucidum (agaricomycetes), with antler-like morphology of fruiting bodies. Int. J. Med. Mushrooms 2021, 23, 63–77. [Google Scholar] [CrossRef]
- Weng, Y.; Xiang, L.; Matsuura, A.; Zhang, Y.; Huang, Q.; Qi, J. Ganodermasides A and B, two novel anti-aging ergosterols from spores of a medicinal mushroom Ganoderma lucidum on yeast via UTH1 gene. Bioorg. Med. Chem. 2010, 18, 999–1002. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, X.; Song, C. Neuroprotective and antioxidant lanostanoid triterpenes from the fruiting bodies of Ganoderma atrum. Fitoterapia 2016, 109, 75–79. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, W.; Liu, S. Optimization of ultrasonic-assisted extraction of polysaccharides and triterpenoids from the medicinal mushroom Ganoderma lucidum and evaluation of their in vitro antioxidant capacities. PLoS ONE 2020, 15, e0244749. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; He, D.; Ni, X.; Zhou, H.; Yang, H. Comparative study on phenolic compounds, triterpenoids, and antioxidant activity of Ganoderma lucidum affected by different drying methods. Food Meas. 2019, 13, 3198–3205. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, X.W.; Liu, S.J.; Huang, L.F.; Gu, J. Ganoderma: A cancer immunotherapy review. Front. Pharmacol. 2018, 9, 1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahid, A.; Huang, M.; Liu, M.; Shamim, M.A.; Parsa, C.; Orlando, R.; Huang, Y. The medicinal mushroom Ganoderma lucidum attenuates UV-induced skin carcinogenesis and immunosuppression. PLoS ONE 2022, 17, e0265615. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.L.; Dai, Y.C. Coloured Illustrations of Ganodermataceae of China; Science Press: Beijing, China, 2005; pp. 89–91. [Google Scholar]
- Su, H.G.; Zhou, Q.M.; Guo, L.; Huang, Y.J.; Peng, C.; Xiong, L. Lanostane triterpenoids from Ganoderma luteomarginatum and their cytotoxicity against four human cancer cell lines. Phytochemistry 2018, 156, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Li, X.C.; Liu, F.; Su, H.G.; Peng, C.; Zhou, Q.M.; Liu, J.; Huang, Y.J.; Guo, L.; Xiong, L. Twelve undescribed derivatives of ganoderic acid isolated from Ganoderma luteomarginatum and their cytotoxicity against three human cancer cell lines. Phytochemistry 2021, 183, 112617. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Kong, D.X.; Xiao, N.; Ma, Q.Y.; Xie, Q.Y.; Guo, J.C.; Deng, C.Y.; Ma, H.X.; Hua, Y.; Dai, H.F.; et al. Antidiabetic lanostane triterpenoids from the fruiting bodies of Ganoderma weberianum. Bioorg. Chem. 2022, 127, 106025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.S.; Ma, Q.Y.; Huang, S.Z.; Dai, H.F.; Guo, Z.K.; Yu, Z.F.; Zhao, Y.X. Lanostanoids with acetylcholinesterase inhibitory activity from the mushroom Haddowia longipes. Phytochemistry 2015, 110, 133–139. [Google Scholar] [CrossRef]
- Huang, S.Z.; Cheng, B.H.; Ma, Q.Y.; Wang, Q.; Kong, F.D.; Dai, H.F.; Qiu, S.Q.; Zheng, P.Y.; Liu, Z.Q.; Zhao, Y.X. Anti-allergic prenylated hydroquinonesand akaloids from the fruiting body of Ganoderma calidophilum. RSC Adv. 2016, 6, 21139–21147. [Google Scholar] [CrossRef]
- Guo, J.C.; Kong, F.D.; Ma, Q.Y.; Xie, Q.Y.; Zhang, R.S.; Dai, H.F.; Wu, Y.G.; Zhao, Y.X. Meroterpenoids with protein tyrosine phosphatase 1B inhibitory activities from the fruiting bodies of Ganoderma ahmadii. Front. Chem. 2020, 8, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, H.G.; Peng, X.R.; Shi, Q.Q.; Huang, Y.J.; Zhou, L.; Qiu, M.H. Lanostane triterpenoids with anti-inflammatory activities from Ganoderma lucidum. Phytochemistry 2020, 173, 112256. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Tian, J.; Zhang, J.; Wang, K.; Liu, L.; Yang, B.; Bao, L.; Liu, H. Triterpenes and meroterpenes from Ganoderma lucidum with inhibitory activity against HMGs reductase, aldose reductase and α-glucosidase. Fitoterapia 2017, 120, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Fujita, A.; Airsawa, M.; Sage, M.; Hayashi, T.; Morita, N. Two new terpenoids from Ganoderma lucidum. J. Nat. Prod. 1986, 49, 1122–1125. [Google Scholar] [CrossRef]
- Sato, H.; Nishitoba, T.; Shirasu, S.; Oda, K.; Sakamura, S. Ganoderiol A and B, new triterpenoids from the fungus Ganoderma lucidum (Reishi). Agric. Biol. Chem. 1986, 50, 2887–2890. [Google Scholar] [CrossRef]
- Kennedy, E.M.; P’Pool, S.J.; Jiang, J.; Sliva, D.; Minto, R.E. Semisynthesis and biological evaluation of ganodermanontriol and its stereoisomeric triols. J. Nat. Prod. 2011, 74, 2332–2337. [Google Scholar] [CrossRef] [PubMed]
- Niedermeyer, T.H.J.; Lindequist, U.; Mentel, R.; Gordes, D.; Schmidt, E.; Thurow, K.; Lalk, M. Antiviral terpenoid constituents of Ganoderma pfeifferi. J. Nat. Prod. 2005, 68, 1728–1731. [Google Scholar] [CrossRef]
- Gonzalez, A.G.; Leon, F.; Rivera, A.; Munoz, C.M.; Bermejo, J. Lanostanoid triterpenes from Ganoderma lucidum. J. Nat. Prod. 1999, 62, 1700–1701. [Google Scholar] [CrossRef]
- Airsawa, M.; Fujita, A.; Sage, M.; Fukumura, H.; Hayashi, T.; Shimizu, M.; Morita, N. Three new lanostanoids from Ganoderma lucidum. J. Nat. Prod. 1986, 49, 621–625. [Google Scholar] [CrossRef]
- Nishitoba, T.; Sato, H.; Oda, K.; Sakamura, S. Novel triterpenoids and a steroid from the fungus Ganoderma lucidum. Agric. Biol. Chem. 1988, 52, 211–216. [Google Scholar] [CrossRef]
- Liu, S.Y.; Wang, Y.; He, R.R.; Qu, G.X.; Qiu, F. Chemical constituents of Ganoderma lucidum (Leys. ex Fr.) Karst. J. Shenyang Pharm. Univ. 2008, 25, 183–193. [Google Scholar]
- Gonzalez, A.G.; Leon, F.; Rivera, A.; Munoz, C.M.; Bermejo, J. New lanostanoids from the fungus Ganoderma concinna. J. Nat. Prod. 2002, 65, 417–421. [Google Scholar] [CrossRef]
- Nishitoba, T.; Sato, H.; Sakamura, S. Triterpenoids from the fungus Ganoderma lucidum. Phytochemistry 1987, 26, 1777–1784. [Google Scholar] [CrossRef]
- Zhang, P.; Bao, H.Y.; Tolgor. Chemical constituents from sporophore of Hericium coralloides (I). Chin. Trad. Herb. Drugs 2012, 43, 2356–2360. [Google Scholar]
- Keller, A.C.; Maillard, M.P.; Hostettmann, K. Antimicrobial steroids from the fungus Fomitopsis pinicola. Phytochemistry 1996, 41, 1041–1046. [Google Scholar] [CrossRef]
- Wan, H.; Sun, R.Q.; Wu, D.J.; Guo, B.S. Three steriols from Gyroporus castaneus. Nat. Prod. Res. Dev. 1999, 11, 18–20. [Google Scholar]
- Gao, H.; Hong, K.; Zhang, X.; Liu, H.W.; Wang, N.L.; Zhuang, L.; Yao, X.S. New steryl esters of fatty acids from the mangrove fungus Aspergillus awamori. Helv. Chim. Acta 2007, 90, 1165–1178. [Google Scholar] [CrossRef]
- Piccialli, V.; Sica, D. Four new trihydroxylated sterols from the sponge Spongionella gracilis. J. Nat. Prod. 1987, 50, 915–920. [Google Scholar] [CrossRef]
- Kawahara, N.; Sekita, S.; Satake, M. Two steroids from Calvatia cyathiformis. Phytochemistry 1995, 38, 947–950. [Google Scholar] [CrossRef]
- Jiao, Y.; Xie, T.; Zou, L.H.; Wei, Q.; Qiu, L.; Chen, L.X. Lanostane triterpenoids from Ganoderma curtisii and their NO production inhibitory activities of LPS-induced microglia. Bioorg. Med. Chem. Lett. 2016, 26, 3556–3561. [Google Scholar] [CrossRef]
No. | 1 | 2 | 3 | |||
---|---|---|---|---|---|---|
δC | δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | |
1 | 35.5 | 1.97 m 1.50 m | 36.7 | 2.36 m 1.77 m | 35.6 | 2.45 m 2.06 m |
2 | 24.4 | 1.71 m | 35.0 | 2.80 dt (14.7,5.7) 2.38 ddd (14.7, 4.5, 3.1) | 34.4 | 2.85 m 2.36 m |
3 | 81.0 | 4.53 dd (4.6, 11.4) | 217.1 | 216.8 | ||
4 | 37.9 | 47.6 | 46.9 | |||
5 | 49.3 | 1.18 m | 50.8 | 1.56 dd (3.7, 11.9) | 49.3 | 1.67 dd (13.5, 2.2) |
6 | 22.9 | 2.08 m | 23.8 | 2.02 m 2.23 m | 36.5 | 2.11 m 1.84 m |
7 | 120.1 | 5.47 t (4.5) | 120.0 | 5.52 d (6.8) | 69.5 | 4.80 dd (7.1, 9.4) |
8 | 142.8 | 143.0 | 157.0 | |||
9 | 145.7 | 144.6 | 143.3 | |||
10 | 37.3 | 37.3 | 38.3 | |||
11 | 116.6 | 5.34 d (5.9) | 117.4 | 5.40 d (6.2) | 199.4 | |
12 | 37.7 | 2.23 d (17.6) 2.02 m | 37.9 | 2.28 m 2.08 m | 51.7 | 2.75 d (14.6) 2.37 d (14.6) |
13 | 43.8 | 43.9 | 48.5 | |||
14 | 50.4 | 50.4 | 57.1 | |||
15 | 28.0 | 1.29 m | 28.0 | 1.27 m | 77.8 | 4.33 d (6.7) |
16 | 31.6 | 1.60 m 1.36 m | 31.6 | 1.67 m 1.40 m | 35.3 | 2.35 m 1.42 m |
17 | 51.1 | 1.58 m | 51.1 | 1.61 m | 54.5 | 2.76 m |
18 | 15.8 | 0.55 s | 15.9 | 0.61 s | 19.6 | 1.10 s |
19 | 23.3 | 1.02 s | 22.2 | 1.21 s | 19.7 | 1.36 s |
20 | 36.7 | 1.39 m | 36.7 | 1.44 m | 156.8 | |
21 | 18.7 | 0.93 d (6.3) | 18.7 | 0.94 d (6.5) | 21.3 | 2.16 s |
22 | 33.6 | 1.76 m | 33.8 | 1.86 m | 124.7 | 6.16 s |
23 | 28.8 | 1.56 m | 28.4 | 1.63 m | 198.4 | |
24 | 79.7 | 3.31 dd (10.2, 2.1) | 76.8 | 3.59 d (9.4) | 47.8 | 2.94 m 2.57 m |
25 | 73.4 | 78.5 | 35.0 | 2.96 m | ||
26 | 25.7 | 1.23 s | 64.4 | 3.75 d (12.0) 3.65 d (12.0) | 176.7 | |
27 | 22.9 | 1.18 s | 16.0 | 1.05 s | 17.3 | 1.20 d (6.8) |
28 | 28.2 | 0.90 s | 25.4 | 1.10 s | 27.0 | 1.13 s |
29 | 17.1 | 0.97 s | 22.6 | 1.14 s | 21.0 | 1.12 s |
30 | 25.7 | 0.89 s | 25.6 | 0.89 s | 26.0 | 1.24 s |
OAc | 171.2 21.5 | 2.07 s | ||||
OMe | 49.5 | 3.34 s | 52.0 | 3.69 s |
Compounds | K562 | BEL-7402 | SGC-7901 |
---|---|---|---|
1 | 8.59 | >50 | >50 |
2 | 16.05 | 24.27 | 33.38 |
7 | 11.69 | 20.05 | >50 |
13 | 6.64 | 13.49 | 15.62 |
18 | 8.82 | >50 | >50 |
22 | 16.95 | >50 | >50 |
24 | 17.38 | >50 | >50 |
34 | 22.81 | 47.63 | 26.06 |
Paclitaxel | 5.62 | 3.26 | 3.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Zhang, S.; Yang, L.; Xie, Q.; Dai, H.; Yu, Z.; Zhao, Y. Lanostane Triterpenoids and Ergostane Steroids from Ganoderma luteomarginatum and Their Cytotoxicity. Molecules 2022, 27, 6989. https://doi.org/10.3390/molecules27206989
Ma Q, Zhang S, Yang L, Xie Q, Dai H, Yu Z, Zhao Y. Lanostane Triterpenoids and Ergostane Steroids from Ganoderma luteomarginatum and Their Cytotoxicity. Molecules. 2022; 27(20):6989. https://doi.org/10.3390/molecules27206989
Chicago/Turabian StyleMa, Qingyun, Shuangshuang Zhang, Li Yang, Qingyi Xie, Haofu Dai, Zhifang Yu, and Youxing Zhao. 2022. "Lanostane Triterpenoids and Ergostane Steroids from Ganoderma luteomarginatum and Their Cytotoxicity" Molecules 27, no. 20: 6989. https://doi.org/10.3390/molecules27206989
APA StyleMa, Q., Zhang, S., Yang, L., Xie, Q., Dai, H., Yu, Z., & Zhao, Y. (2022). Lanostane Triterpenoids and Ergostane Steroids from Ganoderma luteomarginatum and Their Cytotoxicity. Molecules, 27(20), 6989. https://doi.org/10.3390/molecules27206989