Thermomechanical Properties of Carbon Nanocomposites PEGDA Photopolymers
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Derby, B. Printing and prototyping of tissues and scaffolds. Science 2012, 338, 921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickens, S.H.; Stansbury, J.W.; Choi, K.M.; Floyd, C.J.E. Photopolymerization Kinetics of Methacrylate Dental Resins. Macromolecules 2003, 36, 6043. [Google Scholar] [CrossRef]
- Lalevee, J.; Fouassier, J.P. Dyes and Chomophores in Polymer Science; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Kumbaraci, V.; Aydogan, B.; Talinli, N.; Yagci, Y. Naphthodioxinone-1,3-benzodioxole as photochemically masked one-component Type II photoinitiator for free radical polymerization. J. Polym. Sci. Part A 2012, 50, 2612–2618. [Google Scholar] [CrossRef]
- Brömme, T.; Schmitz, C.; Oprych, D.; Wenda, A.; Strehmel, V.; Grabolle, M.; Resch-Genger, U.; Ernst, S.; Reiner, K.; Keil, D.; et al. Digital Imaging of Lithographic Materials by Radical Photopolymerization and Photonic Baking with NIR Diode Lasers. Chem. Eng. Technol. 2006, 39, 13. [Google Scholar] [CrossRef]
- Sarantinos, N.; Loginos, P.; Charlaftis, P.; Argyropoulos, A.; Filinis, A.; Vrettos, K.; Adamos, L.; Kostopoulos, V. Behavior of photopolymer fiber structures in microgravity. SN Appl. Sci. 2019, 1, 1693. [Google Scholar] [CrossRef] [Green Version]
- Allonas, X.; Pierrel, J.; Ibrahim, A.; Croutxé-Barghorn, C. On-Demand Photopolymerization of Fiber-Reinforced Polymers Exhibiting the Shape Memory Effect. Polymers 2021, 13, 4300. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.S.; Park, T.W.; Jeong, Y.; Cho, J.H. Development of ceramic-reinforced photopolymers for SLA 3D printing technology. Appl. Phys. A 2016, 122, 629. [Google Scholar] [CrossRef]
- Sahin, M.; Schlögl, S.; Kalinka, G.; Wang, J.; Kaynak, B.; Mühlbacher, I.; Ziegler, W.; Kern, W.; Grützmacher, H. Tailoring the interfaces in glass fiber-reinforced photopolymer composites. Polymer 2018, 141, 221–231. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Y.; Jiao, T.; Lu, G.; Liu, J. Photocurable modification of inorganic fillers and their application in photopolymers for 3D printing. Polym. Chem. 2019, 10, 6350–6359. [Google Scholar] [CrossRef]
- Li, Z.; Chen, H.; Wang, C.; Chen, L.; Liu, J.; Liu, R. Efficient photopolymerization of thick pigmented systems using upconversion nanoparticles-assisted photochemistry. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 994–1002. [Google Scholar] [CrossRef]
- Sangermano, M.; Marchi, S.; Valentini, L.; Bon, S.B.; Fabbri, P. Transparent and Conductive Graphene Oxide/Poly(ethylene glycol) diacrylate Coatings Obtained by Photopolymerization. Macromol. Mater. Eng. 2011, 296, 401–407. [Google Scholar] [CrossRef]
- Kasraie, M.; Abadi, P.P.S.S. Additive manufacturing of conductive and high-strength epoxy-nanoclay-carbon nanotube composites. Addit. Manuf. 2021, 46, 102098. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Hua, W.; Zhang, A.; Bao, J. Light-weight silver plating foam and carbon nanotube hybridized epoxy composite foams with exceptional conductivity and electromagnetic shielding property. ACS Appl. Mater. Interfaces 2016, 8, 24131–24142. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zou, S.; Gosselin, F.P.; Therriault, D.; Heuzey, M.C. 3D printing of a selfhealing nanocomposite for stretchable sensors. J. Mater. Chem. C 2018, 6, 12180–12186. [Google Scholar] [CrossRef]
- Scordo, G.; Bertana, V.; Scaltrito, L.; Ferrero, S.; Cocuzza, M.; Marasso, S.L.; Romano, S.; Sesana, R.; Catania, F.; Pirri, C.F. A novel highly electrically conductive composite resin for stereolithography. Mater. Today Commun. 2019, 19, 12–17. [Google Scholar] [CrossRef]
- Ryan, K.R.; Down, M.P.; Hurst, N.J.; Keefe, E.M.; Banks, C.E. Additive manufacturing (3D printing) of electrically conductive polymers and polymer nanocomposites and their applications. eScience 2022, 2, 365–381. [Google Scholar] [CrossRef]
- Kwok, S.W.; Goh, K.H.H.; Tan, Z.D.; Tan, S.T.M.; Tjiu, W.W.; Soh, J.Y.; Glenn Ng, Z.J.; Chan, Y.Z.; Hui, H.K.; Goh, K.E.J. Electrically conductive filament for 3D-printed circuits and sensors. Appl. Mater. Today 2017, 9, 167–175. [Google Scholar] [CrossRef]
- Kostagiannakopoulou, C.; Loutas, T.H.; Sotiriadis, G.; Markou, A.; Kostopoulos, V. On the interlaminar fracture toughness of carbon fiber composites enhanced with graphene nano-species. Compos. Sci. Technol. 2015, 118, 217–225. [Google Scholar] [CrossRef]
- Zhang, H.; Bilotti, E.; Tu, W.; Lew, C.Y.; Peijs, T. Static and dynamic percolation of phenoxy/carbon nanotube nanocomposites. Eur. Polym. J. 2015, 68, 128–138. [Google Scholar] [CrossRef]
- Kernin, A.; Wan, K.; Liu, Y.; Shi, X.; Kong, J.; Bilotti, E.; Peijs, T.; Zhang, H. The effect of graphene network formation on the electrical, mechanical, and multifunctional properties of graphene/epoxy nanocomposites. Compos. Sci. Technol. 2019, 169, 224–231. [Google Scholar] [CrossRef]
- Feng, Z.; Li, Y.; Xin, C.; Tang, D.; Xiong, W.; Zhang, H. Fabrication of Graphene-Reinforced Nanocomposites with Improved Fracture Toughness in Net Shape for Complex 3D Structures via Digital Light Processing. C J. Carbon Res. 2019, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Loginos, P.; Patsidis, A.; Georgakilas, V. UV-Cured Poly(Ethylene Glycol) Diacrylate/Carbon Nanostructure Thin Films. Preparation, Characterization, and Electrical Properties. J. Compos. Sci. 2020, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Nam, K.H.; Cho, J.; Yeo, H. Thermomechanical Behavior of Polymer Composites Based on Edge-Selectively Functionalized Graphene Nanosheets. Polymers 2018, 10, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajian, M.; Reisi, M.R.; Koohmareh, G.A.; Jam, A.R.Z. Preparation and characterization of Polyvinylbutyral/Graphene Nanocomposite. J. Polym. Res. 2012, 19, 9966. [Google Scholar] [CrossRef]
Carbon Nanofillers | PEGDA | PEGDA/G | PEGDA/M | PEGDA/Hyb |
---|---|---|---|---|
Mass percentage % w/w | 0 | 1.5 | 1.5 | 1.5 |
0 | 4.5 | 4.5 | 4.5 | |
0 | 8.5 | 8.5 | 8.5 |
Sample/Nanofiller | 0% | 1.5% | 4.5% | 8.5% |
---|---|---|---|---|
PEGDA/M | −22.5 | −23.2 | −31.1 | −23.5 |
PEGDA/G | −19 | −19.2 | −14.6 | |
PEGDA/Hyb | −21.3 | −20 | −21.2 |
Sample/Nanofiller | 0% | 1.5% | 4.5% | 8.5% |
---|---|---|---|---|
PEGDA/M | −23.1 | −32.6 | −24.5 | −24.3 |
PEGDA/G | −31.1 | −27.5 | −28 | |
PEGDA/Hyb | −32.9 | −30.2 | −33.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loginos, P.; Patsidis, A.; Vrettos, K.; Sotiriadis, G.; Psarras, G.C.; Kostopoulos, V.; Georgakilas, V. Thermomechanical Properties of Carbon Nanocomposites PEGDA Photopolymers. Molecules 2022, 27, 6996. https://doi.org/10.3390/molecules27206996
Loginos P, Patsidis A, Vrettos K, Sotiriadis G, Psarras GC, Kostopoulos V, Georgakilas V. Thermomechanical Properties of Carbon Nanocomposites PEGDA Photopolymers. Molecules. 2022; 27(20):6996. https://doi.org/10.3390/molecules27206996
Chicago/Turabian StyleLoginos, Panagiotis, Anastasios Patsidis, Katerina Vrettos, George Sotiriadis, Georgios C. Psarras, Vassilis Kostopoulos, and Vasilios Georgakilas. 2022. "Thermomechanical Properties of Carbon Nanocomposites PEGDA Photopolymers" Molecules 27, no. 20: 6996. https://doi.org/10.3390/molecules27206996
APA StyleLoginos, P., Patsidis, A., Vrettos, K., Sotiriadis, G., Psarras, G. C., Kostopoulos, V., & Georgakilas, V. (2022). Thermomechanical Properties of Carbon Nanocomposites PEGDA Photopolymers. Molecules, 27(20), 6996. https://doi.org/10.3390/molecules27206996