The Impact of Different Pretreatment Processes (Freezing, Ultrasound and High Pressure) on the Sensory and Functional Properties of Black Garlic (Allium sativum L.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Different Pretreatments on Black Garlic’s Appearance, Reducing Sugar Contents, and pH Value
2.2. Effects of Different Pretreatments on Black Garlic SAC and 5-HMF Content
2.3. Effects of Different Pretreatments on Black Garlic’s Polyphenol and Flavonoid Contents
2.4. Principal Component Analysis of Functional Components of Black Garlic by Different Processes
2.5. Correlation Analysis of Sensory Evaluation and Functional Components of Black Garlic by Different Processes
3. Materials and Methods
3.1. Materials
3.2. Sample Pretreatment
3.3. Measurement of the Color Changes, Reducing Sugar Contents, and pH Value of Garlic
3.4. Quantification of 5-HMF in Black Garlic by HPLC
3.5. Quantification of SAC in Garlic by HPLC
3.6. Measurement of Total Polyphenol and Flavonoid Contents
3.7. Principal Component Analysis (PCA)
3.8. Sensory Evaluation
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhang, X.; Li, N.; Lu, X.; Liu, P.; Qiao, X. Effects of temperature on the quality of black garlic. J. Sci. Food Agric. 2016, 9, 2366–2372. [Google Scholar] [CrossRef] [PubMed]
- Vinayagam, R.; Lee, K.E.; Ambati, R.R.; Gundamaraju, R.; Ramadan, M.F.; Kang, S.G. Recent development in black garlic: Nutraceutical applications and health-promoting phytoconstituents. Food Rev. Int. 2021, 1–21. [Google Scholar] [CrossRef]
- Yudhistira, B.; Punthi, F.; Lin, J.A.; Sulaimana, A.S.; Chang, C.K.; Hsieh, C.W. S-Allyl cysteine in garlic (Allium sativum): Formation, biofunction, and resistance to food processing for value-added product development. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2665–2687. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.E.; Cho, S.Y.; Won, Y.D.; Lee, S.H.; Park, H.J. Changes in S-allyl cysteine contents and physicochemical properties of black garlic during heat treatment. LWT 2014, 55, 397–402. [Google Scholar] [CrossRef]
- Yuan, H.; Sun, L.; Chen, M.; Wang, J. An analysis of the changes on intermediate products during the thermal processing of black garlic. Food Chem. 2018, 239, 56–61. [Google Scholar] [CrossRef]
- Phan, A.D.T.; Netzel, G.; Wang, D.; Flanagan, B.M.; D’Arcy, B.R.; Gidley, M.J. Binding of dietary polyphenols to cellulose: Structural and nutritional aspects. Food Chem. 2015, 171, 388–396. [Google Scholar] [CrossRef]
- Capuano, E.; Fogliano, V. Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT 2011, 44, 793–810. [Google Scholar] [CrossRef]
- Li, F.; Cao, J.; Liu, Q.; Hu, X.; Liao, X.; Zhang, Y. Acceleration of the Maillard reaction and achievement of product quality by high pressure pretreatment during black garlic processing. Food Chem. 2020, 318, 126517. [Google Scholar] [CrossRef]
- Li, N.; Lu, X.; Pei, H.; Qiao, X. Effect of freezing pretreatment on the processing time and quality of black garlic. J. Food Process Eng. 2015, 38, 329–335. [Google Scholar] [CrossRef]
- Seo, S.-Y.; Sharm, V.K.; Sharma, N. Mushroom tyrosinase: Recent prospects. J. Agric. Food Chem. 2003, 51, 2837–2853. [Google Scholar] [CrossRef]
- Yu, Z.-L.; Zeng, W.C.; Lu, X.L. Influence of ultrasound to the activity of tyrosinase. Ultrason. Sonochem. 2013, 20, 805–809. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Chen, Y.A.; Lee, C.H.; Wu, J.T.; Cheng, K.C.; Hsieh, C.W. A strategy for promoting γ-glutamyltransferase activity and enzymatic synthesis of S-allyl-(L)-cysteine in aged garlic via high hydrostatic pressure pretreatments. Food Chem. 2020, 316, 126347. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Lee, C.H.; Chen, Y.A.; Wu, J.T.; Tsai, M.S.; Cheng, K.C.; Hsieh, C.W. Preparation of S-allyl cysteine-enriched garlic by two-step processing. LWT 2020, 124, 109130. [Google Scholar] [CrossRef]
- Lung, C.T.; Chang, C.K.; Cheng, F.C.; Hou, C.Y.; Chen, M.H.; Santoso, S.P.; Yudhistira, B.; Hsieh, C.W. Effects of pulsed electric field-assisted thawing on the characteristics and quality of Pekin duck meat. Food Chem. 2022, 390, 133137. [Google Scholar] [CrossRef] [PubMed]
- Sulaimana, A.S.; Chang, C.K.; Hou, C.Y.; Yudhistira, B.; Punthi, F.; Lung, C.T.; Cheng, K.C.; Santoso, S.P.; Hsieh, C.W. Effect of Oxidative Stress on Physicochemical Quality of Taiwanese Seagrape (Caulerpa lentillifera) with the Application of Alternating Current Electric Field (ACEF) during Post-Harvest Storage. Processes 2021, 9, 1011. [Google Scholar] [CrossRef]
- Punthi, F.; Yudhistira, B.; Gavahian, M.; Chang, C.K.; Cheng, K.C.; Hou, C.Y.; Hsieh, C.W. Pulsed electric field-assisted drying: A review of its underlying mechanisms, applications, and role in fresh produce plant-based food preservation. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1–22. [Google Scholar] [CrossRef]
- Lee, S.; Yoo, M.; Kim, S.; Shin, D. Identification and quantification of S-allyl-L-cysteine in heated garlic juice by HPLC with ultraviolet and mass spectrometry detection. LWT 2014, 57, 516–521. [Google Scholar] [CrossRef]
- Liang, T.; Wei, F.; Lu, Y.; Kodani, Y.; Nakada, M.; Miyakawa, T.; Tanokura, M. Comprehensive NMR analysis of compositional changes of black garlic during thermal processing. J. Agric. Food Chem. 2015, 63, 683–691. [Google Scholar] [CrossRef]
- Choi, I.S.; Cha, H.S.; Lee, Y.S. Physicochemical and antioxidant properties of black garlic. Molecules 2014, 19, 16811–16823. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Kumagai, H. Characteristics, biosynthesis, decomposition, metabolism and functions of the garlic odour precursor, S-allyl-l-cysteine sulfoxide (Review). Exp. Ther. Med. 2019, 19, 1528–1535. [Google Scholar] [CrossRef]
- Ríos-Ríos, K.L.; Montilla, A.; Olano, A.; Villamiel, M. Physicochemical changes and sensorial properties during black garlic elaboration: A review. Trends Food Sci. Technol. 2019, 88, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Vega-Gálvez, A.; Scala, K.D.; Rodríguez, K.; Lemus-Mondaca, R.; Miranda, M.; López, J.; Perez-Won, M. Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chem. 2009, 117, 647–653. [Google Scholar] [CrossRef]
- Gan, R.Y.; Lui, W.Y.; Chan, C.K.; Corke, H. Hot air drying induces browning and enhances phenolic content and antioxidant capacity in mung bean (Vigna radiata L.) sprouts. J. Food Process. Preserv. 2017, 41, 12846. [Google Scholar] [CrossRef]
- Moreno, J.; Gonzales, M.; Zuniga, P.; Petzold, G.; Mella, K.; Munoz, O. Ohmic heating and pulsed vacuum effect on dehydration processes and polyphenol component retention of osmodehydrated blueberries (cv. Tifblue). Innov. Food Sci. Emerg. Technol. 2016, 36, 112–119. [Google Scholar] [CrossRef]
- Sukrasno, S.; Fidriany, I.; Anggadiredja, K.; Handayani, W.A.; Anam, K. Influence of drying method on flavonoid content of Cosmos caudatus (Kunth) leaves. Res. J. Med. Plant 2011, 5, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Ghasemzadeh, A.; Nasiri, A.; Jaafar, H.J.E.; Baghdadi, A.; Ahmad, I. Changes in phytochemical synthesis, chalcone synthase activity and pharmaceutical qualities of Sabah snake grass (Clinacanthus nutans L.) in relation to plant age. Molecules 2014, 19, 17632–17648. [Google Scholar] [CrossRef]
- Chaaban, H.; Ioannou, I.; Chebil, L.; Slimane, M.; Gérardin, C.; Paris, C.; Charbonnel, C.; Chekir, L.; Ghoul, M. Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. J. Food Process. Preserv. 2017, 41, 13203. [Google Scholar] [CrossRef]
- Qiu, Z.; Zheng, Z.; Zhang, B.; Lu, X.; Qiao, X. Characterization of the growth properties of garlic endophytes and their roles in the formation of black garlic. LWT 2021, 147, 111537. [Google Scholar] [CrossRef]
- Hajas, L.; Sipos, L.; Csobod, C.; Bálint, M.V.; Juhász, R.; Benedek, C. Lentil (Lens culinaris Medik.) Flour Varieties as Promising New Ingredients for Gluten-Free Cookies. Foods 2022, 11, 2028. [Google Scholar] [CrossRef]
- Vidal, N.P.; Manful, C.F.; Pham, T.H.; Stewart, P.; Keoug, D.; Thomas, R.H. The use of XLSTAT in conducting principal component analysis (PCA) when evaluating the relationships between sensory and quality attributes in grilled foods. MethodsX 2020, 7, 100835. [Google Scholar] [CrossRef]
- Granato, D.; de Araújo Calado, V.M.; Jarvis, B. Observations on the use of statistical methods in Food Science and Technology. Int. Food Res. J. 2014, 55, 137–149. [Google Scholar] [CrossRef]
Treatment | Day | Acceptability | Taste | Odor | Appearance |
---|---|---|---|---|---|
Control | 0 | 1.80 ± 0.63 e | 1.90 ± 0.57 g | 1.80 ± 1.23 d | 1.20 ± 0.63 h |
3 | 2.10 ± 0.74 e | 2.40 ± 0.52 fg | 3.00 ± 1.15 c | 3.50 ± 1.08 g | |
6 | 3.20 ± 0.63 d | 2.70 ± 0.67 f | 2.50 ± 0.85 cd | 4.90 ± 1.20 f | |
9 | 4.40 ± 0.97 c | 3.80 ± 0.63 e | 3.10 ± 1.20 c | 6.00 ± 1.05 e | |
12 | 4.90 ± 0.57 c | 4.60 ± 1.07 d | 4.80 ± 1.03 b | 6.90 ± 1.29 d | |
15 | 5.80 ± 0.92 b | 5.80 ± 1.03 c | 6.40 ± 1.35 a | 7.70 ± 0.48 c | |
18 | 5.90 ± 1.10 b | 6.20 ± 0.92 bc | 6.90 ± 1.37 a | 7.80 ± 0.42 bc | |
21 | 6.50 ± 0.71 ab | 6.70 ± 0.82 ab | 6.70 ± 1.25 a | 8.10 ± 0.57 bc | |
24 | 6.90 ± 0.74 a | 7.40 ± 0.70 a | 6.60 ± 1.58 a | 8.60 ± 0.70 ab | |
27 | 6.40 ± 1.26 ab | 7.00 ± 1.15 a | 6.10 ± 1.52 a | 8.70 ± 0.48 a | |
30 | 6.30 ± 1.06 ab | 7.00 ± 0.47 a | 6.80 ± 0.92 a | 8.60 ± 0.70 ab | |
Freezing | 0 | 2.60 ± 1.17 g | 2.30 ± 0.95 f | 3.10 ± 1.10 e | 1.90 ± 0.74 g |
3 | 3.30 ± 0.82 fg | 3.40 ± 1.26 e | 4.60 ± 0.52 d | 4.60 ± 1.96 f | |
6 | 4.10 ± 1.60 ef | 3.70 ± 1.25 e | 5.40 ± 1.07 cd | 5.30 ± 1.25 ef | |
9 | 4.70 ± 1.25 de | 5.10 ± 1.37 d | 5.10 ± 1.45 d | 6.00 ± 1.41 de | |
12 | 5.50 ± 1.08 bcd | 6.00 ± 1.33 cd | 6.10 ± 1.20 bc | 6.80 ± 0.79 cd | |
15 | 6.60 ± 0.70 ab | 6.50 ± 0.71 bc | 6.50 ± 0.97 ab | 7.50 ± 0.53 bc | |
18 | 7.40 ± 0.70 a | 7.90 ± 0.57 a | 7.50 ± 0.71 a | 8.10 ± 0.57 ab | |
21 | 6.60 ± 0.70 ab | 7.20 ± 0.63 ab | 7.00 ± 0.94 ab | 8.20 ± 0.63 ab | |
24 | 5.90 ± 0.88 bc | 6.50 ± 0.71 bc | 6.80 ± 1.23 ab | 8.70 ± 0.67 a | |
27 | 5.70 ± 1.06 bcd | 6.60 ± 0.84 bc | 6.50 ± 0.97 ab | 8.70 ± 0.67 a | |
30 | 4.90 ± 1.79 cde | 5.90 ± 1.52 cd | 6.50 ± 0.97 ab | 8.70 ± 0.67 a | |
Ultrasound | 0 | 2.50 ± 0.85 f | 2.00 ± 0.82 f | 2.50 ± 1.18 f | 1.30 ± 0.67 f |
3 | 3.10 ± 0.88 ef | 2.90 ± 1.20 ef | 3.50 ± 0.53 e | 4.00 ± 1.70 e | |
6 | 3.30 ± 0.67 ef | 3.10 ± 0.57 e | 3.80 ± 0.79 e | 5.20 ± 1.23 d | |
9 | 3.90 ± 0.88 e | 4.20 ± 1.48 d | 4.90 ± 0.57 d | 5.90 ± 1.52 d | |
12 | 5.60 ± 1.07 cd | 5.10 ± 0.99 cd | 5.20 ± 0.92 cd | 6.80 ± 1.03 c | |
15 | 6.10 ± 0.88 bc | 6.30 ± 0.95 ab | 5.80 ± 0.79 bcd | 7.30 ± 0.67 bc | |
18 | 7.20 ± 0.63 a | 7.30 ± 0.95 a | 6.70 ± 0.82 ab | 8.10 ± 0.57 ab | |
21 | 7.00 ± 1.05 ab | 7.30 ± 0.95 a | 6.90 ± 1.10 a | 8.70 ± 0.48 a | |
24 | 6.10 ± 1.10 bc | 6.80 ± 1.03 ab | 6.50 ± 1.27 ab | 8.80 ± 0.42 a | |
27 | 5.50 ± 1.35 cd | 6.10 ± 1.29 bc | 6.40 ± 1.26 ab | 8.80 ± 0.42 a | |
30 | 5.00 ± 1.56 d | 5.80 ± 1.48 bc | 6.10 ± 1.20 ab | 8.80 ± 0.42 a | |
HPP | 0 | 2.50 ± 0.85 f | 2.60 ± 0.84 f | 2.70 ± 1.88 e | 2.00 ± 0.94 g |
3 | 3.10 ± 0.74 ef | 3.40 ± 0.70 e | 3.90 ± 2.08 d | 4.00 ± 1.63 f | |
6 | 3.70 ± 1.06 e | 3.90 ± 1.10 e | 4.50 ± 2.07 cd | 5.60 ± 1.65 e | |
9 | 4.60 ± 1.07 d | 6.00 ± 1.05 d | 4.90 ± 0.53 c | 6.20 ± 1.69 de | |
12 | 5.60 ± 1.07 c | 6.30 ± 0.67 cd | 6.10 ± 1.45 b | 7.00 ± 1.05 cd | |
15 | 7.00 ± 0.94 ab | 7.00 ± 0.47 abc | 6.70 ± 1.15 ab | 7.40 ± 0.70 bc | |
18 | 7.50 ± 0.85 a | 7.70 ± 0.48 ab | 7.30 ± 1.32 a | 8.10 ± 0.57 ab | |
21 | 7.40 ± 0.70 a | 7.50 ± 0.71 ab | 7.10 ± 1.25 a | 8.60 ± 0.52 a | |
24 | 7.20 ± 0.92 ab | 7.50 ± 0.53 ab | 7.30 ± 1.10 a | 8.80 ± 0.42 a | |
27 | 6.40 ± 1.07 bc | 6.80 ± 0.42 bc | 6.60 ± 1.05 ab | 8.80 ± 0.42 a | |
30 | 5.70 ± 1.42 c | 6.30 ± 0.95 cd | 6.70 ± 1.03 ab | 8.80 ± 0.42 a |
Variables * | SAC | 5-HMF | Polyphenols | Flavonoids | Acceptability | Taste | Appearance | Odor |
---|---|---|---|---|---|---|---|---|
SAC | 1 | 0.539 | 0.692 | 0.618 | 0.637 | 0.567 | −0.053 | 0.262 |
5-HMF | 0.539 | 1 | 0.649 | 0.525 | 0.627 | 0.709 | 0.775 | 0.732 |
Polyphenols | 0.692 | 0.649 | 1 | 0.790 | 0.550 | 0.585 | −0.343 | 0.647 |
Flavonoids | 0.618 | 0.525 | 0.790 | 1 | 0.412 | 0.491 | −0.461 | 0.598 |
Acceptability | 0.637 | 0.627 | 0.550 | 0.412 | 1 | 0.888 | 0.199 | 0.300 |
Taste | 0.567 | 0.709 | 0.585 | 0.491 | 0.888 | 1 | 0.381 | 0.550 |
Appearance | −0.053 | 0.775 | −0.343 | −0.461 | 0.199 | 0.381 | 1 | −0.005 |
Odor | 0.262 | 0.732 | 0.647 | 0.598 | 0.300 | 0.550 | −0.005 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, K.-H.; Chang, C.-K.; Gavahian, M.; Yudhistira, B.; Santoso, S.P.; Cheng, K.-C.; Hsieh, C.-W. The Impact of Different Pretreatment Processes (Freezing, Ultrasound and High Pressure) on the Sensory and Functional Properties of Black Garlic (Allium sativum L.). Molecules 2022, 27, 6992. https://doi.org/10.3390/molecules27206992
Chan K-H, Chang C-K, Gavahian M, Yudhistira B, Santoso SP, Cheng K-C, Hsieh C-W. The Impact of Different Pretreatment Processes (Freezing, Ultrasound and High Pressure) on the Sensory and Functional Properties of Black Garlic (Allium sativum L.). Molecules. 2022; 27(20):6992. https://doi.org/10.3390/molecules27206992
Chicago/Turabian StyleChan, Kai-Hui, Chao-Kai Chang, Mohsen Gavahian, Bara Yudhistira, Shella Permatasari Santoso, Kuan-Chen Cheng, and Chang-Wei Hsieh. 2022. "The Impact of Different Pretreatment Processes (Freezing, Ultrasound and High Pressure) on the Sensory and Functional Properties of Black Garlic (Allium sativum L.)" Molecules 27, no. 20: 6992. https://doi.org/10.3390/molecules27206992
APA StyleChan, K. -H., Chang, C. -K., Gavahian, M., Yudhistira, B., Santoso, S. P., Cheng, K. -C., & Hsieh, C. -W. (2022). The Impact of Different Pretreatment Processes (Freezing, Ultrasound and High Pressure) on the Sensory and Functional Properties of Black Garlic (Allium sativum L.). Molecules, 27(20), 6992. https://doi.org/10.3390/molecules27206992