A Review of The Application of Spectroscopy to Flavonoids from Medicine and Food Homology Materials
Abstract
:1. Introduction
2. Qualitative and Quantitative Analysis
2.1. Nuclear Magnetic Resonance
2.2. Terahertz Time-Domain Spectroscopy
2.3. Fluorescence Spectroscopy
2.4. UV Spectrophotometry
2.5. Near Infrared Spectroscopy
2.6. Hyperspectral Imaging
3. Identification of Quality
3.1. Cultivation Methods and Growth Years
3.2. Geographic Origin
4. Interaction Studies
4.1. Interaction of Flavonoids with Membrane Lipids
4.2. Interaction of Flavonoids with HSA
4.2.1. UV–Vis Absorption Spectra
4.2.2. Fluorescence Quenching Measurements
4.2.3. Synchronous Fluorescence Spectra
4.2.4. Circular Dichroism Measurements
4.2.5. Fourier Transform Infrared Spectroscopy (FT-IR)
4.3. Interaction of Flavonoids with Hyaluronidase
4.3.1. Fluorescence Spectra
4.3.2. Synchronous Fluorescence Spectra
4.3.3. Circular Dichroism
5. Chemometrics
5.1. PLS-DA Analysis
5.2. OPLS-DA Analysis
5.3. VIP Value Analysis
5.4. Data Fusion Strategy
5.5. Sampling Error Profile Analysis (SEPA) Method
5.6. Principal Component Analysis
5.7. Support Vector Machine
5.8. Artificial Neural Network
5.9. Soft Independent Method of Class Analogy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, Y.; Jiang, J.-G. Origin and concept of medicine food homology and its application in modern functional foods. Food Funct. 2013, 4, 1727–1741. [Google Scholar] [CrossRef]
- Yang, G.; Su, F.; Min, C. Origin and Prospect of Homology Medicine and Food. Mod. Chin. Med. 2021, 23, 1851–1856. [Google Scholar]
- Shan, F.; Huang, L.-Q.; Guo, J.; Chen, M. History and development of “One Root of Medicine and Food”. Chin. Bull. Life Sci. 2015, 27, 1061–1069. [Google Scholar]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eren-Guzelgun, B.; Ince, E.; Gurer-Orhan, H. In vitro antioxidant/prooxidant effects of combined use of flavonoids. Nat. Prod. Res. 2017, 32, 1446–1450. [Google Scholar] [CrossRef] [PubMed]
- Liskova, A.; Koklesova, L.; Samec, M.; Smejkal, K.; Samuel, S.M.; Varghese, E.; Abotaleb, M.; Biringer, K.; Kudela, E.; Danko, J.; et al. Flavonoids in Cancer Metastasis. Cancers 2020, 12, 1498. [Google Scholar] [CrossRef] [PubMed]
- Pei, R.; Liu, X.; Bolling, B. Flavonoids and gut health. Curr. Opin. Biotechnol. 2020, 61, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.; Romero, M.; Gómez-Guzmán, M.; Tamargo, J.; Pérez-Vizcaino, F.; Duarte, J. Cardiovascular Effects of Flavonoids. Curr. Med. Chem. 2019, 26, 6991–7034. [Google Scholar] [CrossRef]
- Razack, S.; Kumar, K.H.; Nallamuthu, I.; Naika, M.; Khanum, F. Antioxidant, Biomolecule Oxidation Protective Activities of Nardostachys jatamansi DC and Its Phytochemical Analysis by RP-HPLC and GC-MS. Antioxidants 2015, 4, 185–203. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Wen, W.; Shao, J.; Zhao, W.; Qi, K.; Yang, J.; Pan, Y. Fast and comprehensive characterization of chemical ingredients in traditional Chinese herbal medicines by extractive atmospheric pressure photoionization (EAPPI) mass spectrometry. Rapid Commun. Mass Spectrom. 2017, 31, 1491–1498. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Huang, Q.; Feng, X.; Li, D. Comparison of the chemical-antioxidant profiles of different parts of Citrus reticulata Blanco (Rutaceae) based on OLE-HPLC-DAD-MS/MS-ABTS assay. J. Food Meas. Charact. 2021, 15, 3873–3883. [Google Scholar] [CrossRef]
- Xie, B.; Wu, X.F.; Luo, H.T.; Huang, X.L.; Huang, F.; Zhang, Q.Y.; Zhou, X.; Wu, H.Q. Chemical profiling and quality evaluation of Pogostemon cablin Benth by liquid chromatography tandem mass spectrometry combined with multivariate statistical analysis. J. Pharm. Biomed. Anal. 2022, 209, 114526. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Ge, S.; Jiang, S.; Liu, Z.; Chen, L.; Wang, L.; Chen, J.; Qin, L.; Peng, W. Study on biomolecules in extractives of Camellia oleifera fruit shell by GC-MS. Saudi J. Biol. Sci. 2017, 25, 234–236. [Google Scholar] [CrossRef]
- Geraldes, C.F.G.C. Introduction to Infrared and Raman-Based Biomedical Molecular Imaging and Comparison with Other Modalities. Molecules 2020, 25, 5547. [Google Scholar] [CrossRef] [PubMed]
- Krysa, M.; Szymańska-Chargot, M.; Zdunek, A. FT-IR and FT-Raman fingerprints of flavonoids—A review. Food Chem. 2022, 393, 133430. [Google Scholar] [CrossRef]
- Lu, J.; Xiang, B.; Liu, H.; Xiang, S.; Xie, S.; Deng, H. Application of two-dimensional near-infrared correlation spectroscopy to the discrimination of Chinese herbal medicine of different geographic regions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007, 69, 580–586. [Google Scholar] [CrossRef]
- Chang, X.; Chen, X.; Guo, Y.; Gong, P.; Pei, S.; Wang, D.; Wang, P.; Wang, M.; Chen, F. Advances in Chemical Composition, Extraction Techniques, Analytical Methods, and Biological Activity of Astragali Radix. Molecules 2022, 27, 1058. [Google Scholar] [CrossRef]
- Duan, P.-B.; Xiao, P.-T.; Yang, X.; Hao, J.-H.; Li, K.; Liu, E.H. Screening of hypoglycemic components in Platycladi Cacumen by phytochemical investigation, spectrum-effect relationship, and chemometric methods. J. Sep. Sci. 2022, 45, 2591–2602. [Google Scholar] [CrossRef]
- Shang, Z.; Tian, Y.; Yi, Y.; Li, K.; Qiao, X.; Ye, M. Comparative bioactivity evaluation and chemical profiling of different parts of the medicinal plant Glycyrrhiza uralensis. J. Pharm. Biomed. Anal. 2022, 215, 114793. [Google Scholar] [CrossRef]
- Bao, X.-F.; Cao, P.-H.; Zeng, J.; Xiao, L.-M.; Luo, Z.-H.; Zou, J.; Wang, C.-X.; Zhao, Z.-X.; Zhou, Z.-Q.; Zhi, H.; et al. Bioactive pterocarpans from the root of Astragalus membranaceus var. mongholicus. Phytochemistry 2022, 200, 113249. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.-K.; Xu, X.-J.; Wu, X.; Wang, M.-J.; Gao, C.-F.; Wang, D.-M.; Ren, S.-M.; Pan, Y.-N.; Liu, X.-Q. Capsella bursa-pastoris (L.) Medic. extract alleviate cataract development by regulating the mitochondrial apoptotic pathway of the lens epithelial cells. J. Ethnopharmacol. 2021, 284, 114783. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, K.; Han, S.; Zhang, L.; Bai, H.; Bao, F.; Zeng, Y.; Wang, J.; Du, H.; Liu, Y.; et al. Constituents Isolated from the Leaves of Glycyrrhiza uralansis and Their Anti-Inflammatory Activities on LPS-Induced RAW264.7 Cells. Molecules 2019, 24, 1923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, Y.; Adrjan, B.; Li, J.; Hu, B.; Roszak, S. NMR studies of daidzein and puerarin: Active anti-oxidants in traditional Chinese medicine. J. Mol. Model. 2019, 25, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Q.; Zhang, Y.; He, Z.; Liu, Z.; Zhang, Y.; Xu, W.; Yang, X. Constituents promoting osteogenesis from the fruits of Psoralea corylifolia and their structure-activity relationship study. Phytochemistry 2022, 198, 113143. [Google Scholar] [CrossRef]
- Yin, M.; Wang, J.; Huang, H.; Huang, Q.; Fu, Z.; Lu, Y. Analysis of Flavonoid Compounds by Terahertz Spectroscopy Combined with Chemometrics. ACS Omega 2020, 5, 18134–18141. [Google Scholar] [CrossRef]
- Yan, L.; Liu, C.; Qu, H.; Liu, W.; Zhang, Y.; Yang, J.; Zheng, L. Discrimination and Measurements of Three Flavonols with Similar Structure Using Terahertz Spectroscopy and Chemometrics. J. Infrared Millim. Terahertz Waves 2018, 39, 492–504. [Google Scholar] [CrossRef]
- Lan, W.; Wang, S.; Wu, Y.; Chen, H.; Yang, J.; Wei, L.; Xie, H.; Li, S.; Guo, L.; Fu, H. A novel fluorescence sensing strategy based on nanoparticles combined with spectral splicing and chemometrics for the recognition of Citrus reticulata ‘Chachi’ and its storage year. J. Sci. Food Agric. 2020, 100, 4199–4207. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, X.; He, C. An isoflavonoid-enriched extract from Pueraria lobata (kudzu) root protects human umbilical vein endothelial cells against oxidative stress induced apoptosis. J. Ethnopharmacol. 2016, 193, 524–530. [Google Scholar] [CrossRef]
- Wang, X.-L.; Jiao, F.-R.; Yu, M.; Lin, L.-B.; Xiao, J.; Zhang, Q.; Wang, L.; Duan, D.-Z.; Xie, G. Constituents with potent α-glucosidase inhibitory activity from Pueraria lobata (Willd.) ohwi. Bioorganic Med. Chem. Lett. 2017, 27, 1993–1998. [Google Scholar] [CrossRef]
- Witkowska-Banaszczak, E, Flavonoids from Trollius europaeus flowers and evaluation of their biological activity. J. Pharm. Pharmacol. 2018, 70, 550–558. [CrossRef] [PubMed]
- El Shoubaky, G.A.; Abdel-Daim, M.M.; Mansour, M.H.; Salem, E.A. Isolation and Identification of a Flavone Apigenin from Marine Red Alga Acanthophora spicifera with Antinociceptive and Anti-Inflammatory Activities. J. Exp. Neurosci. 2016, 10, JEN-S25096. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Hudecova, L.; Lauro, P.; Simunková, M.; Barbierikova, Z.; Malcek, M.; Alwasel, S.H.; Alhazza, I.M.; Rhodes, C.J.; Valko, M. The effect of Luteolin on DNA damage mediated by a copper catalyzed Fenton reaction. J. Inorg. Biochem. 2021, 226, 111635. [Google Scholar] [CrossRef] [PubMed]
- Arslan, M.; Xiaobo, Z.; Xuetao, H.; Elrasheid Tahir, H.; Shi, J.; Khan, M.R.; Zareef, M. Near infrared spectroscopy coupled with chemometric algorithms for predicting chemical components in black goji berries (Lycium ruthenicum Murr.). J. Near Infrared Spectrosc. 2018, 26, 275–286. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, H.; Yang, H.; Nie, L.; Zang, H. Rapid determination of major bioactive isoflavonoid compounds during the extraction process of kudzu (Pueraria lobata) by near-infrared transmission spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 137, 1403–1408. [Google Scholar] [CrossRef]
- Betances-Salcedo, E.; Revilla, I.; Vivar-Quintana, A.M.; González-Martín, M.I. Flavonoid and Antioxidant Capacity of Propolis Prediction Using Near Infrared Spectroscopy. Sensors 2017, 17, 1647. [Google Scholar] [CrossRef] [Green Version]
- Nie, P.; Xia, Z.; Sun, D.W.; He, Y. Application of visible and near infrared spectroscopy for rapid analysis of chrysin and galangin in Chinese propolis. Sensors 2013, 13, 10539–10549. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Talpur, Z.H.; Yang, W.; Xiong, Y.; Wu, T.; Zhang, Y.; Shen, X.; Du, Y. Dual-spectrum online monitoring of puerarin and total flavonoids contents during the extraction process of Pueraria lobata. Talanta 2022, 248, 123608. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, W.; Zhou, L.; Cheng, H.; Ye, X.; He, Y. Developing deep learning based regression approaches for determination of chemical compositions in dry black goji berries (Lycium ruthenicum Murr.) using near-infrared hyperspectral imaging. Food Chem. 2020, 319, 126536. [Google Scholar] [CrossRef]
- He, J.; Chen, L.; Chu, B.; Zhang, C. Determination of Total Polysaccharides and Total Flavonoids in Chrysanthemum morifolium Using Near-Infrared Hyperspectral Imaging and Multivariate Analysis. Molecules 2018, 23, 2395. [Google Scholar] [CrossRef] [Green Version]
- Pellecchia, M.; Bertini, I.; Cowburn, D.; Dalvit, C.; Giralt, E.; Jahnke, W.; James, T.L.; Homans, S.W.; Kessler, H.; Luchinat, C.; et al. Perspectives on NMR in drug discovery: A technique comes of age. Nat. Rev. Drug Discov. 2008, 7, 738–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, A.; Qiu, Y.; Chen, X.; Zhao, Z.; Xia, L.; Shao, Y. Biomedical applications of terahertz technology. Appl. Spectrosc. Rev. 2019, 55, 418–438. [Google Scholar] [CrossRef]
- Sterczewski, L.A.; Nowak, K.; Szlachetko, B.; Grzelczak, M.P.; Szczesniak-Siega, B.; Plinska, S.; Malinka, W.; Plinski, E.F. Chemometric Evaluation of THz Spectral Similarity for the Selection of Early Drug Candidates. Sci. Rep. 2017, 7, 14583. [Google Scholar] [CrossRef] [Green Version]
- Afsah-Hejri, L.; Hajeb, P.; Ara, P.; Ehsani, R.J. A Comprehensive Review on Food Applications of Terahertz Spectroscopy and Imaging. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1563–1621. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Ma, S.; Yin, C.; Liu, Z. Quality evaluation and traceability of Bletilla striata by fluorescence fingerprint coupled with multi-way chemometrics analysis. J. Sci. Food Agric. 2018, 99, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Wang, X.; Russel, M.; Zhao, J. Rapid determination of flavonoids in green tea by synchronous fluorescence spectra coupled with chemometrics. Spectrosc. Lett. 2017, 50, 501–506. [Google Scholar] [CrossRef]
- Lv, M.; Liu, Y.; Geng, J.; Kou, X.; Xin, Z.; Yang, D. Engineering nanomaterials-based biosensors for food safety detection. Biosens. Bioelectron. 2018, 106, 122–128. [Google Scholar] [CrossRef]
- Liu, L.C.; Wang, X.Y.; Li, L.N.; Yang, L.; Wang, Z.T. Research advances of chemical constituents and analytical methods of Citri Reticulatae Pericarpium Viride and Citri Reticulatae Pericarpium. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China J. Chin. Mater. Med. 2022, 47, 2866–2879. [Google Scholar]
- Rohman, A.; Nugroho, A.; Lukitaningsih, E. Sudjadi Application of Vibrational Spectroscopy in Combination with Chemometrics Techniques for Authentication of Herbal Medicine. Appl. Spectrosc. Rev. 2014, 49, 603–613. [Google Scholar] [CrossRef]
- Feng, Y.; Lei, D.; Hu, C. Rapid identification of illegal synthetic adulterants in herbal anti-diabetic medicines using near infrared spectroscopy. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 2014, 125, 363–374. [Google Scholar] [CrossRef]
- Li, W.; Cheng, Z.; Wang, Y.; Qu, H. A study on the use of near-infrared spectroscopy for the rapid quantification of major compounds in Tanreqing injection. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 2013, 101, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Luypaert, J.; Massart, D.L.; Vander Heyden, Y. Near-infrared spectroscopy applications in pharmaceutical analysis. Talanta 2007, 72, 865–883. [Google Scholar] [CrossRef] [PubMed]
- Manley, M. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials. Chem. Soc. Rev. 2014, 43, 8200–8214. [Google Scholar] [CrossRef] [PubMed]
- Erkinbaev, C.; Henderson, K.; Paliwal, J. Discrimination of gluten-free oats from contaminants using near infrared hyperspectral imaging technique. Food Control. 2017, 80, 197–203. [Google Scholar] [CrossRef]
- Lowe, A.; Harrison, N.; French, A.P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 2017, 13, 80. [Google Scholar] [CrossRef]
- Karim, S.; Qadir, A.; Farooq, U.; Shakir, M.; Laghari, A.A. Hyperspectral Imaging: A Review and Trends towards Medical Imaging. Curr. Med. Imaging 2022. [Google Scholar] [CrossRef]
- Sandasi, M.; Vermaak, I.; Chen, W.; Viljoen, A.M. Hyperspectral imaging and chemometric modeling of echinacea—A novel approach in the quality control of herbal medicines. Molecules 2014, 19, 13104–13121. [Google Scholar] [CrossRef] [Green Version]
- He, J.; He, Y.; Zhang, C. Determination and Visualization of Peimine and Peiminine Content in Fritillaria thunbergii Bulbi Treated by Sulfur Fumigation Using Hyperspectral Imaging with Chemometrics. Molecules 2017, 22, 1402. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Wang, Q.; Liu, F.; He, Y.; Xiao, Y. Rapid and non-destructive measurement of spinach pigments content during storage using hyperspectral imaging with chemometrics. Measurement 2016, 97, 149–155. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, X.; Jin, X.; Li, C.; Wu, X.; Yang, S.; Ning, J.; Yanne, P. Determination of total iron-reactive phenolics, anthocyanins and tannins in wine grapes of skins and seeds based on near-infrared hyperspectral imaging. Food Chem. 2017, 237, 811–817. [Google Scholar] [CrossRef]
- Mo, C.; Kim, M.S.; Kim, G.; Lim, J.; Delwiche, S.R.; Chao, K.; Lee, H.; Cho, B.-K. Spatial assessment of soluble solid contents on apple slices using hyperspectral imaging. Biosyst. Eng. 2017, 159, 10–21. [Google Scholar] [CrossRef]
- Munera, S.; Besada, C.; Aleixos, N.; Talens, P.; Salvador, A.; Sun, D.-W.; Cubero, S.; Blasco, J. Non-destructive assessment of the internal quality of intact persimmon using colour and VIS/NIR hyperspectral imaging. LWT Food Sci. Technol. 2016, 77, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zuo, Z.; Xu, F.; Wang, Y. Origin identification of Panax notoginseng by multi-sensor information fusion strategy of infrared spectra combined with random forest. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 2020, 226, 117619. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Tang, X.; Jia, Z.; Li, C.; Ma, J.; Zhang, J. The Effects of Ecological Factors on the Main Medicinal Components of Dendrobium officinale under Different Cultivation Modes. Forests 2020, 11, 94. [Google Scholar] [CrossRef] [Green Version]
- Hai, C.; Long, W.; Suo, Y.; Lu, H.; Chen, H.; Yang, X.; Yang, J.; Fu, H. Nano-effect multivariate fusion spectroscopy combined with chemometrics for accurate identification the cultivation methods and growth years of Dendrobium huoshanense. Microchem. J. 2022, 179, 107556. [Google Scholar] [CrossRef]
- Ding, Y.; Zhu, W.-H.; Xie, Y. Development of Ion Chemosensors Based on Porphyrin Analogues. Chem. Rev. 2016, 117, 2203–2256. [Google Scholar] [CrossRef]
- Kumar, G.A.; Thomas, V.; Jose, G.; Unnikrishnan, N.V.; Nampoori, V.P.N. Optical properties of porphyrins in borate glassy matrix. Mater. Chem. Phys. 2002, 73, 206–211. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xia, Z.; Yao, L.; Wu, Y.; Li, Y.; Zeng, S.; Li, H. Discriminating geographic origin of sesame oils and determining lignans by near-infrared spectroscopy combined with chemometric methods. J. Food Compos. Anal. 2019, 24, 250–256. [Google Scholar] [CrossRef]
- Chen, H.; Lin, Z.; Tan, C. Fast discrimination of the geographical origins of notoginseng by near-infrared spectroscopy and chemometrics. J. Pharm. Biomed. Anal. 2018, 161, 239–245. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Xie, H.; Wei, L.; Xu, L.; Zhang, L.; Lan, W.; Zhou, C.; She, Y.; Fu, H. A novel thioctic acid-carbon dots fluorescence sensor for the detection of Hg2+ and thiophanate methyl via S-Hg affinity. Food Chem. 2020, 346, 128923. [Google Scholar] [CrossRef]
- Zhai, X.; Li, Z.; Shi, J.; Huang, X.; Sun, Z.; Zhang, D.; Zou, X.; Sun, Y.; Zhang, J.; Holmes, M.; et al. A colorimetric hydrogen sulfide sensor based on gellan gum-silver nanoparticles bionanocomposite for monitoring of meat spoilage in intelligent packaging. Food Chem. 2019, 290, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Hu, O.; Chen, H.; Yang, T.; Fan, Y.; Xu, L.; Zhang, L.; Lan, W.; She, Y.; Fu, H. Variety identification and age prediction of Pu-erh tea using graphene oxide and porphyrin complex based mid-infrared spectroscopy coupled with chemometrics. Microchem. J. 2020, 158, 105255. [Google Scholar] [CrossRef]
- Long, W.; Hu, Z.; Wei, L.; Chen, H.; Liu, T.; Wang, S.; Guan, Y.; Yang, X.; Yang, J.; Fu, H. Accurate identification of the geographical origins of lily using near-infrared spectroscopy combined with carbon dot-tetramethoxyporphyrin nanocomposite and chemometrics. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 2022, 271, 120932. [Google Scholar] [CrossRef]
- Lv, C.; He, Y.; Kang, C.; Zhou, L.; Wang, T.; Yang, J.; Guo, L. Tracing the Geographical Origins of Dendrobe (Dendrobium spp.) by Near-Infrared Spectroscopy Sensor Combined with Porphyrin and Chemometrics. J. Anal. Methods Chem. 2020, 2020, 8879957. [Google Scholar] [CrossRef] [PubMed]
- Pawlikowska-Pawlega, B.; Gruszecki, W.I.; Misiak, L.; Paduch, R.; Piersiak, T.; Zarzyka, B.; Pawelec, J.; Gawron, A. Modification of membranes by quercetin, a naturally occurring flavonoid, via its incorporation in the polar head group. Biochim. Biophys. Acta 2007, 1768, 2195–2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wesołowska, O.; Hendrich, A.B.; Łaniapietrzak, B.; Wiśniewski, J.; Molnar, J.; Ocsovszki, I.; Michalak, K. Perturbation of the lipid phase of a membrane is not involved in the modulation of MRP1 transport activity by flavonoids. Cell. Mol. Biol. Lett. 2009, 14, 199–221. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, S.; Krishnaswamy, S.; Devashya, V.; Sethuraman, S.; Krishnan, U.M. Influence of membrane lipid composition on flavonoid-membrane interactions: Implications on their biological activity. Prog. Lipid Res. 2015, 58, 1–13. [Google Scholar] [CrossRef]
- Cieślik-Boczula, K.; Maniewska, J.; Grynkiewicz, G.; Szeja, W.; Koll, A.; Hendrich, A.B. Interaction of quercetin, genistein and its derivatives with lipid bilayers—An ATR IR-spectroscopic study. Vib. Spectrosc. 2012, 62, 64–69. [Google Scholar] [CrossRef]
- Pawlikowska-Pawlęga, B.; Misiak, L.E.; Zarzyka, B.; Paduch, R.; Gawron, A.; Gruszecki, W.I. FTIR, (1)H NMR and EPR spectroscopy studies on the interaction of flavone apigenin with dipalmitoylphosphatidylcholine liposomes. Biochim. Biophys. Acta 2013, 1828, 518–527. [Google Scholar] [CrossRef] [Green Version]
- Baranović, G.; Šegota, S. Infrared spectroscopy of flavones and flavonols. Reexamination of the hydroxyl and carbonyl vibrations in relation to the interactions of flavonoids with membrane lipids. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 2018, 192, 473–486. [Google Scholar] [CrossRef]
- Ali, M.S.; Al-Lohedan, H.A. Interaction of human serum albumin with sulfadiazine. J. Mol. Liq. 2014, 197, 124–130. [Google Scholar] [CrossRef]
- Singh, P.; Arif, Y.; Bajguz, A.; Hayat, S. The role of quercetin in plants. Plant Physiol. Biochem. PPB 2021, 166, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Huwait, E.; Mobashir, M. Potential and Therapeutic Roles of Diosmin in Human Diseases. Biomedicines 2022, 10, 1076. [Google Scholar] [CrossRef] [PubMed]
- Sovrlić, M.; Mrkalić, E.; Jelić, R.; Ćendić Serafinović, M.; Stojanović, S.; Prodanović, N.; Tomović, J. Effect of Caffeine and Flavonoids on the Binding of Tigecycline to Human Serum Albumin: A Spectroscopic Study and Molecular Docking. Pharmaceuticals 2022, 15, 266. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.S.; Al-Lohedan, H.A. Spectroscopic and computational evaluation on the binding of safranal with human serum albumin: Role of inner filter effect in fluorescence spectral correction. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 2018, 203, 434–442. [Google Scholar] [CrossRef]
- Li, X.; Wang, S. Study on the interaction of (+)-catechin with human serum albumin using isothermal titration calorimetry and spectroscopic techniques. New J. Chem. 2014, 39, 386–395. [Google Scholar] [CrossRef]
- Liu, T.; Liu, M.; Guo, Q.; Liu, Y.; Zhao, Y.; Wu, Y.; Sun, B.; Wang, Q.; Liu, J.; Han, J. Investigation of binary and ternary systems of human serum albumin with oxyresveratrol/piceatannol and/or mitoxantrone by multipectroscopy, molecular docking and cytotoxicity evaluation. J. Mol. Liq. 2020, 311, 113364. [Google Scholar] [CrossRef]
- Matei, I.; Hillebrand, M. Interaction of kaempferol with human serum albumin: A fluorescence and circular dichroism study. J. Pharm. Biomed. Anal. 2010, 51, 768–773. [Google Scholar] [CrossRef]
- Maji, A.; Beg, M.; Mandal, A.K.; Das, S.; Jha, P.K.; Kumar, A.; Sarwar, S.; Hossain, M.; Chakrabarti, P. Spectroscopic interaction study of human serum albumin and human hemoglobin with Mersilea quadrifolia leaves extract mediated silver nanoparticles having antibacterial and anticancer activity. J. Mol. Struct. 2017, 1141, 584–592. [Google Scholar] [CrossRef]
- Zeng, H.J.; Ma, J.; Yang, R.; Jing, Y.; Qu, L.B. Molecular Interactions of Flavonoids to Hyaluronidase: Insights from Spectroscopic and Molecular Modeling Studies. J. Fluoresc. 2015, 25, 941–959. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, G.H. Evaluation of antioxidant and inhibitory activities for different subclasses flavonoids on enzymes for rheumatoid arthritis. J. Food Sci. 2010, 75, H212–H217. [Google Scholar] [CrossRef]
- Li, X.; Liu, H.; Yang, Z.; Duan, H.; Wang, Z.; Cheng, Z.; Song, Z.; Wu, X. Study on the interaction of hyaluronidase with certain flavonoids. J. Mol. Struct. 2021, 1241, 130686. [Google Scholar] [CrossRef]
- Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876–2890. [Google Scholar] [CrossRef]
- Yan, S.-M.; Hu, Z.-F.; Wu, C.-X.; Jin, L.; Chen, G.; Zeng, X.-Y.; Zhu, J.-Q. Electronic Tongue Combined with Chemometrics to Provenance Discrimination for a Green Tea (Anji-White Tea). J. Food Qual. 2017, 2017, 3573197. [Google Scholar] [CrossRef]
- Ballabio, D.; Consonni, V. Classification tools in chemistry. Part 1: Linear models. PLS-DA. Anal. Methods 2013, 5, 3790–3798. [Google Scholar] [CrossRef]
- Yun, Y.-H.; Wei, Y.-C.; Zhao, X.-B.; Wu, W.-J.; Liang, Y.-Z.; Lu, H.-M. A green method for the quantification of polysaccharides in Dendrobium officinale. RSC Adv. 2015, 5, 105057–105065. [Google Scholar] [CrossRef]
- Long, W.J.; Wu, H.L.; Wang, T.; Dong, M.Y.; Chen, L.Z.; Yu, R.Q. Fast identification of the geographical origin of Gastrodia elata using excitation-emission matrix fluorescence and chemometric methods. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 2021, 258, 119798. [Google Scholar] [CrossRef]
- Yang, Q.; Lin, S.S.; Yang, J.T.; Tang, L.J.; Yu, R.Q. Detection of inborn errors of metabolism utilizing GC-MS urinary metabolomics coupled with a modified orthogonal partial least squares discriminant analysis. Talanta 2017, 165, 545–552. [Google Scholar] [CrossRef]
- Xia, Z.; Liu, X.; Tong, L.; Wang, H.; Feng, M.; Xi, X.; He, P.; Qin, X. Comparison of chemical constituents of Bupleurum marginatum var. stenophyllum and Bupleurum chinense DC. using UHPLC–Q-TOF–MS based on a metabonomics approach. Biomed. Chromatogr. 2021, 35, e5133. [Google Scholar] [CrossRef]
- Fu, H.; Wei, L.; Chen, H.; Yang, X.; Kang, L.; Hao, Q.; Zhou, L.; Zhan, Z.; Liu, Z.; Yang, J.; et al. Combining stable C, N, O, H, Sr isotope and multi-element with chemometrics for identifying the geographical origins and farming patterns of Huangjing herb. J. Food Compos. Anal. 2021, 102, 103972. [Google Scholar] [CrossRef]
- Jin, Q.; Jiao, C.; Sun, S.; Song, C.; Cai, Y.; Lin, Y.; Fan, H.; Zhu, Y. Metabolic Analysis of Medicinal Dendrobium officinale and Dendrobium huoshanense during Different Growth Years. PLoS ONE 2016, 11, e0146607. [Google Scholar] [CrossRef]
- Wu, X.M.; Zhang, Q.Z.; Wang, Y.Z. Traceability of wild Paris polyphylla Smith var. yunnanensis based on data fusion strategy of FT-MIR and UV-Vis combined with SVM and random forest. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 2018, 205, 479–488. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.Y.; Wang, Y.Z. FT-MIR and NIR spectral data fusion: A synergetic strategy for the geographical traceability of Panax notoginseng. Anal. Bioanal. Chem. 2018, 410, 91–103. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, X.; Zhang, Z.; Zhu, R. Data fusion of near-infrared and mid-infrared spectra for identification of rhubarb. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 2017, 171, 72–79. [Google Scholar] [CrossRef]
- Chen, W.; Du, Y.; Zhang, F.; Zhang, R.; Ding, B.; Chen, Z.; Xiong, Q. Sampling error profile analysis (SEPA) for model optimization and model evaluation in multivariate calibration. J. Chemom. 2017, 32, e2933. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, D.; Frangi, A.F.; Yang, J.Y. Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Anderson, S.L.; Rovnyak, D.; Strein, T.G. Identification of Edible Oils by Principal Component Analysis of 1H NMR Spectra. J. Chem. Educ. 2017, 94, 1377–1382. [Google Scholar] [CrossRef]
- Liang, J.; Guo, Q.; Chang, T.; Li, K.; Cui, H.-L. Reliable origin identification of Scutellaria baicalensis based on terahertz time-domain spectroscopy and pattern recognition. Optik 2018, 174, 7–14. [Google Scholar] [CrossRef]
- Kim, H.-C.; Pang, S.; Je, H.-M.; Kim, D.; Yang Bang, S. Constructing support vector machine ensemble. Pattern Recognit. 2003, 36, 2757–2767. [Google Scholar] [CrossRef]
- Shi, X.; Gan, X.; Wang, X.; Peng, J.; Li, Z.; Wu, X.; Shao, Q.; Zhang, A. Rapid detection of Ganoderma lucidum spore powder adulterated with dyed starch by NIR spectroscopy and chemometrics. LWT Food Sci. Technol. 2022, 167, 113829. [Google Scholar] [CrossRef]
- Jintao, X.; Quanwei, Y.; Chunyan, L.; Yun, J.; Shuangxi, W.; Mingxiang, Z.; Peng, L. Rapid and Simultaneous Determination of Three Active Components in Raw and Processed Root Samples of Scutellaria baicalensis by Near-infrared Spectroscopy. Planta Med. 2019, 85, 72–80. [Google Scholar] [CrossRef]
- Yang, I.C.; Tsai, C.-Y.; Hsieh, K.-W.; Yang, C.-W.; Ouyang, F.; Martin Lo, Y.; Chen, S. Integration of SIMCA and near-infrared spectroscopy for rapid and precise identification of herbal medicines. J. Food Drug Anal. 2013, 21, 268–278. [Google Scholar] [CrossRef]
Sources | Flavonoid Types | Compound Name | Analysis Technique | Purpose | Chemometrics | Year | References |
---|---|---|---|---|---|---|---|
Platycladi Cacumen | 21 | Myricitrin; quercitrin; afzelin; amentoflavone | NMR | Chemical structures | OPLSR | 2022 | [19] |
Glycyrrhiza uralensis | 22 | Apigenin 6-C-α-L-rhamnoside-8-C-(6′-(3-hydroxy-3-methylglutaroyl)-β-D-glucoside); apigenin 6-C-α-L-glucoside-8-C-(6′-O-(3-hydroxyl-3-methylglurtaroyl)-β-D-glucoside); apigenin 6-C-α-L-arabinoside-8-C-(6′-O-(3-hydroxyl-3-methylglurtaroyl)-β-D-glucoside) | NMR | Chemical structures | OPLS-DA | 2022 | [20] |
Astragalus membranaceus | 14 | 7-β-D-glucopyranosyloxy-astrapterocarpan; (3R,4R)-7-(2-O-β-erythro-D-apiofuranosyl-β-D-glucopyranosyloxy)-3′,4′-dimethoxyl-pterocarpan | NMR | Chemical structures | \ | 2022 | [21] |
Capsella bursa-pastoris(L.) | 4 | Isoorientin; isoorientin-2″-O-α-L-arabinopyranosyl; isoorientin-2″-O-α-L-xylose; kaempferol-3-O-β-D-glucoside, | NMR; UV-Vis | Chemical structures; Quantitatively analyse | \ | 2021 | [22] |
Glycyrrhiza uralansis | 10 | Diosmetin; echinatin; Licofuranol A; licofuranol B; calycosin; luteolin; scopoletin; glycypytilbene B, | NMR; UV-Vis | Chemical structures | \ | 2019 | [23] |
Radix puerariae | 2 | Daidzein; puerarin | NMR | NMR chemical shifts; NMR shielding parameters | \ | 2019 | [24] |
Psoralea corylifolia L. | 62 | Bavaisoflavone; bavachinone; bavaflavone | NMR; Circular dichroism spectra | Chemical structures | \ | 2022 | [25] |
Flavonoids | 10 | Baicalein; baicalin; apigenin; quercetin; naringenin; hesperetin; daidzein; genistein; puerarin; gastrodin | Terahertz time-domain spectroscopy(THz-TDS) | Qualitative identification; quantitative analysis | PCA; SVM; PLSR; ANN | 2020 | [26] |
Flavonols | 3 | Myricetin; quercetin; kaempferol | Terahertz spectroscopy | Qualitative identification; quantitative analysis | PLSR; least squares SVM | 2018 | [27] |
Citri reticulatae pericarpium | 6 | Nobiletin; sinensetin; 3,5,6,7,8,3′,4′-heptamethoxyflavone; tangeretin; hesperidin | Fluorescence spectroscopy | Quality evaluation; identify storage year | PLS-DA | 2020 | [28] |
Pueraria lobata | 3 | Puerarin, daidzin, daidzein | UV | Quantitative analysis | \ | 2016 | [29] |
Pueraria lobata | 6 | Lobatflavate, 3S,4R-tuberosin, daidzein, puerarin, daidzin, ononin | IR; UV; NMR | Chemical structures | \ | 2017 | [30] |
Trollius europaeus | 10 | Orientin; isoorientin; vitexin; isovitexin; orientin 2′-O-β-arabinopyranoside; orientin 2′-O-β-glucopyranoside; vitexin 2′-O-β-arabinopyranoside; vitexin 2′-O-β-galactopyranoside | NMR; UV; MS | Chemical structures | \ | 2018 | [31] |
Marine red alga acanthophora spicifera | 1 | Apigenin | IR; UV; MS | Chemical structures | \ | 2016 | [32] |
Flavonoid | 1 | Luteolin | UV-vis | Chemical structures | \ | 2021 | [33] |
Black wolfberry | Total flavonoids | Rutin | NIR | Quantitative analysis | PLS | 2018 | [34] |
Pueraria lobata | Total isoflavonoid | Puerarin; daidzin | NIR | Quantitative analysis | PLS | 2014 | [35] |
Propolis | Total flavones; flavonols; flavanones | Quercetin; rutin; pinocembrin | NIR | Quantitative analysis | PLS | 2017 | [36] |
Poplar propolis | 2 | Chrysin; galangin | Vis-NIR | Quantitative analysis | PLS; ANN; MLR; LS-SVM | 2013 | [37] |
Pueraria lobat | Total flavonoids | Puerarin | NIR; UV-Vis | Quantitative analysis | SEPA-PLS | 2022 | [38] |
Black goji berries | Total flavonoids | Quercetin | Near-infrared hyperspectral imaging (NIR-HSI) | Quantitative analysis | PCA; PLS; LS-SVM | 2020 | [39] |
Chrysanthemum morifolium | Total flavonoids | Rutin | NIR-HSI | Quantitative analysis | PLS; LS-SVM | 2018 | [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, L.; Li, H.; Ding, X.; Liu, Z.; He, D.; Kowah, J.A.H.; Wang, L.; Yuan, M.; Liu, X. A Review of The Application of Spectroscopy to Flavonoids from Medicine and Food Homology Materials. Molecules 2022, 27, 7766. https://doi.org/10.3390/molecules27227766
Zou L, Li H, Ding X, Liu Z, He D, Kowah JAH, Wang L, Yuan M, Liu X. A Review of The Application of Spectroscopy to Flavonoids from Medicine and Food Homology Materials. Molecules. 2022; 27(22):7766. https://doi.org/10.3390/molecules27227766
Chicago/Turabian StyleZou, Lin, Huijun Li, Xuejie Ding, Zifan Liu, Dongqiong He, Jamal A. H. Kowah, Lisheng Wang, Mingqing Yuan, and Xu Liu. 2022. "A Review of The Application of Spectroscopy to Flavonoids from Medicine and Food Homology Materials" Molecules 27, no. 22: 7766. https://doi.org/10.3390/molecules27227766
APA StyleZou, L., Li, H., Ding, X., Liu, Z., He, D., Kowah, J. A. H., Wang, L., Yuan, M., & Liu, X. (2022). A Review of The Application of Spectroscopy to Flavonoids from Medicine and Food Homology Materials. Molecules, 27(22), 7766. https://doi.org/10.3390/molecules27227766