Formation Optimization, Characterization and Antioxidant Activity of Auricularia auricula-judae Polysaccharide Nanoparticles Obtained via Antisolvent Precipitation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of Factors and Their Levels via Single Factor Analysis
2.2. RSM Optimization of Operating Parameters
2.2.1. Model Building and ANOVA
2.2.2. Three-Dimensional (3D) Response Surface Diagram Analysis
2.2.3. Prediction of Optimal Response Surface
2.3. Morphology and Size Analysis
2.4. FTIR Spectra Analysis
2.5. XRD Analysis
2.6. Thermostability Analysis
2.7. Free Radical Scavenging Activity Assays
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Formation of AAP-NPs
3.3. Determination of Average Particle Size, Polydispersity Index and Electrical Characteristics of AAP-NPs
3.4. Optimization of AAP-NPs Formation
3.4.1. Single Factor Designs
3.4.2. Box–Behnken Design (BBD)
3.5. Scanning Electron Microscopy
3.6. Fourier Transform Infrared Spectroscopy
3.7. X-ray Diffraction
3.8. Thermostability
3.9. DPPH Radical Scavenging Activity
3.10. ABTS Radical Scavenging Activity
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wu, F.; Dai, Y.C. Notes on the nomenclature of the Auricularia auricula-judae complex. Mycosystema 2015, 34, 604–611. [Google Scholar]
- Zhou, R.; Wang, Y.; Wang, Z.; Liu, K.; Wang, Q.; Bao, H. Effects of Auricularia auricula-judae polysaccharide on pasting, gelatinization, rheology, structural properties and in vitro digestibility of kidney bean starch. Int. J. Biol. Macromol. 2021, 191, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Qiao, Z.; Xia, X. Optimisation of extraction procedure for black fungus polysaccharides and effect of the polysaccharides on blood lipid and myocardium antioxidant enzymes activities. Carbohydr. Polym. 2011, 84, 1061–1068. [Google Scholar]
- Peng, X.B.; Qian, L.; Ou, L.N.; Jiang, L.F.; Zeng, K. GC-MS, FT-IR analysis of black fungus polysaccharides and its inhibition against skin aging in mice. Int. J. Biol. Macromol. 2010, 47, 304–307. [Google Scholar] [CrossRef] [PubMed]
- Pak, S.J.; Chen, F.; Ma, L.; Hu, X.; Ji, J. Functional perspective of black fungi (Auricularia auricula): Major bioactive components, health benefits and potential mechanisms. Trends Food Sci. Technol. 2021, 114, 245–261. [Google Scholar] [CrossRef]
- Lei, Q.A.; Han, L.B.; Tao, L.C.; Yl, D.; Zz, A.; Yz, B. Purification, characterization and in vitro antioxidant activity of a polysaccharide AAP–3–1 from Auricularia auricula. Int. J. Biol. Macromol. 2020, 162, 1453–1464. [Google Scholar]
- Islam, T.; Yao, F.; Kang, W.; Lu, L.; Xu, B. A systematic study on mycochemical profiles, antioxidant, and anti-inflammatory activities of 30 varieties of jew’s ear (Auricularia auricula-judae). Food Sci. Hum. Wellness 2022, 11, 781–794. [Google Scholar] [CrossRef]
- Chen, H.; Yang, Y.; Jian, X.; Wei, J.; Zheng, Z.; Chen, H. Comparison of compositions and antimicrobial activities of essential oils from chemically stimulated agarwood, wild agarwood and healthy Aquilaria sinensis (lour.) gilg trees. Molecules 2011, 16, 4884–4896. [Google Scholar] [CrossRef] [Green Version]
- Xiang, H.; Sun-Waterhouse, D.; Cui, C. Hypoglycemic polysaccharides from Auricularia auricula and Auricularia polytricha inhibit oxidative stress, NF-κb signaling and proinflammatory cytokine production in streptozotocin-induced diabetic mice. Food Sci. Hum. Wellness 2021, 10, 87–93. [Google Scholar] [CrossRef]
- Xu, Y.; Shen, M.; Chen, Y.; Lou, Y.; Luo, R.; Chen, J.; Zhang, Y.; Li, J.; Wang, W. Optimization of the polysaccharide hydrolysate from Auricularia auricula with antioxidant activity by response surface methodology. Int. J. Biol. Macromol. 2018, 113, 543–549. [Google Scholar] [CrossRef]
- Bao, H.; You, S.; Cao, L.; Zhou, R.; Wang, Q.; Cui, S.W. Chemical and rheological properties of polysaccharides from fruit body of Auricularia auricular-judae. Food Hydrocoll. 2016, 57, 30–37. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, M.; Wang, X.; Ren, Y.; Gao, Z. Edible fungal polysaccharides, the gut microbiota, and host health. Carbohydr. Polym. 2021, 273, 118–558. [Google Scholar] [CrossRef] [PubMed]
- Zhe, L.; Wang, L.N.; Lin, X.; Lan, S.; Yi, F. Drug delivery for bioactive polysaccharides to improve their drug-like properties and curative efficacy. Drug Deliv. 2017, 24, 70–80. [Google Scholar]
- Zeb, A.; Rana, I.; Choi, H.I.; Lee, C.H.; Baek, S.W.; Lim, C.W. Potential and applications of nanocarriers for efficient delivery of biopharmaceuticals. Pharmaceutics 2020, 12, 1184. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Zheng, P.; She, F.; Kong, L. Development of chitosan nanoparticles as drug delivery systems for 5-fluorouracil and leucovorin blends. Carbohydr. Polym. 2011, 85, 698–704. [Google Scholar] [CrossRef]
- Meng, J.; Sturgis, T.F.; Youan, B. Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. Eur. J. Pharm. Sci. 2011, 44, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.; Zhang, W.L.; Liu, J.P.; Shaw, J.P.; Xu, Y.M.; Lu, H.; Wu, Z.M. Preparation and characterization of a lovastatin-loaded protein-free nanostructured lipid carrier resembling high-density lipoprotein and evaluation of its targeting to foam cells. AAPS PharmSciTech 2011, 12, 1200–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karnchanajindanun, J.; Srisa-Ard, M.; Baimark, Y. Genipin-cross-linked chitosan microspheres prepared by a water-in-oil emulsion solvent diffusion method for protein delivery. Carbohydr. Polym. 2011, 85, 674–680. [Google Scholar] [CrossRef]
- Pang, Y.X.; Sun, Y.N.; Luo, Y.L.; Zhou, M.S.; Qiu, X.Q.; Yi, C.H.; Lou, H.M. Preparation of novel all-lignin microcapsules via interfacial cross-linking of pickering emulsion. Ind. Crops Prod. 2021, 167, 113468. [Google Scholar] [CrossRef]
- Pan, X.; Li, Y.S.; Pang, W.L.; Xue, Y.Q.; Wang, Z.X.; Jiang, C.P.; Shen, C.Y.; Liu, Q.; Liu, L. Preparation, characterisation and comparison of glabridin-loaded hydrogel-forming microneedles by chemical and physical cross-linking. Int. J. Pharm. 2022, 617, 121612. [Google Scholar] [CrossRef]
- Coimbra, P.; Gil, M.H.; Figueiredo, M. Tailoring the properties of gelatin films for drug delivery applications: Influence of the chemical cross-linking method. Int. J. Biol. Macromol. 2014, 70, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Qiu, T.T.; Li. R., N.; Zhou, L.S.; Zhao, Y.Y.; Chen, S.S.; Zhang, H.C. Recent Progress in the Preparation and Application of Chitosan Nanoparticles as an Antimicrobial in Foods. Food Chem. 2020, 41, 347–353. [Google Scholar]
- Bhujbal, S.V.; Pathak, V.; Zemlyanov, D.Y.; Taylor, L.S.; Zhou, Q.T. Physical stability and dissolution of lumefantrine amorphous solid dispersions produced by spray anti-solvent precipitation. J. Pharm. Sci. 2021, 110, 2423–2431. [Google Scholar] [CrossRef]
- Xiong, W.; Zhang, Q.; Yin, F.; Yu, S.; Ye, T.; Pan, W.; Yang, X. Auricularia auricular polysaccharide-low molecular weight chitosan polyelectrolyte complex nanoparticles: Preparation and characterization. Asian J. Pharm. Sci. 2016, 11, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Xiong, W.; Li, L.; Wang, Y.; Yu, Y.; Wang, S.; Gao, Y.; Liang, Y.; Zhang, G.; Pan, W.; Yang, X. Design and evaluation of a novel potential carrier for a hydrophilic antitumor drug: Auricularia auricular polysaccharide-chitosan nanoparticles as a delivery system for doxorubicin hydrochloride. Int. J. Pharm. 2016, 511, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Schenck, L.; Lowinger, M.; Troup, G.; Li, L.; McKelvey, C. Achieving a Hot Melt Extrusion Design Space for the Production of Solid Solutions. Chem. Eng. Pharm. Ind. 2019, 19, 469–487. [Google Scholar]
- Kakran, M.; Sahoo, N.G.; Lin, L.; Judeh, Z. Fabrication of quercetin nanoparticles by anti-solvent precipitation method for enhanced dissolution. Powder Technol. 2012, 223, 59–64. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Liu, K.; Zha, X.Q.; Li, Q.M.; Pan, L.H.; Luo, J.P. Encapsulation of luteolin using oxidized lotus root starch nanoparticles prepared by antisolvent precipitation. Carbohydr. Polym. 2021, 273, 118552. [Google Scholar] [CrossRef]
- Charoenchaitrakool, M.; Roubroum, T.; Sudsakorn, K. Processing of a novel mefenamic acid–paracetamol–nicotinamide cocrystal using gas anti-solvent process. J. CO2 Util. 2022, 62, 102080. [Google Scholar] [CrossRef]
- Sun, X.D.; Neuperger, E.; Dey, S.K. Insights into the synthesis of layered double hydroxide (LDH) nanoparticles: Part 1. Optimization and controlled synthesis of chloride-intercalated LDH. J. Colloid Interface Sci. 2015, 459, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Lin, Y.; Huang, J.; Li, Z.; Xu, X.; Zhang, L. Construction of high strength hollow fibers by self-assembly of a stiff polysaccharide with short branches in water. J. Mater. Chem. A 2013, 1, 4198–4206. [Google Scholar] [CrossRef]
- Markwalter, C.E.; Prud’Homme, R.K. Design of a small-scale multi-inlet vortex mixer for scalable nanoparticle production and application to the encapsulation of biologics by inverse flash nanoprecipitation. J. Pharm. Sci. 2018, 107, 2465–2471. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Rodriguez, S.; Alle’mann, S.E.; Fessi, H.; Doelker, E. Physicochemical parameters associated with nanoparticle formation in the salting salting-out, emulsifification– diffusion, and nanoprecipitation methods. Pharm. Res. 2004, 21, 1428–1439. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Xiong, L.; Li, M.; Liu, J.; Wu, H.; Qiu, H.W.; Mu, H.Y.; Xu, X.F.; Sun, Q.J. Preparation of bioactive polysaccharide nanoparticles with enhanced radical scavenging activity and antimicrobial activity. J. Agric. Food Chem. 2018, 66, 4373–4383. [Google Scholar] [CrossRef]
- Guo, X.H.; Fu, Y.J.; Miao, F.W.; Yu, Q.S.; Liu, N.; Zhang, F.S. Efficient separation of functional xylooligosaccharide, cellulose and lignin from poplar via thermal acetic acid/sodium acetate hydrolysis and subsequent kraft pulping. Ind. Crops Prod. 2020, 153, 112575. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Campbell, K.; Painter, G.F.; Young, S.L.; Walker, G.F. Nanoparticle system based on amino-dextran as a drug delivery vehicle: Immune-stimulatory cpg-oligonucleotide loading and delivery. Pharmaceutics 2020, 12, 1150. [Google Scholar] [CrossRef]
- Yin, H.; Zhao, X.; Tong, L.L.; Wang, Z. In vitro and in vivo anti-hyperglycemic effects of polysaccharides from Auricularia auricular. Food Chem. 2015, 36, 221–226. [Google Scholar]
- Chopra, S.; Motwani, S.K.; Iqbal, Z.; Talegaonkar, S.; Ahmad, F.J.; Khar, R.K. Optimisation of polyherbal gels for vaginal drug delivery by Box–Behnken statistical design. Eur. J. Pharm. Biopharm. 2007, 67, 120–131. [Google Scholar] [CrossRef]
- Fabre, E.; Vale, C.; Pereira, E.; Silva, C.M. Experimental measurement and modeling of Hg(ii) removal from aqueous solutions using Eucalyptus globulus bark: Effect of pH, salinity and biosorbent dosage. Int. J. Mol. Sci. 2019, 20, 5973. [Google Scholar] [CrossRef] [Green Version]
- Shuang, Z.; Rong, C.; Yu, L.; Feng, X.; Wu, X. Extraction of a soluble polysaccharide from Auricularia polytricha and evaluation of its anti-hypercholesterolemic effect in rats. Carbohydr. Polym. 2015, 122, 39–45. [Google Scholar]
- Wei, Z.; Wang, H.; Xin, G.; Zeng, Z.; Huang, W. A pH-sensitive prodrug nanocarrier based on diosgenin for doxorubicin delivery to efficiently inhibit tumor metastasis. Int. J. Nanomed. 2020, 15, 6545–6560. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, S.; Jafari, S.M.; Assadpour, E.; Khomeiri, M. Nanoencapsulation of d-limonene within nanocarriers produced by pectin-whey protein complexes. Food Hydrocoll. 2018, 77, 152–162. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, C.; Huang, Q.; Li, C.; Fu, X. Preparation and characterization of Sargassum pallidum polysaccharide nanoparticles with enhanced antioxidant activity and adsorption capacity. Int. J. Biol. Macromol. 2022, 208, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Wu, Q.; Luo, Y.; Yang, Q.; Kan, J. High-pressure ultrasonic-assisted extraction of polysaccharides from hovenia dulcis: Extraction, structure, antioxidant activity and hypoglycemic. Int. J. Biol. Macromol. 2019, 137, 676–687. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Zhou, R.; You, S.; Wu, S.; Wang, Q.; Cui, S.W. Gelation mechanism of polysaccharides from Auricularia auricula-judae. Food Hydrocoll. 2018, 76, 35–41. [Google Scholar] [CrossRef]
- Cc, A.; Chao, L.; Qc, B.; Qiang, H.; Memp, C.; Xiong, F. Physicochemical characterization, potential antioxidant and hypoglycemic activity of polysaccharide from Sargassum pallidum. Int. J. Biol. Macromol. 2019, 139, 1009–1017. [Google Scholar]
- Zhang, R.Y.; Li, L.; Ma, C.X.; Ettoumi, F.; Javed, M.; Lin, X.Y.; Shao, X.F.; Xiao, G.S.; Luo, Z.S. Shape-controlled fabrication of zein and peach gum polysaccharide based complex nanoparticles by anti-solvent precipitation for curcumin-loaded Pickering emulsion stabilization. Sustain. Chem. Pharm. 2022, 25, 100565. [Google Scholar] [CrossRef]
- Qian, J.Y.; Chen, W.; Zhang, W.M.; Zhang, H. Adulteration identification of some fungal polysaccharides with SEM, XRD, IR and optical rotation: A primary approach. Carbohydr. Polym. 2009, 78, 620–625. [Google Scholar] [CrossRef]
- Park, M.W.; Yeo, S.D. Antisolvent crystallization of carbamazepine from organic solutions. Chemical Engineering Research and Design. Chem. Eng. Res. Des. 2012, 90, 2202–2208. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, S. Effects of separation and purification on structural characteristics of polysaccharide from quinoa (Chenopodium quinoa willd). Biochem. Biophys. Res. Commun. 2019, 522, 286–291. [Google Scholar] [CrossRef]
- Guo, Y.D.; Wang, L.L.; Li, L.; Zhang, Z.Y.; Zhang, J.; Wang, J. Characterization of polysaccharide fractions from Allii macrostemonis bulbus and assessment of their antioxidant. LWT 2022, 165, 113687. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Liu, N.Y.; Li, D.L.; Ren, Y.Y.; Dong, X.T.; Yang, L.; Wang, L.B. Functional properties, structure and anti-glycosylation activity of polysaccharide from blue honeysuckle fruit. Food Chem. 2020, 41, 8–14. [Google Scholar]
- Ribeiro, A.M.; Ramalho, E.; Neto, M.P.; Pilo, R.M. Thermogravimetric analysis of high-density cork granules using isoconversional methods. Energy Rep. 2022, 8, 442–447. [Google Scholar] [CrossRef]
- Xiao, J.B.; Jiang, H.A. review on the structure-function relationship aspect of polysaccharides from tea materials. Crit. Rev. Food Sci. 2015, 55, 930–938. [Google Scholar] [CrossRef]
- Singhal, P.; Satya, S.; Naik, S.N. Fermented bamboo shoots: A complete nutritional, anti-nutritional and antioxidant profile of the sustainable and functional food to food security. Food Chem. Mol. Sci. 2021, 3, 100041. [Google Scholar] [CrossRef]
- Chen, C.; Fu, X. Spheroidization on Fructus Mori polysaccharides to enhance bioavailability and bioactivity by anti-solvent precipitation method. Food Chem. 2019, 300, 125245. [Google Scholar] [CrossRef]
- Kim, D.W.; Lee, W.J.; Asmelash Gebru, Y.; Choi, H.S.; Yeo, S.H.; Jeong, Y.J. Comparison of bioactive compounds and antioxidant activities of maclura tricuspidata fruit extracts at different maturity stages. Molecules 2019, 24, 567. [Google Scholar] [CrossRef] [Green Version]
- Machmudah, S.; Winardi, S.; Wahyudiono; Kanda, H.; Goto, M. Formation of Curcuma xanthorrhiza extract microparticles using supercritical anti solvent precipitation. Mater. Today Proc. 2022, 66, 3129–3134. [Google Scholar] [CrossRef]
- Kumar, R.; Thakur, A.K.; Chaudhari, P.; Banerjee, N. Particle size reduction techniques of pharmaceutical compounds for the enhancement of their dissolution rate and bioavailability. J. Pharm. Innov. 2022, 17, 333–352. [Google Scholar] [CrossRef]
- Kwaw, E.; Ma, Y.; Tchabo, W.; Apaliya, M.T.; Wu, M.; Sackey, A.S.; Xiao, L.; Tahir, H. Effect of lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. Food Chem. 2018, 250, 148–154. [Google Scholar] [CrossRef]
- Ma, Y.; Meng, A.L.; Liu, P.; Chen, Y.Y.; Yuan, A.Q.; Dai, Y.M.; Ye, K.Y.; Yang, Y.; Wang, Y.P.; Li, Z.M. Reflux extraction optimization and antioxidant activity of phenolic compounds from Pleioblastus amarus (Keng) shell. Molecules 2022, 27, 362. [Google Scholar] [CrossRef] [PubMed]
No. | Experiment Design | Experimental Results | |||
---|---|---|---|---|---|
(A) AAP Concentration (%) | (B) pH | (C) Antisolvent: Solvent (v:v) | (Y1) Average Size (nm) | (Y2) PDI | |
1 | 0.5 | 8 | 5:1 | 184.90 | 0.352 |
2 | 0.5 | 8 | 7:1 | 178.50 | 0.312 |
3 | 0.5 | 7 | 6:1 | 174.30 | 0.310 |
4 | 0.5 | 9 | 6:1 | 179.87 | 0.318 |
5 | 1 | 7 | 5:1 | 169.97 | 0.247 |
6 | 1 | 9 | 7:1 | 173.97 | 0.245 |
7 | 1 | 9 | 5:1 | 166.95 | 0.223 |
8 | 1 | 7 | 7:1 | 163.20 | 0.212 |
9 | 1 | 8 | 6:1 | 153.97 | 0.142 |
10 | 1 | 8 | 6:1 | 152.70 | 0.136 |
11 | 1 | 8 | 6:1 | 153.00 | 0.138 |
12 | 1 | 8 | 6:1 | 154.50 | 0.142 |
13 | 1 | 8 | 6:1 | 151.18 | 0.155 |
14 | 1.5 | 8 | 5:1 | 176.57 | 0.250 |
15 | 1.5 | 8 | 7:1 | 176.27 | 0.298 |
16 | 1.5 | 7 | 6:1 | 173.57 | 0.302 |
17 | 1.5 | 9 | 6:1 | 168.40 | 0.245 |
Sources of Variance | Model 1 Average Size/(nm) | Model 2 PDI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F-Value | p-Value Prob > F | Sum of Squares | df | Mean Square | F-Value | p-Value Prob > F | |
Model | 1918.26 | 9 | 213.14 | 99.86 | <0.0001 ** | 0.084 | 9 | 9.29 × 10−3 | 58.63 | <0.0001 ** |
A-AAP concentration (%) | 49.05 | 1 | 49.05 | 22.98 | 0.002 ** | 4.03 × 10−3 | 1 | 4.03 × 10−3 | 25.46 | 0.0015 ** |
B-pH | 11.59 | 1 | 11.59 | 5.43 | 0.0526 | 3.19 × 10−3 | 1 | 3.19 × 10−3 | 20.14 | 0.0028 ** |
Antisolvent: solvent (v:v) | 12.14 | 1 | 12.14 | 5.69 | 0.0485 * | 4.01 × 10−5 | 1 | 4.01 × 10−5 | 0.25 | 0.6303 |
AB | 29.04 | 1 | 29.04 | 13.61 | 0.0078 ** | 8.91 × 10−4 | 1 | 8.91 × 10−4 | 5.63 | 0.0495 * |
AC | 9.30 | 1 | 9.30 | 4.36 | 0.0752 | 1.94 × 10−3 | 1 | 1.94 × 10−3 | 12.22 | 0.01 * |
BC | 52.09 | 1 | 52.09 | 24.41 | 0.0017 ** | 7.17 × 10−4 | 1 | 7.17 × 10−4 | 4.53 | 0.071 |
A2 | 1044.64 | 1 | 1044.64 | 489.43 | <0.0001 ** | 5.20 × 10−2 | 1 | 5.20 × 10−2 | 328.73 | <0.0001 ** |
B2 | 100.25 | 1 | 100.25 | 46.97 | 0.0002 ** | 6.92 × 10−3 | 1 | 6.92 × 10−3 | 43.69 | 0.0003 ** |
C2 | 441.40 | 1 | 441.40 | 206.8 | <0.0001 ** | 1.00 × 10−2 | 1 | 1.00 × 10−2 | 64.35 | <0.0001 ** |
Residual | 14.94 | 7 | 2.13 | 1.11 × 10−3 | 7 | 1.58 × 10−4 | ||||
Lack of fit | 8.37 | 3 | 2.79 | 1.7 | 0.3039 | 8.90 × 10−4 | 3 | 2.97 × 10−4 | 0.61 | 0.6434 |
Pure error | 6.57 | 4 | 1.64 | 2.19 × 10−4 | 4 | 5.48 × 10−5 | ||||
Total error | 1933.20 | 16 | 8.08 × 10−4 | 16 | ||||||
R2 | 0.9923 | 0.9869 | ||||||||
0.9823 | 0.9701 | |||||||||
C.V.% | 0.87 | 5.31 | ||||||||
Adeq. precision | 27.915 | 21.493 |
Factors | Coded Symbols | Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
AAP concentration | A | 0.5 | 1 | 1.5 |
pH value | B | 7 | 8 | 9 |
Antisolvent: solvent ratio (v/v) | C | 5:1 | 6:1 | 7:1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Ma, Y.; Liu, X.; Gao, R.; Min, H.; Zhang, S.; Hu, S. Formation Optimization, Characterization and Antioxidant Activity of Auricularia auricula-judae Polysaccharide Nanoparticles Obtained via Antisolvent Precipitation. Molecules 2022, 27, 7037. https://doi.org/10.3390/molecules27207037
Dai Y, Ma Y, Liu X, Gao R, Min H, Zhang S, Hu S. Formation Optimization, Characterization and Antioxidant Activity of Auricularia auricula-judae Polysaccharide Nanoparticles Obtained via Antisolvent Precipitation. Molecules. 2022; 27(20):7037. https://doi.org/10.3390/molecules27207037
Chicago/Turabian StyleDai, Yemei, Yuan Ma, Xiaocui Liu, Ruyun Gao, Hongmei Min, Siyu Zhang, and Siyu Hu. 2022. "Formation Optimization, Characterization and Antioxidant Activity of Auricularia auricula-judae Polysaccharide Nanoparticles Obtained via Antisolvent Precipitation" Molecules 27, no. 20: 7037. https://doi.org/10.3390/molecules27207037
APA StyleDai, Y., Ma, Y., Liu, X., Gao, R., Min, H., Zhang, S., & Hu, S. (2022). Formation Optimization, Characterization and Antioxidant Activity of Auricularia auricula-judae Polysaccharide Nanoparticles Obtained via Antisolvent Precipitation. Molecules, 27(20), 7037. https://doi.org/10.3390/molecules27207037