Development of an HPV Genotype Detection Platform Based on Aggregation-Induced Emission (AIE) and Flow-Through Hybridization Technologies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Photophysical Properties of HCA and HCAP
2.2. Titration with ALP
2.3. Optimization of Detection Conditions
2.4. Determination of PCR Cycle
2.5. Prototype of the Membrane Reader
2.6. Clinical Trials
3. Materials and Methods
3.1. Chemicals, Bioreagents, and Equipments
3.2. Syntheses of HCAP and Its Intermediates
3.3. Preparation of DNA Samples from Patients
3.4. DNA Amplification by PCR
3.5. DNA Hybridization
3.6. Spectrophotometric Experiments
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhang, F.; Gu, W.; Hurles, M.E.; Lupski, J.R. Copy number variation in human health, disease, and evolution. Annu. Rev. Genom. Hum. Genet. 2009, 10, 451–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inkman, M.J.; Jayachandran, K.; Ellis, T.M.; Ruiz, F.; McLellan, M.D.; Miller, C.A.; Wu, Y.; Ojesina, A.I.; Schwarz, J.K.; Zhang, J. HPV-EM: An accurate HPV detection and genotyping EM algorithm. Sci. Rep. 2020, 10, 14340. [Google Scholar] [CrossRef] [PubMed]
- Fera, A.N.D.; Warburton, A.; Coursey, T.L.; Khurana, S.; McBride, A.A. Persistent Human Papillomavirus Infection. Viruses 2021, 13, 321. [Google Scholar] [CrossRef] [PubMed]
- Burd, E.M. Human Papillomavirus and Cervical Cancer. Clin. Microbiol. Rev. 2003, 16, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, D.M.; DeMars, L.R. HPV vaccines—A review of the first decade. Gynecol. Oncol. 2017, 146, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Tine, B.A.V.; Dao, L.D.; Wu, S.-Y.; Sonbuchner, T.M.; Lin, B.Y.; Zou, N.; Chiang, C.-M.; Broker, T.R.; Chow, L.T. Human papillomavirus (HPV) origin-binding protein associates with mitotic spindles to enable viral DNA partitioning. Proc. Natl. Acad. Sci. USA 2004, 101, 451–481. [Google Scholar]
- Basu, P.; Malvi, S.G.; Joshi, S.; Bhatla, N.; Muwonge, R.; Lucas, E.; Verma, Y.; Esmy, P.O.; Poli, U.R.R.; Shah, A.; et al. Vaccine efficacy against persistent human papillomavirus (HPV) 16/18 infection at 10 years after one, two, and three doses of quadrivalent HPV vaccine in girls in India: A multicentre, prospective, cohort study. Lancet Oncol. 2021, 22, 1518–1529. [Google Scholar] [CrossRef]
- Dai, Y.; Huang, Y.S.; Tang, M.; Lv, X.P.; Li, T.Y.; Yin, Y.B. Distribution and clinical significance of human papillomavirus subtypes in Shenzhen city, People’s Republic of China. Int. J. Gynecol. Cancer 2008, 18, 295–299. [Google Scholar] [CrossRef]
- Bilitewski, U. DNA microarrays: An introduction to the technology. Methods Mol. Biol. 2009, 509, 1–14. [Google Scholar]
- Noorbakhsh, A.; Salimi, A. Development of DNA electrochemical biosensor based on immobilization of ssDNA on the surface of nickel oxide nanoparticles modified glassy carbon electrode. Biosens. Bioelectron. 2011, 30, 188–196. [Google Scholar] [CrossRef]
- Agarwal, G.; Naik, R.R.; Stone, M.O. Immobilization of Histidine-Tagged Proteins on Nickel by Electrochemical Dip Pen Nanolithography. J. Am. Chem. Soc. 2003, 125, 7408–7412. [Google Scholar] [CrossRef]
- Nygaard, V.; Hovig, E. Options available for profiling small samples: A review of sample amplification technology when combined with microarray profiling. Nucleic Acids Res. 2006, 34, 996–1014. [Google Scholar] [CrossRef]
- Southern, E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 1975, 98, 503–517. [Google Scholar] [CrossRef]
- Maggio, A.; Giambona, A.; Cai, S.P.; Wall, J.; Kan, Y.W.; Chehab, F.F. Rapid and simultaneous typing of hemoglobin S, hemoglobin C, and seven Mediterranean beta-thalassemia mutations by covalent reverse dot-blot analysis: Application to prenatal diagnosis in Sicily. Blood 1993, 81, 239–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, T. Hybridization analysis of DNA blots. Curr. Protoc. Immunol. 1993, 21, 2–10. [Google Scholar]
- Zhu, H.; Zhang, H.; Xu, Y.; Laššáková, S.; Korabečná, M.; Neužil, P. PCR past, present and future. Biotechniques 2020, 69, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhang, X.; Zhang, W.; Duan, J.; Zhao, F. PCR detection for syphilis diagnosis: Status and prospects. J. Clin. Lab Anal. 2019, 33, e22890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, B.; Lee, J.H.; Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 2018, 50, 96. [Google Scholar] [CrossRef] [Green Version]
- Dikdan, R.J.; Marras, S.A.E.; Field, A.P.; Brownlee, A.; Cironi, A.; Hill, D.A.; Tyagi, S. Multiplex PCR Assays for Identifying all Major Severe Acute Respiratory Syndrome Coronavirus 2 Variants. J. Mol. Diagn. 2022, 24, 309–319. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Nolan, T.; Pfaffl, M.W. Quantitative real-time RT-PCR—A perspective. J. Mol. Endocrinol. 2005, 34, 597–601. [Google Scholar] [CrossRef] [Green Version]
- Farasani, A. Genetic analysis of the 2019 coronavirus pandemic with from real-time reverse transcriptase polymerase chain reaction. Saudi J. Biol. Sci. 2021, 28, 911–916. [Google Scholar] [CrossRef]
- Agrimonti, C.; Bottari, B.; Sardaro, M.L.S.; Marmiroli, N. Application of real-time PCR (qPCR) for characterization of microbial populations and type of milk in dairy food products. Crit. Rev. Food Sci. Nutr. 2019, 59, 423–442. [Google Scholar] [CrossRef] [PubMed]
- Takazono, T.; Izumikawa, K. Recent Advances in Diagnosing Chronic Pulmonary Aspergillosis. Front. Microbiol. 2018, 9, 1810. [Google Scholar] [CrossRef] [PubMed]
- Banko, A.; Petrovic, G.; Miljanovic, D.; Loncar, A.; Vukcevic, M.; Despot, D.; Cirkovic, A. Comparison and Sensitivity Evaluation of Three Different Commercial Real-Time Quantitative PCR Kits for SARS-CoV-2 Detection. Viruses 2021, 13, 1321. [Google Scholar] [CrossRef]
- Chow, K.F.J. A Membrane-Based Flow-through Hybridization Technology: A Rapid and Versatile tool for Molecular Diagnostics. Open Biotechnol. J. 2008, 2, 22–28. [Google Scholar] [CrossRef]
- Wisuthiphaet, N.; Yang, X.; Young, G.M.; Nitin, N. Application of Engineered Bacteriophage T7 in the Detection of Bacteria in Food Matrices. Front. Microbiol. 2021, 12, 691003. [Google Scholar] [CrossRef]
- Seethala, R.; Zhang, L. Handbook of Drug Screening, 2nd ed.; PharmaceuTech Inc.: Pinehurst, NC, USA, 2009. [Google Scholar]
- Dubitsky, A.; DeCollibus, D.; AOrtolano, G. Sensitive fluorescent detection of protein on nylon membranes. J. Biochem. Biophys. Methods 2002, 51, 47–56. [Google Scholar] [CrossRef]
- Caprifico, A.E.; Polycarpou, E.; Foot, P.J.S.; Calabrese, G. Biomedical and Pharmacological Uses of Fluorescein Isothiocyanate Chitosan-Based Nanocarriers. Macromol. Biosci. 2021, 21, 2000312. [Google Scholar]
- Wang, J.; Li, D.; Ye, Y.; Qiu, Y.; Liu, J.; Huang, L.; Liang, B.; Chen, B. A Fluorescent Metal-Organic Framework for Food Real-Time Visual Monitoring. Adv. Mater. 2021, 3, 2008020. [Google Scholar] [CrossRef]
- Woting, A.; Blaut, M. Small Intestinal Permeability and Gut-Transit Time Determined with Low and High Molecular Weight Fluorescein Isothiocyanate-Dextrans in C3H Mice. Nutrients 2018, 10, 685. [Google Scholar] [CrossRef] [Green Version]
- Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef]
- He, X.; Xiong, L.-H.; Zhao, Z.; Wang, Z.; Luo, L.; Lam, J.W.Y.; Kwok, R.T.K.; Tang, B.Z. AIE-based theranostic systems for detection and killing of pathogens. Theranostics 2019, 9, 3223–3248. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, P.; Li, D.; Wang, D.; Tang, B.Z. NIR-II Aggregation-Induced Emission Luminogens for Tumor Phototheranostics. Biosensors 2022, 12, 46. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.B.; Mazrad, Z.A.I.; Robby, A.I.; In, I.; Park, S.Y. Alkaline phosphatase-responsive fluorescent polymer probe coated surface for colorimetric bacteria detection. Eur. Polym. J. 2018, 105, 217–225. [Google Scholar] [CrossRef]
- Song, Z.; Kwok, R.T.K.; Zhao, E.; He, Z.; Hong, Y.; Lam, J.W.; Liu, B.; Tang, B.Z. A Ratiometric Fluorescent Probe Based on ESIPT and AIE Processes for Alkaline Phosphatase Activity Assay and Visualization in Living Cells. ACS Appl. Mater. Interfaces 2014, 6, 17245–17254. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Kwok, R.T.K.; Shi, H.; Tang, B.Z.; Liu, B. Fluorescent Light-up Probe with Aggregation-Induced Emission Characteristics for Alkaline Phosphatase Sensing and Activity Study. ACS Appl. Mater. Interfaces 2013, 5, 8784–8789. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.-H.; Li, L.; Cai, S.; Lin, P.; Lam, W.-K.; Lee, T.-H.; Kwok, T.-K.; Xie, L.; Kun, T.-S.; Tang, B.-Z. Development of an HPV Genotype Detection Platform Based on Aggregation-Induced Emission (AIE) and Flow-Through Hybridization Technologies. Molecules 2022, 27, 7036. https://doi.org/10.3390/molecules27207036
Ma C-H, Li L, Cai S, Lin P, Lam W-K, Lee T-H, Kwok T-K, Xie L, Kun T-S, Tang B-Z. Development of an HPV Genotype Detection Platform Based on Aggregation-Induced Emission (AIE) and Flow-Through Hybridization Technologies. Molecules. 2022; 27(20):7036. https://doi.org/10.3390/molecules27207036
Chicago/Turabian StyleMa, Chun-Ho (Charlie), Liejun Li, Shuheng Cai, Pei Lin, Wing-Ki (Kristy) Lam, Tsz-Him (Ronald) Lee, Tsz-Kin (Ryan) Kwok, Longxu Xie, Tit-Sang (Tom) Kun, and Ben-Zhong Tang. 2022. "Development of an HPV Genotype Detection Platform Based on Aggregation-Induced Emission (AIE) and Flow-Through Hybridization Technologies" Molecules 27, no. 20: 7036. https://doi.org/10.3390/molecules27207036
APA StyleMa, C. -H., Li, L., Cai, S., Lin, P., Lam, W. -K., Lee, T. -H., Kwok, T. -K., Xie, L., Kun, T. -S., & Tang, B. -Z. (2022). Development of an HPV Genotype Detection Platform Based on Aggregation-Induced Emission (AIE) and Flow-Through Hybridization Technologies. Molecules, 27(20), 7036. https://doi.org/10.3390/molecules27207036