AIEgen-Enabled Multicolor Visualization for the Formation of Supramolecular Polymer Networks
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evidence of SPNs Formation
2.2. Visualization of SPNs Formation Process
2.3. Stimuli-Responsiveness of SPNs
3. Materials and Methods
3.1. Reagents and Chemicals
3.2. Synthesis of PPMU Polymer
3.2.1. Synthesis of PBHZ Molecule
3.2.2. Synthesis of UPy Unit
3.2.3. Synthesis of PPMU Polymer Chain
3.3. Preparation of PPMU Solutions in CHCl3
3.4. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhang, Q.; Wang, W.; Cai, C.; Wu, S.; Li, J.; Li, F.; Dong, S. Underwater luminescent labeling materials constructed from a supramolecular approach. Mater. Horiz. 2022, 9, 1984–1991. [Google Scholar] [CrossRef] [PubMed]
- Jian, Y.; Wu, B.; Yang, X.; Peng, Y.; Zhang, D.; Yang, Y.; Qiu, H.; Lu, H.; Zhang, J.; Chen, T. Stimuli-responsive hydrogel sponge for ultrafast responsive actuator. Supramol. Mater. 2022, 1, 100002. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, S.; Zhang, H.; Ji, X. Aggregates of fluorescent gels assembled by interfacial dynamic bonds. Aggregate 2022, 3, e283. [Google Scholar] [CrossRef]
- Webber, M.J.; Langer, R. Drug delivery by supramolecular design. Chem. Soc. Rev. 2017, 46, 6600–6620. [Google Scholar] [CrossRef] [PubMed]
- Bakker, M.H.; Lee, C.C.; Meijer, E.; Dankers, P.Y.; Albertazzi, L. Multicomponent supramolecular polymers as a modular platform for intracellular delivery. ACS Nano 2016, 10, 1845–1852. [Google Scholar] [CrossRef]
- Liu, H.; Wei, S.; Qiu, H.; Si, M.; Lin, G.; Lei, Z.; Lu, W.; Zhou, L.; Chen, T. Supramolecular Hydrogel with Orthogonally Responsive R/G/B Fluorophores Enables Multi-Color Switchable Biomimetic Soft Skins. Adv. Funct. Mater. 2022, 32, 2108830. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Q.; Zhang, H.; Liu, H.; Ji, X.; Tang, B.Z. Codes in code: Aie supramolecular adhesive hydrogels store huge amounts of information. Adv. Mater. 2021, 33, 2105418. [Google Scholar] [CrossRef]
- Hai, M.; Zhang, Q.; Li, Z.; Cheng, M.; Kuehne, A.J.; Shi, F. Visualizing polymer diffusion in hydrogel self-healing. Supramol. Mater. 2022, 1, 100009. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, T.; Duan, A.; Dong, S.; Zhao, W.; Stang, P.J. Formation of a supramolecular polymeric adhesive via water–participant hydrogen bond formation. J. Am. Chem. Soc. 2019, 141, 8058–8063. [Google Scholar] [CrossRef]
- Jeyakkumar, P.; Liang, Y.; Guo, M.; Lu, S.; Xu, D.; Li, X.; Guo, B.; He, G.; Chu, D.; Zhang, M. Emissive metallacycle-crosslinked supramolecular networks with tunable crosslinking densities for bacterial imaging and killing. Angew. Chem. Int. Ed. 2020, 59, 15199–15203. [Google Scholar] [CrossRef]
- Zhang, Q.; Tang, D.; Zhang, J.; Ni, R.; Xu, L.; He, T.; Lin, X.; Li, X.; Qiu, H.; Yin, S. Self-healing heterometallic supramolecular polymers constructed by hierarchical assembly of triply orthogonal interactions with tunable photophysical properties. J. Am. Chem. Soc. 2019, 141, 17909–17917. [Google Scholar] [CrossRef]
- Chen, F.; Lin, X.; Li, Y.; Xu, D.; Qiu, H.; Yin, S. Metallacycle-crosslinked supramolecular polymers constructed by amino–YNE click reaction with enhanced mechanical properties. Supramol. Mater. 2022, 1, 100003. [Google Scholar] [CrossRef]
- Wu, S.; Cai, C.; Li, F.; Tan, Z.; Dong, S. Deep eutectic supramolecular polymers: Bulk supramolecular materials. Angew. Chem. Int. Ed. 2020, 59, 11871–11875. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Miao, Q.; Wang, W.; Qu, D.-H. Constructing supramolecular polymers from phototrigger containing monomer. Chinese Chem. Lett. 2018, 29, 1621–1624. [Google Scholar] [CrossRef]
- Li, X.; Deng, Y.; Lai, J.; Zhao, G.; Dong, S. Tough, long-term, water-resistant, and underwater adhesion of low-molecular-weight supramolecular adhesives. J. Am. Chem. Soc. 2020, 142, 5371–5379. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Zhang, M.; Tang, D.; Yan, X.; Zhang, Z.; Zhou, Z.; Song, B.; Wang, H.; Li, X.; Yin, S. Fluorescent metallacage-core supramolecular polymer gel formed by orthogonal metal coordination and host–guest interactions. J. Am. Chem. Soc. 2018, 140, 7674–7680. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, C.; Fang, S.; Zhu, D.; Chen, Y.; Ge, C.; Tang, H.; Li, H. A Self-Assembled Cage Binding Iodide Anions over Other Halide Ions in Water. Angew. Chem. Int. Ed. 2022, 61, e202209078. [Google Scholar] [CrossRef]
- Wei, P.; Zhang, X.; Liu, J.; Shan, G.G.; Zhang, H.; Qi, J.; Zhao, W.; Sung, H.H.Y.; Williams, I.D.; Lam, J.W. New wine in old bottles: Prolonging room-temperature phosphorescence of crown ethers by supramolecular interactions. Angew. Chem. Int. Ed. 2020, 59, 9293–9298. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, G.; Chen, B.; Qu, H.; Jiao, T.; Li, Y.; Ge, C.; Zhang, C.; Liang, L.; Zeng, X. Self-Assembly of a Purely Covalent Cage with Homochirality by Imine Formation in Water. Angew. Chem. Int. Ed. 2021, 60, 18815–18820. [Google Scholar] [CrossRef]
- Wei, P.; He, X.; Zheng, Z.; He, D.; Li, Q.; Gong, J.; Zhang, J.; Sung, H.H.; Williams, I.D.; Lam, J.W. Robust Supramolecular Nano-Tunnels Built from Molecular Bricks. Angew. Chem. Int. Ed. 2021, 60, 7148–7154. [Google Scholar] [CrossRef]
- Wu, G.; Chen, Y.; Fang, S.; Tong, L.; Shen, L.; Ge, C.; Pan, Y.; Shi, X.; Li, H. A Self-Assembled Cage for Wide-Scope Chiral Recognition in Water. Angew. Chem. Int. Ed. 2021, 60, 16594–16599. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Shen, X.; Zhou, Z.; He, T.; Zhang, J.; Qiu, H.; Saha, M.L.; Yin, S.; Stang, P.J. Metallacycle-cored supramolecular polymers: Fluorescence tuning by variation of substituents. J. Am. Chem. Soc. 2018, 140, 16920–16924. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Chen, X.; Liu, D.; Wei, D. Two-dimensional self-healing hydrogen-bond-based supramolecular polymer film. Chinese Chem. Lett. 2019, 30, 961–965. [Google Scholar] [CrossRef]
- Mondal, S.; Lessard, J.J.; Meena, C.L.; Sanjayan, G.J.; Sumerlin, B.S. Janus Cross-links in Supramolecular Networks. J. Am. Chem. Soc. 2022, 144, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, H.; Li, B.; Xie, Y.; Gong, X.; Liu, X.; Li, H.; Zhao, Y. Photoresponsive luminescent polymeric hydrogels for reversible information encryption and decryption. Adv. Sci. 2019, 6, 1901529. [Google Scholar] [CrossRef] [Green Version]
- Ju, H.; Zhu, C.N.; Wang, H.; Page, Z.A.; Wu, Z.L.; Sessler, J.L.; Huang, F. Paper without a Trail: Time-Dependent Encryption using Pillar [5] arene-Based Host–Guest Invisible Ink. Adv. Mater. 2022, 34, 2108163. [Google Scholar] [CrossRef]
- Mu, C.; Zhang, Z.; Hou, Y.; Liu, H.; Ma, L.; Li, X.; Ling, S.; He, G.; Zhang, M. Tetraphenylethylene-Based Multicomponent Emissive Metallacages as Solid-State Fluorescent Materials. Angew. Chem. Int. Ed. 2021, 60, 12293–12297. [Google Scholar] [CrossRef]
- Qi, J.; Sun, C.; Zebibula, A.; Zhang, H.; Kwok, R.T.; Zhao, X.; Xi, W.; Lam, J.W.; Qian, J.; Tang, B.Z. Real-time and high-resolution bioimaging with bright aggregation-induced emission dots in short-wave infrared region. Adv. Mater. 2018, 30, 1706856. [Google Scholar] [CrossRef]
- Peng, H.-Q.; Zheng, X.; Han, T.; Kwok, R.T.; Lam, J.W.; Huang, X.; Tang, B.Z. Dramatic differences in aggregation-induced emission and supramolecular polymerizability of tetraphenylethene-based stereoisomers. J. Am. Chem. Soc. 2017, 139, 10150–10156. [Google Scholar] [CrossRef]
- Zhang, M.; Yin, S.; Zhang, J.; Zhou, Z.; Saha, M.L.; Lu, C.; Stang, P.J. Metallacycle-cored supramolecular assemblies with tunable fluorescence including white-light emission. Proce. Natl. Acad. Sci. USA 2017, 114, 3044–3049. [Google Scholar] [CrossRef]
- Lou, X.Y.; Yang, Y.W. Aggregation-induced emission systems involving supramolecular assembly. Aggregate 2020, 1, 19–30. [Google Scholar] [CrossRef]
- Wang, Q.; Qi, Z.; Wang, Q.M.; Chen, M.; Lin, B.; Qu, D.H. A Time-Dependent Fluorescent Hydrogel for “Time-Lock” Information Encryption. Adv. Funct. Mater. 2022, 32, 2208865. [Google Scholar] [CrossRef]
- Qi, J.; Chen, C.; Zhang, X.; Hu, X.; Ji, S.; Kwok, R.T.; Lam, J.W.; Ding, D.; Tang, B.Z. Light-driven transformable optical agent with adaptive functions for boosting cancer surgery outcomes. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H.; Duan, X.; Jiao, D.; Zeng, Y.; Zheng, X.; Zhang, J.; Ou, H.; Qi, J.; Ding, D. Boosting Photoacoustic Effect via Intramolecular Motions Amplifying Thermal-to-Acoustic Conversion Efficiency for Adaptive Image-Guided Cancer Surgery. Angew. Chem. Int. Ed. 2021, 60, 21047–21055. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Zhang, J.-X.; Zhao, Z.; Chen, Y.; He, X.; Chen, M.; Gong, J.; Sung, H.H.-Y.; Williams, I.D.; Lam, J.W. Multiple yet controllable photoswitching in a single AIEgen system. J. Am. Chem. Soc. 2018, 140, 1966–1975. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.-Q.; Liu, B.; Wei, P.; Zhang, P.; Zhang, H.; Zhang, J.; Li, K.; Li, Y.; Cheng, Y.; Lam, J.W. Visualizing the initial step of self-assembly and the phase transition by stereogenic amphiphiles with aggregation-induced emission. ACS Nano 2018, 13, 839–846. [Google Scholar] [CrossRef]
- Peng, H.-Q.; Liu, B.; Liu, J.; Wei, P.; Zhang, H.; Han, T.; Qi, J.; Lam, J.W.; Zhang, W.; Tang, B.Z. “Seeing” and controlling photoisomerization by (Z)-/(E)-isomers with aggregation-induced emission characteristics. ACS Nano 2019, 13, 12120–12126. [Google Scholar] [CrossRef]
- Wang, D.; Tang, B.Z. Aggregation-induced emission luminogens for activity-based sensing. Acc. Chem. Res. 2019, 52, 2559–2570. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Z.; Lam, J.W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Li, H.; Song, N.; Wang, D.; Tang, B.Z. Supramolecular materials based on AIE luminogens (AIEgens): Construction and applications. Chem. Soc. Rev. 2020, 49, 1144–1172. [Google Scholar]
- Sun, Y.; Le, X.; Zhou, S.; Chen, T. Recent Progress in Smart Polymeric Gel-based Information Storage for Anti-counterfeiting. Adv. Mater. 2022, 34, 2201262. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Si, M.; Le, X.; Chen, T. Mimicking Color-Changing Organisms to Enable the Multicolors and Multifunctions of Smart Fluorescent Polymeric Hydrogels. Acc. Chem. Res. 2022, 55, 2291–2303. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, Q.; Zhang, Q.-W.; Li, X.; Zhao, C.-X.; Xu, T.-Y.; Qu, D.-H.; Tian, H. Color-tunable single-fluorophore supramolecular system with assembly-encoded emission. Nat. Commun. 2020, 11, 1–9. [Google Scholar]
- Zhang, H.; Liu, H.; Hu, Z.; Ji, X. Multicolor fluorescent supramolecular adhesive gels based on a single molecule with aggregation-induced ratiometric emission. Supramol. Mater. 2022, 1, 100018. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Z.; Zhang, H.; Li, Q.; Lou, K.; Ji, X. A Strategy Based on Aggregation-Induced Ratiometric Emission to Differentiate Molecular Weight of Supramolecular Polymers. Angew. Chem. Int. Ed. 2022, 61, e202203505. [Google Scholar]
- Wang, Q.; Lin, B.; Chen, M.; Zhao, C.; Tian, H.; Qu, D.-H. A dynamic assembly-induced emissive system for advanced information encryption with time-dependent security. Nat. Commun. 2022, 13, 1–11. [Google Scholar] [CrossRef]
- Li, Y.; Huang, W.; Yong, J.; Huang, S.; Li, Y.; Liu, Y.; Wu, D. Aggregation-induced ratiometric emission and mechanochromic luminescence in a pyrene-benzohydrazonate conjugate. New J. Chem. 2018, 42, 12644–12648. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, X.; Xie, N.; He, Z.; Liu, J.; Leung, N.L.; Niu, Y.; Huang, X.; Wong, K.S.; Kwok, R.T. Why do simple molecules with “isolated” phenyl rings emit visible light? J. Am. Chem. Soc. 2017, 139, 16264–16272. [Google Scholar] [CrossRef]
- Sijbesma, R.P.; Beijer, F.H.; Brunsveld, L.; Folmer, B.J.; Hirschberg, J.K.; Lange, R.F.; Lowe, J.K.; Meijer, E. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 1997, 278, 1601–1604. [Google Scholar] [CrossRef]
- Beijer, F.H.; Sijbesma, R.P.; Kooijman, H.; Spek, A.L.; Meijer, E. Strong dimerization of ureidopyrimidones via quadruple hydrogen bonding. J. Am. Chem. Soc. 1998, 120, 6761–6769. [Google Scholar] [CrossRef]
- Feng, Y.; Philp, D. A Molecular Replication Process Drives Supramolecular Polymerization. J. Am. Chem. Soc. 2021, 143, 17029–17039. [Google Scholar] [CrossRef] [PubMed]
- Lortie, F.; Boileau, S.; Bouteiller, L.; Chassenieux, C.; Lauprêtre, F. Chain stopper-assisted characterization of supramolecular polymers. Macromolecules 2005, 38, 5283–5287. [Google Scholar] [CrossRef]
- Leigh, D.A.; Marcos, V.; Nalbantoglu, T.; Vitorica-Yrezabal, I.J.; Yasar, F.T.; Zhu, X. Pyridyl-acyl hydrazone rotaxanes and molecular shuttles. J. Am. Chem. Soc. 2017, 139, 7104–7109. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, K.; Lizotte, J.R.; Long, T.E. Thermoreversible poly (alkyl acrylates) consisting of self-complementary multiple hydrogen bonding. Macromolecules 2003, 36, 1083–1088. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Zhang, H.; Li, Q.; Liu, H.; Ji, X. AIEgen-Enabled Multicolor Visualization for the Formation of Supramolecular Polymer Networks. Molecules 2022, 27, 7881. https://doi.org/10.3390/molecules27227881
Xu S, Zhang H, Li Q, Liu H, Ji X. AIEgen-Enabled Multicolor Visualization for the Formation of Supramolecular Polymer Networks. Molecules. 2022; 27(22):7881. https://doi.org/10.3390/molecules27227881
Chicago/Turabian StyleXu, Shaoyu, Hanwei Zhang, Qingyun Li, Hui Liu, and Xiaofan Ji. 2022. "AIEgen-Enabled Multicolor Visualization for the Formation of Supramolecular Polymer Networks" Molecules 27, no. 22: 7881. https://doi.org/10.3390/molecules27227881
APA StyleXu, S., Zhang, H., Li, Q., Liu, H., & Ji, X. (2022). AIEgen-Enabled Multicolor Visualization for the Formation of Supramolecular Polymer Networks. Molecules, 27(22), 7881. https://doi.org/10.3390/molecules27227881