Discoloration Investigations of Yellow Lantern Pepper Sauce (Capsicum chinense Jacq.) Fermented by Lactobacillus plantarum: Effect of Carotenoids and Physiochemical Indices
Abstract
:1. Introduction
2. Results and Discussion
2.1. Color Parameters
2.2. Carotenoid Profile
2.3. Physiochemical Properties
2.3.1. Crude Fat and Free Fat Acid
2.3.2. pH Value and Organic Acids
2.4. Correlation between Color Parameters and Carotenoids
2.5. PCA Analysis of Physiochemical Indices and Carotenoids
3. Materials and Methods
3.1. Bacterial Cultures
3.2. Preparation of Yellow Lantern Pepper Sauce
3.3. Color Analysis
3.4. LC-MS/MS Analysis of Carotenoids
3.5. Determination of pH Value and Organic Acid
3.6. Determination of Crude Fat and Free Fatty Acids (FFAs)
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, W.Y.; Qin, L.; Yan, H.X.; Miao, W.G.; Cui, H.G.; Liu, W.B. Use of an infectious cDNA clone of pepper veinal mottle virus to confirm the etiology of a disease in Capsicum chinense. Phytopathology 2020, 110, 80–84. [Google Scholar] [CrossRef]
- Popelka, P.; Jevinová, P.; Šmejkal, K.; Roba, P. Determination of capsaicin content and pungency level of different fresh and dried chilli peppers. Folia Vet. 2017, 61, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.Y.; Zong, H.; Lu, X.Y.; Zhu, G.B.; Fang, H.Y.; Sun, J.; Lou, X.X.; Feng, Q. Improvement of quality of Capsicum chinense processed by Lactobacillus. Food Ferment. Ind. 2014, 40, 134–138. [Google Scholar] [CrossRef]
- Ayustaningwarno, F.; Fogliano, V.; Verkerk, R.; Dekker, M. Surface color distribution analysis by computer vision compared to sensory testing: Vacuum fried fruits as a case study. Food Res. Int. 2021, 143, 110230. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, L.; Zohar, M.; Kirshinbaum, L.; Yaniv, Y.; Doron-Faigenboim, A.; Porat, R.; Carmi, N.; Isaacson, T. Biochemical and molecular factors governing peel-color development in ‘Ora’ and ‘Shani’ mandarins. J. Agric. Food Chem. 2019, 67, 4800–4807. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Keum, Y.S. Progress in microbial carotenoids production. Indian J. Microbiol. 2017, 57, 129–130. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.H.; Kim, J.B.; Park, J.S.; Lee, S.W.; Cho, K.J. A comparison of the carotenoid accumulation in Capsicum varieties that show different ripening colors: Deletion of the capsanthin-capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper. J. Exp. Bot. 2007, 58, 3135–3144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweiggert, U.; Kurz, C.; Schieber, A.; Carle, R. Effects of processing and storage on the stability of free and esterified carotenoids of red peppers (Capsicum annuum L.) and hot chilli peppers (Capsicum frutescens L.). Eur. Food Res. Technol. 2007, 225, 261–270. [Google Scholar] [CrossRef]
- Lu, Q.; Li, L.; Xue, S.J.; Yang, D.; Wang, S.H. Stability of flavonoid, carotenoid, soluble sugar and vitamin C in ‘Cara Cara’ juice during storage. Foods 2019, 8, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripodi, P.; Ficcadenti, N.; Rotino, G.L.; Festa, G.; Bertone, A.; Pepe, A.; Caramanico, R.; Migliori, C.A.; Spadafora, D.; Schiavi, M.; et al. Genotypic and environmental effects on the agronomic, health-related compounds and antioxidant properties of chilli peppers for diverse market destinations. J. Sci. Food Agric. 2019, 99, 4550–4560. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, K. Effect of processing on color, rheology and bioactive compounds of different sweet pepper purees. Plant Foods Hum. Nutr. 2020, 75, 369–375. [Google Scholar] [CrossRef]
- Stinco, C.M.; Szczepanska, J.; Marszalek, K.; Pinto, C.A.; Inacio, R.S.; Mapelli-Brahm, P.; Barba, F.J.; Lorenzo, J.M.; Saraiva, J.A.; Meléndez-Martínez, A.J. Effect of high-pressure processing on carotenoids profile, colour, microbial and enzymatic stability of cloudy carrot juice. Food Chem. 2019, 299, 125112. [Google Scholar] [CrossRef] [PubMed]
- Kotíková, Z.; Sulc, M.; Lachman, J.; Pivec, V.; Orsak, M.; Hamouz, K. Carotenoid profile and retention in yellow-, purple- and red-fleshed potatoes after thermal processing. Food Chem. 2016, 197, 992–1001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Wei, Q.Y.; Nie, M.M.; Jiang, N.; Liu, C.J.; Liu, C.Q.; Li, D.J.; Xu, L. Microstructure and bioaccessibility of different carotenoid species as affected by hot air drying: Study on carrot, sweet potato, yellow bell pepper and broccoli. LWT—Food Sci. Technol. 2018, 96, 357–363. [Google Scholar] [CrossRef]
- Viacava, F.; Ramos-Parra, P.A.; Welti-Chanes, J.; Jacobo-Velazquez, D.A. High hydrostatic pressure processing of whole carrots: Effect of static and multi-pulsed mild intensity hydrostatic pressure treatments on bioactive compounds. Foods 2021, 10, 219. [Google Scholar] [CrossRef]
- Kun, S.; Rezessy-Szabo, J.M.; Nguyen, Q.D.; Hoschke, A. Changes of microbial population and some components in carrot juice during fermentation with selected Bifidobacterium strains. Process Biochem. 2018, 43, 816–821. [Google Scholar] [CrossRef]
- Oloo, B.O.; Shitandi, A.A.; Mahungu, S.; Malinga, J.B.; Ogata, R.B. Effects of lactic acid fermentation on the retention of β-Carotene content in orange fleshed sweet potatoes. Int. J. Food Stud. 2014, 3, 13–33. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J. An overview of carotenoids, apocarotenoids and vitamin A in agro-food, nutrition, health and disease. Mol. Nutr. Food Res. 2019, 63, 1801045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mapelli-Brahm, P.; Stinco, C.M.; Rodrigo, M.J.; Zacarías, L.; Meléndez-Martínez, A.J. Impact of thermal treatments on the bioaccessibility of phytoene and phytofluene in relation to changes in the microstructure and size of orange juice particles. J. Funct. Foods 2018, 46, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Berry, H.M.; Lai, F.; Kende, A.; Rickett, D.V.; Baxter, C.J.; Enfissi, E.M.A.; Fraser, P.D. Understanding colour retention in red chilli pepper fruit using a metabolite profiling approach. Food Chem. Mol. Sci. 2021, 2, 100013. [Google Scholar] [CrossRef] [PubMed]
- Sipos, L.; Nyitrai, A.; Szabo, D.; Urbin, A.; Nagy, B.V. Former and potential developments in sensory color masking—Review. Trends Food Sci. Technol. 2021, 111, 1–11. [Google Scholar] [CrossRef]
- Teichert, J.; Cais-Sokolinska, D.; Dankow, R.; Pikul, J.; Chudy, S.; Bierzunska, P.; Kaczyński, L.K. Color stability of fermented Mare’s milk and a fermented beverage from cow’s milk adapted to Mare’s milk composition. Foods 2020, 9, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virdis, C.; Sumby, K.; Bartowsky, E.; Jiranek, V. Lactic Acid Bacteria in Wine: Technological advances and evaluation of their functional role. Front. Microbiol. 2020, 11, 3192. [Google Scholar] [CrossRef] [PubMed]
- Vuyst, L.D.; Leroy, F. Functional role of yeasts, lactic acid bacteria, and acetic acid bacteria in cocoa fermentation processes. FEMS Microbiol. Rev. 2020, 44, 432–453. [Google Scholar] [CrossRef]
- Pereira, A.L.F.; Maciel, T.C.; Rodrigues, S. Probiotic beverage from cashew apple juice fermented with Lactobacillus casei. Food Res. Int. 2011, 44, 1276–1283. [Google Scholar] [CrossRef]
- Carvalho, A.V.; Mattietto, R.D.; Rios, A.D.; Maciel, R.D.; Moresco, K.S.; Oliveira, T.C.D. Bioactive compounds and antioxidant activity of pepper (Capsicum sp.) genotypes. J. Food Sci. Technol. 2015, 52, 7457–7464. [Google Scholar] [CrossRef]
- Kim, J.S.; An, C.G.; Park, J.S.; Lim, Y.P.; Kim, S. Carotenoid profiling from 27 types of paprika (Capsicum annuum L.) with different colors, shapes, and cultivation methods. Food Chem. 2016, 201, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Chitchumroonchokchai, C.; Diretto, G.; Parisi, B.; Giuliano, G.; Failla, M.L. Potential of golden potatoes to improve vitamin a and vitamin E status in developing countries. PLoS ONE 2017, 12, e0187102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, M.; Musumi, K.; Ayugase, J. Carotenoid pigment composition, polyphenol content, and antioxidant activities of extracts from orange-colored Chinese cabbage. LWT—Food Sci. Technol. 2011, 44, 1971–1975. [Google Scholar] [CrossRef]
- Li, Q.H.; Yang, S.P.; Yu, Y.N.; Khan, A.; Feng, P.L.; Ali, M.; Shao, D.K.; Wang, Y.Y.; Zhang, R.X.; Gai, W.X.; et al. Comprehensive transcriptome-based characterization of differentially expressed genes involved in carotenoid biosynthesis of different ripening stages of Capsicum. Sci. Hortic. 2021, 288, 110311. [Google Scholar] [CrossRef]
- Ponder, A.; Kulik, K.; Hallmann, E. Occurrence and determination of carotenoids and polyphenols in different paprika powders from organic and conventional production. Molecules 2021, 26, 2980. [Google Scholar] [CrossRef]
- Fuke, T.; Sato, T.; Jha, S.; Tansengco, M.L.; Atomi, H. Phytoene production utilizing the isoprenoid biosynthesis capacity of Thermococcus kodakarensis. Extremophiles 2018, 22, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.H.; Strack, D. Carotenoids and their cleavage products: Biosynthesis and functions. Nat. Prod. Rep. 2011, 28, 663–692. [Google Scholar] [CrossRef]
- Fu, H.F.; Xie, B.J.; Fan, G.; Ma, S.J.; Zhu, X.R.; Pan, S.Y. Effect of esterification with fatty acid of β-cryptoxanthin on its thermal stability and antioxidant activity by chemiluminescence method. Food Chem. 2010, 122, 602–609. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, L.C.; Iida, K.; Madono, Y.; Yungyuen, W.; Yahata, M.; Yamawaki, K.; Kato, M. Identification and quantitative analysis of β-cryptoxanthin and β-citraurin esters in Satsuma mandarin fruit during the ripening process. Food Chem. 2017, 234, 356–364. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, E.; Sanchez-Prieto, M.; Olmedilla-Alonso, B. Assessment of carotenoid concentrations in red peppers (Capsicum annuum) under domestic refrigeration for three weeks as determined by HPLC-DAD. Food Chem. X 2020, 6, 100092. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Jiang, Q.; Xu, Y.; Xia, W. Biosynthesis of acetate esters by dominate strains, isolated from Chinese traditional fermented fish (Suan yu). Food Chem. 2017, 244, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Cui, N.; Wang, G.X.; Ma, Q.H.; Zhao, T.T.; Li, R.H.; Liang, L.S. Effect of cold-pressed on fatty acid profile, bioactive compounds and oil oxidation of hazelnut during oxidation process. LWT—Food Sci. Technol. 2020, 129, 109552. [Google Scholar] [CrossRef]
- Esteban-Torres, M.; Reverón, I.; Santamaría, L.; Mancheño, J.M.; de las Rivas, B.; Muñoz, R. The Lp_3561 and Lp_3562 enzymes support a functional divergence process in the lipase/esterase toolkit from Lactobacillus plantarum. Front. Microbiol. 2016, 7, 1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Rui, H.M.; Yuan, H.T.; Zhang, L. Analysis of dynamic chemical changes in Chinese cantonese sausage: Factors influencing content of nitrite and formation of flavor substances. J. Food Eng. 2007, 79, 1191–1195. [Google Scholar] [CrossRef]
- Vieco-Saiz, N.; Belguesmia, Y.; Raspoet, R.; Auclair, E.; Gancel, F.; Kempf, I.; Drider, D. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front. Microbiol. 2019, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, C.Y.; Cui, B.Z.; Zhou, Q.; Wang, Y.Q.; Chen, X.W.; Fu, H.F.; Wang, Y.Y. Effect of emulsifier composition on oil-in-water nano-emulsions: Fabrication, structural characterization and delivery of zeaxanthin dipalmitate from Lycium barbarum L. LWT—Food Sci. Technol. 2020, 161, 113353. [Google Scholar] [CrossRef]
- Filannino, P.; Di Cagno, R.; Trani, A.; Cantatore, V.; Gambacorta, G.; Gobbetti, M. Lactic acid fermentation enriches the profile of biogenic compounds and enhances the functional features of common purslane (Portulaca oleracea L.). J. Funct. Foods 2017, 37, 175–185. [Google Scholar] [CrossRef]
- Jin, X.F.; Chen, W.X.; Chen, H.M.; Chen, W.J.; Zhong, Q.P. Comparative evaluation of the antioxidant capacities and organic acid and volatile contents of mango slurries fermented with six different probiotic microorganisms. J. Food Sci. 2018, 83, 3059–3068. [Google Scholar] [CrossRef]
- Yang, H.J.; Lee, Y.S.; Choi, I. Comparison of physicochemical properties and antioxidant activities of fermented soybean-based red pepper paste, Gochujang, prepared with five different red pepper (Capsicum annuum L.) varieties. J. Food Sci. Technol. 2018, 55, 792–801. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.L.; Shion, H.; Davis, R.G.; Terry-Penak, B.; Castro-Perez, J.; van Breemen, R.B. Collision cross-section determination and tandem mass spectrometric analysis of isomeric carotenoids using electrospray ion mobility time-of-flight mass spectrometry. Anal. Chem. 2010, 82, 9014–9021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhuique-Mayer, C.; Tbatou, M.; Carail, M.; Caris-Veyrat, C.; Dornier, M.; Amiot, M.J. Thermal degradation of antioxidant micronutrients in citrus juice: Kinetics and newly formed compounds. J. Agric. Food Chem. 2007, 55, 4209–4216. [Google Scholar] [CrossRef] [PubMed]
- Song, J.F.; Wang, X.P.; Li, D.J.; Liu, C.Q. Degradation kinetics of carotenoids and visual colour in pumpkin (Cucurbita maxima L.) slices during microwave-vacuum drying. Int. J. Food Prop. 2017, 20, S632–S643. [Google Scholar] [CrossRef] [Green Version]
- Lyu, Y.; Bi, J.F.; Chen, Q.Q.; Li, X.; Wu, X.Y.; Hou, H.N.; Zhang, X. Discoloration investigations of freeze-dried carrot cylinders from physical structure and color-related chemical compositions. J. Sci. Food Agric. 2021, 101, 5172–5181. [Google Scholar] [CrossRef] [PubMed]
- Ning, C.Y.; Zhou, L.Y.; Bi, J.F.; Yan, T.C.; Zhou, M.; Lü, J.; Li, C. Effect of high-pressure homogenization on microorganism and quality of cloudy peach juice with/without VC. J. Chin. Inst. Food Sci. Technol. 2019, 19, 141–149. [Google Scholar] [CrossRef]
- Krinsky, N.I.; Mayne, S.T.; Sies, H. Basic carotenoid chemistry. In Carotenoids in Health and Disease, 1st ed.; Synnøve, L.J., Ed.; CRC Press: Boca Raton, FL, USA, 2004; Volume 1, pp. 1–31. [Google Scholar]
- Geyer, R.; Peacock, A.D.; White, D.C.; Lytle, C.; Van Berkel, G.J. Atmospheric pressure chemical ionization and atmospheric pressure photoionization for simultaneous mass spectrometric analysis of microbial respiratory ubiquinones and menaquinones. J. Mass Spectrom. 2004, 39, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Wang, J.J.; Wang, R.R.; Li, Y.; Liu, C.G.; Jiang, L.W.; Deng, F.; Zhou, H. Changes in microflora and organic acid contents during the fermentation of chopped pepper. Food Sci. 2018, 39, 116–121. [Google Scholar] [CrossRef]
- Ahmed, I.A.M.; Özcan, M.M.; AlJuhaimi, F.; Ghafoor, K.; Babiker, E.E.; Osman, M.A.; Alqah, H.A.S. Quality characteristics of caper seed oils—The impact of extraction: Soxhlet versus cold pressing. J. Food Process. Preserv. 2021, 45, e15266. [Google Scholar] [CrossRef]
- Sherazi, S.T.H.; Mahesar, S.A.; Khaskheli, A.; Kandhro, A.; Uddin, S. Analytical approaches for the assessment of free fatty acids in oils and fats. Anal. Methods 2014, 6, 4956–4963. [Google Scholar] [CrossRef]
0 d | 7 d | 14 d | 21 d | 28 d | 35 d | |
---|---|---|---|---|---|---|
L* | 45.43 ± 1.72 a | 42.51 ± 1.09 b | 40.45 ± 0.88 c | 37.89 ± 1.09 d | 35.72 ± 0.86 e | 33.82 ± 1.68 f |
a* | 15.54 ± 0.73 a | 14.75 ± 0.49 b | 14.20 ± 0.58 bc | 13.98 ± 0.66 c | 13.67 ± 0.86 c | 13.48 ± 0.88 c |
b* | 51.73 ± 5.79 a | 45.51 ± 1.61 b | 39.03 ± 0.95 c | 33.07 ± 1.26 d | 31.54 ± 1.89 d | 29.04 ± 2.25 e |
C* | 53.82 ± 5.25 a | 47.94 ± 1.53 b | 41.52 ± 0.86 c | 35.87 ± 1.27 d | 34.36 ± 1.65 d | 32.07 ± 1.25 e |
YI | 162.95 ± 20.09 a | 152.96 ± 4.31 b | 137.85 ± 2.41 c | 124.69 ± 3.83 d | 126.31 ± 9.25 d | 122.60 ± 5.75 d |
0 d | 7 d | 14 d | 21 d | 28 d | 35 d | |
---|---|---|---|---|---|---|
pH | 5.70 ± 0.01 a | 5.19 ± 0.01 b | 4.70 ± 0.02 c | 4.32 ± 0.02 d | 4.19 ± 0.01 e | 4.16 ± 0.01 f |
Oxalic acid (mg/g FW) | 2.93 ± 0.02 a | 2.64 ± 0.05 b | 2.56 ± 0.02 c | 2.51 ± 0.01 d | 2.50 ± 0.01 d | 2.53 ± 0.00 cd |
Tartaric acid (mg/g FW) | 0.19 ± 0.03 bc | 0.36 ± 0.02 a | 0.22 ± 0.01 b | 0.13 ± 0.01 d | 0.13 ± 0.01 d | 0.18 ± 0.02 c |
Malic acid (mg/g FW) | 0.30 ±0.03 d | 1.46 ± 0.07 c | 1.97 ± 0.03 a | 1.62 ± 0.03 b | 1.64 ± 0.03 b | 1.62 ± 0.03 b |
Lactic acid (mg/g FW) | N.D. | 2.82 ± 0.02 e | 7.19 ± 0.13 d | 9.91 ± 0.37 c | 10.77 ± 0.01 b | 11.10 ± 0.05 a |
Acetic acid (mg/g FW) | N.D. | N.D. | N.D. | 0.70 ± 0.04 c | 1.46 ± 0.03 b | 1.55 ± 0.03 a |
Citric acid (mg/g FW) | 0.52 ± 0.01 a | 0.50 ± 0.01 a | 0.40 ± 0.03 b | 0.29 ± 0.01 c | 0.23 ± 0.03 d | 0.18 ± 0.02 e |
Succinic acid (mg/g FW) | 0.24 ± 0.00 cd | 0.22± 0.03 d | 0.29 ± 0.01 b | 0.25 ± 0.01 c | 0.26 ± 0.00 c | 0.36 ± 0.00 a |
Crude fat (g/kg DW) | 52.76 ± 0.37 a | 36.49 ± 0.14 b | 29.28 ± 0.64 c | 24.23 ± 0.55 d | 17.19 ± 0.76 e | 15.31 ± 0.36 f |
Free fat acid (g/kg DW) | 22.20 ± 0.11 e | 22.48 ± 0.061 e | 24.20 ± 0.01 d | 27.31 ± 0.29 c | 29.36 ± 0.23 b | 32.06 ± 0.17 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Wang, X.; Liu, Y.; Li, P.; Wang, R.; Jiang, L. Discoloration Investigations of Yellow Lantern Pepper Sauce (Capsicum chinense Jacq.) Fermented by Lactobacillus plantarum: Effect of Carotenoids and Physiochemical Indices. Molecules 2022, 27, 7139. https://doi.org/10.3390/molecules27207139
Chen M, Wang X, Liu Y, Li P, Wang R, Jiang L. Discoloration Investigations of Yellow Lantern Pepper Sauce (Capsicum chinense Jacq.) Fermented by Lactobacillus plantarum: Effect of Carotenoids and Physiochemical Indices. Molecules. 2022; 27(20):7139. https://doi.org/10.3390/molecules27207139
Chicago/Turabian StyleChen, Mengjuan, Xinyao Wang, Yang Liu, Pao Li, Rongrong Wang, and Liwen Jiang. 2022. "Discoloration Investigations of Yellow Lantern Pepper Sauce (Capsicum chinense Jacq.) Fermented by Lactobacillus plantarum: Effect of Carotenoids and Physiochemical Indices" Molecules 27, no. 20: 7139. https://doi.org/10.3390/molecules27207139
APA StyleChen, M., Wang, X., Liu, Y., Li, P., Wang, R., & Jiang, L. (2022). Discoloration Investigations of Yellow Lantern Pepper Sauce (Capsicum chinense Jacq.) Fermented by Lactobacillus plantarum: Effect of Carotenoids and Physiochemical Indices. Molecules, 27(20), 7139. https://doi.org/10.3390/molecules27207139