Development and Optimization of a New UPLC-UV/MS Method through DoE and MLR for Detecting Substandard Drug Products to Treat Tuberculosis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the UPLC Method
2.2. Method Validation
2.3. Quality Control Application
3. Materials and Methods
3.1. Materials
3.2. UPLC Analysis
3.3. Design of Experiments
3.4. Analytical Method Validation
3.5. Quality Control Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wada, Y.H.; Abdulrahman, A.; Ibrahim, M.M.; Owanta, V.C.; Chimelumeze, P.U.; Khalid, G.M. Falsified and substandard medicines trafficking: A wakeup call for the African continent. Public Health Pract. 2022, 3, 100240. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Global Surveillance and Monitoring System for Substandard and Falsified Medical Products. Available online: https://apps.who.int/iris/handle/10665/326708 (accessed on 12 September 2022).
- The International Conference on Harmonization. Stability Testing of New Drug Substances and Products Q1A(R2). Available online: https://database.ich.org/sites/default/files/Q1A_R2_Guideline.pdf (accessed on 12 September 2022).
- Khurelbat, D.; Dorj, G.; Sunderland, B.; Sanjjav, T.; Bayarsaikhan, E.; Damdinjav, D.; Dorj, G.; Jigjidsuren, A.; Lkhagvasuren, O.; Erdenetsetseg, B. A cross-sectional analysis of falsified, counterfeit and substandard medicines in a low-middle income country. BMC Public Health 2020, 20, 743. [Google Scholar] [CrossRef] [PubMed]
- Infectious Diseases Data Observatory. IDDO/WWARN—Medicine Quality Literature Surveyor. Available online: https://www.iddo.org/mqsurveyor/#anti-tuberculosis (accessed on 12 September 2022).
- Davies, G.R.; Pillay, M.; Sturm, A.W.; Wilkinson, D. Emergence of multidrug-resistant tuberculosis in a community-based directly observed treatment programme in rural South Africa. Int. J. Tuberc. Lung Dis. 1999, 3, 799–804. [Google Scholar] [PubMed]
- Fox, G.J.; Schaaf, H.S.; Mandalakas, A.; Chiappini, E.; Zumla, A.; Marais, B.J. Preventing the spread of multidrug-resistant tuberculosis and protecting contacts of infectious cases. Clin. Microbiol. Infect. 2017, 23, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Kempker, R.R.; Kipiani, M.; Mirtskhulava, V.; Tukvadze, N.; Magee, M.J.; Blumberg, H.M. Acquired Drug Resistance in Mycobacterium tuberculosis and Poor Outcomes among Patients with Multidrug-Resistant Tuberculosis. Emerg. Infect. Dis. 2015, 21, 992–1001. [Google Scholar] [CrossRef]
- Calver, A.D.; Falmer, A.A.; Murray, M.; Strauss, O.J.; Streicher, E.M.; Hanekom, M.; Liversage, T.; Masibi, M.; Van Helden, P.; Warren, R.M.; et al. Emergence of Increased Resistance and Extensively Drug-Resistant Tuberculosis Despite Treatment Adherence, South Africa. Emerg. Infect Dis. 2010, 16, 264–271. [Google Scholar] [CrossRef] [Green Version]
- An, Q.; Song, W.; Liu, J.; Tao, N.; Liu, Y.; Zhang, Q.; Xu, T.; Li, S.; Liu, S.; Li, Y.; et al. Primary Drug-Resistance Pattern and Trend in Elderly Tuberculosis Patients in Shandong, China, from 2004 to 2019. Infect. Drug Resist. 2020, 13, 4133–4145. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report: 2021. Available online: https://www.who.int/publications/i/item/9789240037021 (accessed on 12 September 2022).
- Centers for Disease Control and Prevention. Tuberculosis Treatment. Available online: https://www.cdc.gov/tb/topic/treatment/tbdisease.html (accessed on 12 September 2022).
- ISACAM. Available online: http://isacam.eu/ (accessed on 12 September 2022).
- United States Pharmacopoeia. Rifampin, Isoniazid, Pyrazinamide, and Ethambutol Hydrochloride Tablets; The United States Pharmacopoeia—The National Formulary: Baltimore, MD, USA, 2022. [Google Scholar]
- Battini, S.; Mannava, M.K.C.; Nangia, A. Improved Stability of Tuberculosis Drug Fixed-Dose Combination Using Isoniazid-Caffeic Acid and Vanillic Acid Cocrystal. J. Pharm. Sci. 2018, 107, 1667–1679. [Google Scholar] [CrossRef]
- Santovena-Estevez, A.; Suarez-Gonzalez, J.; Caceres-Perez, A.R.; Ruiz-Noda, Z.; Machado-Rodriguez, S.; Echezarreta, M.; Soriano, M.; Fariña, J.B. Stability Study of Isoniazid and Rifampicin Oral Solutions Using Hydroxypropyl-Beta-Cyclodextrin to Treat Tuberculosis in Paediatrics. Pharmaceutics 2020, 12, 195. [Google Scholar] [CrossRef] [Green Version]
- Bhutani, H.; Mariappan, T.; Singh, S. The physical and chemical stability of anti-tuberculosis fixed-dose combination products under accelerated climatic conditions. Int. J. Tuberc. Lung Dis. 2004, 8, 1073–1080. [Google Scholar]
- Singh, S.; Mohan, B. A pilot stability study on four-drug fixed-dose combination anti-tuberculosis products. Int. J. Tuberc. Lung Dis. 2003, 7, 298–303. [Google Scholar] [PubMed]
- Kim, H.; Seo, K.; Kim, H.; Jeong, E.; Ghim, J.L.; Lee, S.H.; Lee, Y.M.; Kim, D.H.; Shin, J.G. Simple and accurate quantitative analysis of 20 anti-tuberculosis drugs in human plasma using liquid chromatography-electrospray ionization-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2015, 102, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Nabirova, D.; Schmid, G.; Yusupova, R.; Kantarbayeva, M.; Ismailov, S.I.; Moffett, D.; Jähnke, R.W.O.; Nuorti, J.P. Assessment of the quality of anti-tuberculosis medicines in Almaty, Kazakhstan, 2014. Int. J. Tuberc. Lung. Dis. 2017, 21, 1161–1168. [Google Scholar] [CrossRef] [Green Version]
- Khoiri, S.; Martono, S.; Rohman, A. Optimisation and Validation of Hplc Method for Simultaneous Quantification of Rifampicin, Isoniazid, Pyrazinamide, and Ethambutol Hydrochloride in Anti-Tuberculosis 4-Fdc Tablet. Jurnal. Teknologi. 2015, 77, 983–999. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Bhutani, H.; Mariappan, T. Quality problems of anti-tuberculosis fixed-dose combinations (FDCs): A way forward. Indian. J. Tuberc. 2006, 53, 201–205. [Google Scholar]
- Leardi, R. Experimental design in chemistry: A tutorial. Anal. Chim. Acta 2009, 652, 161–172. [Google Scholar] [CrossRef]
- Chiappini, F.A.; Alcaraz, M.R.; Escandar, G.M.; Goicoechea, H.C.; Olivieri, A.C. Chromatographic Applications in the Multi-Way Calibration Field. Molecules 2021, 26, 6357. [Google Scholar] [CrossRef] [PubMed]
- Escandar, G.M.; Olivieri, A.C. Multi-way chromatographic calibration-A review. J. Chromatogr. A. 2019, 1587, 2–13. [Google Scholar] [CrossRef]
- Beg, S.; Rahman, M. Chapter 11—Design of experiments application for analytical method development. In Handbook of Analytical Quality by Design; Beg, S., Hasnain, M.S., Rahman, M., Almalki, W.H., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 191–197. [Google Scholar]
- Oliva, A.; Farina, J.B.; Llabres, M. Development and validation of an UPLC method for determination of content uniformity in low-dose solid drugs products using the design space approach. Talanta 2013, 115, 490–499. [Google Scholar] [CrossRef]
- Oliva, A.; Monzon, C.; Santovena, A.; Farina, J.B.; Llabres, M. Development of an ultra high performance liquid chromatography method for determining triamcinolone acetonide in hydrogels using the design of experiments/design space strategy in combination with process capability index. J. Sep. Sci. 2016, 39, 2689–2701. [Google Scholar] [CrossRef]
- Araujo, A.S.; Andrade, D.F.; Babos, D.V.; Castro, J.P.; Garcia, J.A.; Speranca, M.A.; Gamela, R.R.; Machado, R.C.; Costa, V.C.; Guedes, W.N.; et al. Key Information Related to Quality by Design (QbD) Applications in Analytical Methods Development. Braz. J. Anal. Chem. 2021, 8, 14–28. [Google Scholar]
- Stajic, A.; Jankovic-Maksic, J.; Jancic-Stojanovic, B.; Medenica, M. A QbD-Oriented UHPLC/MS/MS Method Development for Glycopeptides Assessment in Pharmaceutical Forms. J. Chromatogr. Sci. 2021, 59, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Rozet, E.; Lebrun, P.; Debrus, B.; Boulanger, B.; Hubert, P. Design Spaces for analytical methods. Trac-Trends Anal. Chem. 2013, 42, 157–167. [Google Scholar] [CrossRef]
- Fukuda, I.M.; Fidelis-Pinto, C.F.; Moreira, C.D.; Saviano, A.M.; Lourenco, F.R. Design of Experiments (DoE) applied to Pharmaceutical and Analytical Quality by Design (QbD). Braz. J. Pharm. Sci. 2018, 54, e01006. [Google Scholar] [CrossRef]
- Deidda, R.; Avohou, H.T.; Dumont, E.; Hubert, C.; Hubert, P.; De Bleye, C.; Ziemons, E. Application of the analytical quality by design principles to the development of a qualitative surface-enhanced Raman scattering method: A proof of concept. J. Raman. Spectrosc. 2022, 53, 20–32. [Google Scholar] [CrossRef]
- Schmidt, A.H.; Wess, C. A Qbd with Design-Of-Experiments Approach for Development of a State-Of-The-Art Uplc Purity Method for Carbamazepine. J. Liq. Chromatogr. Rel. Technol. 2014, 37, 2653–2666. [Google Scholar] [CrossRef]
- Smith, W.C.; Sittampalam, G.S. Conceptual and statistical issues in the validation of analytic dilution assays for pharmaceutical applications. J. Biopharm. Stat. 1998, 8, 509–532. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Murphy, T.E.; Tsui, K.L.; Allen, J.K. A review of robust design methods for multiple responses. Res. Eng. Design. 2005, 15, 201–215. [Google Scholar] [CrossRef]
- Destandau, E.; Vial, J.; Jardy, A.; Hennion, M.; Bonnet, D.; Lancelin, P. Robustness study of a reversed-phase liquid chromatographic method for the analysis of carboxylic acids in industrial reaction mixtures. Anal. Chim. Acta 2006, 572, 102–112. [Google Scholar] [CrossRef]
- Le Mapihan, K.; Vial, J.; Jardy, A. Reversed-phase liquid chromatography column testing: Robustness study of the test. J. Chromatogr. A 2004, 1061, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Song, S.H.; Jun, S.H.; Park, K.U.; Yoon, Y.; Lee, J.H.; Kim, J.Q.; Song, J. Simultaneous determination of first-line anti-tuberculosis drugs and their major metabolic ratos by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 2007, 21, 1331–1338. [Google Scholar] [CrossRef]
- Gao, S.; Wang, Z.; Xie, X.; You, C.; Yang, Y.; Xi, Y.; Chen, W. Rapid and sensitive method for simultaneous determination of first-line anti-tuberculosis drugs in human plasma by HPLC-MS/MS: Application to therapeutic drug monitoring. Tuberculosis 2018, 109, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Nowak, P.M.; Kościelniak, P. What Color Is Your Method? Adaptation of the RGB Additive Color Model to Analytical Method Evaluation. Anal. Chem. 2019, 91, 10343–10352. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Bhutani, H.; Mariappan, T.T.; Kaur, H.; Bajaj, M.; Pakhale, S.P. Behavior of uptake of moisture by drugs and excipients under accelerated conditions of temperature and humidity in the absence and the presence of light. 1. Pure anti-tuberculosis drugs and their combinations. Int. J. Pharm. 2002, 245, 37–44. [Google Scholar] [CrossRef]
- Suárez-González, J.; Santoveña-Estévez, A.; Soriano, M.; Fariña, J. Impact of Storage Conditions on a New Child-Friendly Dispersible Tablet for Treating Tuberculosis in Pediatrics. Pharm. Sci. 2022, 28, 324–330. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2022. Available online: https://www.R-project.org/ (accessed on 12 September 2022).
- The International Conference on Harmonisation. Validation of Analytical Procedures: Text and Methodology Q2(R1). Available online: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed on 12 September 2022).
- The International Conference on Harmonisation. Stability Testing: Photostability Testing of New Drug Substances and Products Q1B. 1996. Available online: https://database.ich.org/sites/default/files/Q1B_Guideline.pdf (accessed on 12 September 2022).
Factors | Responses | ||||||||
---|---|---|---|---|---|---|---|---|---|
Run Order | T (°C) | Flow (mL/min) | Formic Acid (%) | INH | PZA | RFP | |||
K’ | %DV | K’ | %DV | K’ | %DV | ||||
15 | 28 | 0.36 | 0.008 | 1.362 | 110.9 | 5.559 | 109.3 | 13.296 | 113.3 |
5 | 32 | 0.36 | 0.008 | 1.241 | 115.3 | 4.920 | 110.7 | 13.395 | 107.9 |
8 | 28 | 0.46 | 0.008 | 1.312 | 89.0 | 5.329 | 87.2 | 15.685 | 92.7 |
17 | 32 | 0.46 | 0.008 | 1.248 | 90.9 | 4.866 | 86.7 | 15.642 | 98.1 |
16 | 28 | 0.36 | 0.013 | 1.115 | 115.2 | 5.376 | 109.4 | 13.441 | 111.0 |
7 | 32 | 0.36 | 0.013 | 1.063 | 125.3 | 4.993 | 107.7 | 13.507 | 113.5 |
19 | 28 | 0.46 | 0.013 | 1.126 | 89.3 | 5.398 | 87.8 | 15.808 | 93.4 |
4 | 32 | 0.46 | 0.013 | 1.056 | 88.3 | 4.919 | 85.4 | 15.905 | 75.6 |
2 | 25 | 0.40 | 0.010 | 1.286 | 101.1 | 5.878 | 96.7 | 14.201 | 98.6 |
12 | 35 | 0.40 | 0.010 | 1.099 | 99.0 | 4.584 | 97.7 | 14.278 | 99.9 |
11 | 30 | 0.30 | 0.010 | 1.143 | 137.8 | 5.015 | 131.3 | 11.869 | 129.9 |
9 | 30 | 0.50 | 0.010 | 1.174 | 96.9 | 5.099 | 80.6 | 16.662 | 89.1 |
3 | 30 | 0.40 | 0.005 | 1.902 | 98.0 | 6.070 | 98.2 | 16.332 | 93.6 |
14 | 30 | 0.40 | 0.015 | 0.097 | 102.6 | 5.058 | 97.6 | 14.424 | 84.5 |
1 | 30 | 0.40 | 0.010 | 1.132 | 104.5 | 4.915 | 101.4 | 14.240 | 100.6 |
6 | 30 | 0.40 | 0.010 | 1.201 | 104.3 | 5.257 | 98.2 | 14.258 | 101.4 |
10 | 30 | 0.40 | 0.010 | 1.178 | 102.4 | 5.111 | 98.6 | 14.245 | 100.8 |
13 | 30 | 0.40 | 0.010 | 1.183 | 104.6 | 5.151 | 100.5 | 14.231 | 100.5 |
18 | 30 | 0.40 | 0.010 | 1.185 | 103.7 | 5.132 | 100.5 | 14.277 | 103.6 |
20 | 30 | 0.40 | 0.010 | 1.177 | 105.7 | 5.114 | 101.5 | 14.264 | 100.5 |
k’ | %INH | |||||
---|---|---|---|---|---|---|
Term | Estimate | p > |t| | Effect (%) a | Estimate | p > |t| | Effect (%) |
Intercept | 1.178 | <0.0001 | 10.429 | <0.0001 | ||
F | −1.302 | <0.0001 | 12.49 | |||
FA | −0.173 | <0.0001 | 14.70 | |||
TxT | −0.208 | 0.0151 | 2.00 | |||
FxF | 0.401 | <0.0001 | 3.85 | |||
FAxFA | 0.0762 | 0.0278 | 6.47 | −0.201 | 0.0177 | 1.93 |
k’ | %PZA | |||||
Intercept | 5.112 | <0.0001 | 10.018 | <0.0001 | ||
T | −0.303 | <0.0001 | 5.93 | |||
F | −1.283 | <0.0001 | 12.81 | |||
FAxFA | 0.133 | 0.0478 | 2.60 | |||
k’ | %RFP | |||||
Intercept | 14.254 | <0.0001 | 10.117 | <0.0001 | ||
F | 1.278 | <0.0001 | 8.96 | −1.131 | <0.0001 | 11.18 |
FA | −0.247 | 0.0453 | 2.44 | |||
FxF | 0.325 | 0.0114 | 3.21 | |||
FAxFA | 0.384 | 0.00463 | 2.69 | −0.397 | 0.00365 | 3.92 |
API | Linear Equation | CV (%) | Accuracy (%) | Precision (%) | DL (µg/mL) | QL (µg/mL) |
---|---|---|---|---|---|---|
INH | y = 16302 + 45287 × C (µg/mL); r2 = 0.998 | 2.36 | 100.2 | 0.33 | 0.76 | 2.29 |
PZA | y = 53514 × C (µg/mL); r2 = 0.998 | 1.81 | 99.5 | 0.08 | 0.59 | 1.81 |
RFP | y = 52294 × C (µg/mL); r2 = 0.996 | 3.70 | 97.5 | 0.77 | 1.22 | 3.70 |
EMB | y = 636215 + 625147 × C (µg/mL); r2 = 0.985 | 4.38 | 97.3 | 0.54 | 0.40 | 1.22 |
EMB (%) | INH (%) | PZA (%) | RFP (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Condition | 80 °C | Light | 80 °C | Light | 80 °C | Light | 80 °C | Light | |
Time (h) | 0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
2 | 88.2 | 98.5 | 90.7 | 97.8 | 100.2 | 100.0 | 0 | 80.8 | |
4 | 87.5 | - | 89.8 | - | 100.2 | - | 0 | - | |
24 | 84.2 | 94.2 | 89.5 | 90.6 | 100.6 | 100.5 | 0 | 24.5 |
Time (Min) | A (%) | B (%) | Elution |
---|---|---|---|
0–2.50 | 0 | 100 | Isocratic |
2.50–5.00 | 40 | 60 | Linear gradient |
5.00–6.50 | 40 | 60 | Isocratic |
6.50–7.00 | 20 | 80 | Linear gradient |
7.00–8.00 | 20 | 80 | Isocratic |
8.00–10.00 | 0 | 100 | Linear gradient |
10.00–12.00 | 0 | 100 | Re-equilibration |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-González, J.; Cáceres-Pérez, A.R.; Oliva, A.; Santoveña-Estévez, A.; Fariña, J.B. Development and Optimization of a New UPLC-UV/MS Method through DoE and MLR for Detecting Substandard Drug Products to Treat Tuberculosis. Molecules 2022, 27, 7141. https://doi.org/10.3390/molecules27207141
Suárez-González J, Cáceres-Pérez AR, Oliva A, Santoveña-Estévez A, Fariña JB. Development and Optimization of a New UPLC-UV/MS Method through DoE and MLR for Detecting Substandard Drug Products to Treat Tuberculosis. Molecules. 2022; 27(20):7141. https://doi.org/10.3390/molecules27207141
Chicago/Turabian StyleSuárez-González, Javier, Amor R. Cáceres-Pérez, Alexis Oliva, Ana Santoveña-Estévez, and José B. Fariña. 2022. "Development and Optimization of a New UPLC-UV/MS Method through DoE and MLR for Detecting Substandard Drug Products to Treat Tuberculosis" Molecules 27, no. 20: 7141. https://doi.org/10.3390/molecules27207141
APA StyleSuárez-González, J., Cáceres-Pérez, A. R., Oliva, A., Santoveña-Estévez, A., & Fariña, J. B. (2022). Development and Optimization of a New UPLC-UV/MS Method through DoE and MLR for Detecting Substandard Drug Products to Treat Tuberculosis. Molecules, 27(20), 7141. https://doi.org/10.3390/molecules27207141