Push-Pull Structures Based on 2-Aryl/thienyl Substituted Quinazolin-4(3H)-ones and 4-Cyanoquinazolines
Abstract
:1. Introduction
2. Results
2.1. Synthesis
2.2. UV/Vis and Fluorescence Spectroscopy
2.3. Photoluminescence Data for Compounds 4–7 and 8–11 in Solid State and in MeCN/Water Mixture
2.4. Quantum-Chemical Calculations
3. Experimental Methods
3.1. General Information
3.2. Photophysical Characterization
3.3. Crystallography
3.4. Preparation of Intermediates
3.5. General Procedures of Suzuki Cross-Coupling
3.6. Derivatives of 2-Arylthienylquinazolin-4(3H)-ones 4
3.7. Biphenylene-Containing Quinazolin-4(3H)-ones 5, 6
3.8. Biphenylene-Containing 4-Cyanoquinazolines 8, 9
3.9. 2-(4-(Diphenylamino)phenyl)quinazoline-4-carbonitrile (11)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Schramm, S.; Weiß, D. Fluorescent heterocycles: Recent trends and new developments. In Advances in Heterocyclic Chemistry; Elsevier Inc.: Amsterdam, The Netherlands, 2019; Volume 128, pp. 103–179. ISBN 9780128171813. [Google Scholar]
- Soleymani, M.; Chegeni, M. The Chemistry and Applications of the Quinoxaline Compounds. Curr. Org. Chem. 2019, 23, 1789–1827. [Google Scholar] [CrossRef]
- Lipunova, G.N.; Nosova, E.V.; Charushin, V.N.; Chupakhin, O.N. Functionalized Quinazolines and Pyrimidines for Optoelectronic Materials. Curr. Org. Synth. 2018, 15, 793–814. [Google Scholar] [CrossRef]
- Nosova, E.V.; Achelle, S.; Lipunova, G.N.; Charushin, V.N.; Chupakhin, O.N. Functionalized Benzazines as Luminescent Materials and Components for Optoelectronics. Russ. Chem. Rev. 2019, 88, 1128–1178. [Google Scholar] [CrossRef]
- Ermakova, E.V.; Cheprakov, A.V.; Bessmertnykh-Lemeune, A. Aminoquinoxaline-Based Dual Colorimetric and Fluorescent Sensors for PH Measurement in Aqueous Media. Chemosensors 2022, 10, 342. [Google Scholar] [CrossRef]
- Gupta, S.; Milton, M.D. Design and Synthesis of Novel V-Shaped AIEE Active Quinoxalines for Acidochromic Applications. Dyes Pigment. 2019, 165, 474–487. [Google Scholar] [CrossRef]
- Motoyama, M.; Doan, T.H.; Hibner-Kulicka, P.; Otake, R.; Lukarska, M.; Lohier, J.F.; Ozawa, K.; Nanbu, S.; Alayrac, C.; Suzuki, Y.; et al. Synthesis and Structure-Photophysics Evaluation of 2-N-Amino-Quinazolines: Small Molecule Fluorophores for Solution and Solid State. Chem.-Asian J. 2021, 16, 2087–2099. [Google Scholar] [CrossRef] [PubMed]
- Mei, Q.; Wang, L.; Tian, B.; Yan, F.; Zhang, B.; Huang, W.; Tong, B. A Highly Selective and Naked-Eye Sensor for Hg2+ Based on Quinazoline-4(3H)-Thione. New J. Chem. 2012, 36, 1879–1883. [Google Scholar] [CrossRef]
- Gupta, S.; Milton, M.D. Y-Shaped AIEE Active Quinoxaline-Benzothiazole Conjugate for Fluorimetric Sensing of Nitroaromatics in Aqueous Media. J. Photochem. Photobiol. A Chem. 2021, 419, 113444. [Google Scholar] [CrossRef]
- Luo, X.; Lim, L.T. Cinnamil- and Quinoxaline-Derivative Indicator Dyes for Detecting Volatile Amines in Fish Spoilage. Molecules 2019, 24, 3673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, G.; Zhang, J.; Jia, Y.; Pandey, P.; Yang, S. Achieving Naphthalimide-Based Aggregation-Enhanced Emission via the Fluorophore-Linker-Aromatic Strategy. Dyes Pigment. 2020, 174, 108025. [Google Scholar] [CrossRef]
- Li, B.; Song, X.; Jiang, X.; Li, Z.; Guo, F.; Wang, Y.; Zhao, L.; Zhang, Y. Stable Deep Blue Organic Light Emitting Diodes with CIE of y < 0.10 Based on Quinazoline and Carbazole Units. Chin. Chem. Lett. 2020, 31, 1188–1192. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Z.; Yan, J.; Wang, L.; Xu, H.; Wang, H.; Zhao, B. A Quinoxaline-Based Charge-Transfer Compound for Efficient Deep-Red Organic Light Emitting Diodes. Dyes Pigment. 2021, 191, 109305. [Google Scholar] [CrossRef]
- Jiang, M.L.; Wen, J.J.; Chen, Z.M.; Tsai, W.H.; Lin, T.C.; Chow, T.J.; Chang, Y.J. High-Performance Organic Dyes with Electron-Deficient Quinoxalinoid Heterocycles for Dye-Sensitized Solar Cells under One Sun and Indoor Light. ChemSusChem 2019, 12, 3654–3665. [Google Scholar] [CrossRef] [PubMed]
- Mao, M.; Zhang, X.; Zhu, B.; Wang, J.; Wu, G.; Yin, Y.; Song, Q. Comparative Studies of Organic Dyes with a Quinazoline or Quinoline Chromophore as π-Conjugated Bridges for Dye-Sensitized Solar Cells. Dyes Pigment. 2016, 124, 72–81. [Google Scholar] [CrossRef]
- Liu, H.; Bai, Q.; Yao, L.; Zhang, H.; Xu, H.; Zhang, S.; Li, W.; Gao, Y.; Li, J.; Lu, P.; et al. Highly Efficient near Ultraviolet Organic Light-Emitting Diode Based on a Meta-Linked Donor-Acceptor Molecule. Chem. Sci. 2015, 6, 3797–3804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Milton, M.D. Y-Shaped Novel AIEE Active Push-Pull Quinoxaline Derivatives Displaying Acidochromism and Use towards White Light Emission by Controlled Protonation. Dyes Pigment. 2021, 195, 109690. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Peng, Z.; Wang, Z.; Wang, Y.; Lu, P. Preparation and Photophysical Properties of Quinazoline-Based Fluorophores. RSC Adv. 2020, 10, 30297–30303. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, Z.; Su, S.; Guo, F.; Cao, Y.; Zhang, Y. Quinazoline-based Thermally Activated Delayed Fluorecence for High-performance OLEDs with External Quantum Efficiencies Exceeding 20%. Adv. Opt. Mater. 2019, 7, 1801496. [Google Scholar] [CrossRef]
- Paper, F.; Huang, T.; Liu, D.; Jiang, J.; Jiang, W. Quinoxaline and Pyrido [x,y-b] Pyrazine-Based Emitters: Tuning Normal Fluorescence to Thermally Activated Delayed Fluorescence and Emitting Color over the Entire Visible-Light Range. Chem.-Eur. J. 2019, 25, 10926–10937. [Google Scholar] [CrossRef]
- Li, P.; Xiang, Y.; Gong, S.; Lee, W.-K.; Huang, Y.-H.; Wang, C.-Y.; Yang, C.; Wu, C.-C. Quinazoline-Based Thermally Activated Delayed Fluorescence Emitters for High-Performance Organic Light-Emitting Diodes with External Quantum Efficiencies about 28%. J. Mater. Chem. C 2021, 9, 12633–12641. [Google Scholar] [CrossRef]
- Kothavale, S.; Lim, J.; Yeob Lee, J. Rational Design of CN Substituted Dibenzo[a,c]Phenazine Acceptor for Color Tuning of Thermally Activated Delayed Fluorescent Emitters. Chem. Eng. J. 2022, 431, 134216. [Google Scholar] [CrossRef]
- Gudeika, D.; Volyniuk, D.; Mimaite, V.; Lytvyn, R.; Butkute, R.; Bezvikonnyi, O.; Buika, G.; Grazulevicius, J.V. Carbazolyl-Substituted Quinazolinones as High-Triplet-Energy Materials for Phosphorescent Organic Light Emitting Diodes. Dyes Pigment. 2017, 142, 394–405. [Google Scholar] [CrossRef]
- Deiana, M.; Chand, K.; Jamroskovic, J.; Obi, I.; Chorell, E.; Sabouri, N. A Light-up Logic Platform for Selective Recognition of Parallel G-Quadruplex Structures via Disaggregation-Induced Emission. Angew. Chemie-Int. Ed. 2020, 59, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.J.; Ren, J.; Zhou, J.; Song, Z. Bin A “turn-on” Fluorescent Chemosensor for the Detection of Zn2+ Ion Based on 2-(Quinolin-2-yl)Quinazolin-4(3H)-One. Heterocycl. Commun. 2018, 24, 135–139. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, L.; Pan, Y.; Zhu, Q.; Lu, Y.; Wei, J.; Luo, K.; Fu, Y.; Zhong, C.; Peng, Y.; et al. Asymmetric Difluoroboron Quinazolinone-Pyridine Dyes with Large Stokes Shift: High Emission Efficiencies Both in Solution and in the Solid State. Chem.-Eur. J. 2018, 24, 17897–17901. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, L.; Zhong, C.; Fu, Y.; Song, Z.; Peng, Y. Synthesis and Luminescent Properties of 6-Methoxy-Quinazolinone-Pyridine Difluoroboron Dyes. Chin. J. Org. Chem. 2019, 39, 1444–1449. [Google Scholar] [CrossRef]
- Xing, Z.; Wu, W.; Miao, Y.; Tang, Y.; Zhou, Y.; Zheng, L.; Fu, Y.; Song, Z.; Peng, Y. Recent Advances in Quinazolinones as an Emerging Molecular Platform for Luminescent Materials and Bioimaging. Org. Chem. Front. 2021, 8, 1867–1889. [Google Scholar] [CrossRef]
- Nosova, E.V.; Moshkina, T.N.; Lipunova, G.N.; Kopchuk, D.S.; Slepukhin, P.A.; Baklanova, I.V.; Charushin, V.N. Synthesis and Photophysical Studies of 2-(Thiophen-2-yl)-4-(Morpholin-4-yl)Quinazoline Derivatives. Eur. J. Org. Chem. 2016, 2016, 2876–2881. [Google Scholar] [CrossRef]
- Moshkina, T.N.; Nosova, E.V.; Permyakova, J.V.; Lipunova, G.N.; Valova, M.S.; Slepukhin, P.A.; Sadieva, L.K.; Charushin, V.N. Synthesis and Photophysical Properties of 2-Aryl-4-(Morpholin-4-yl)Quinazoline Chromophores: The Effect of π-Linker Moiety. Dye Pigment. 2022, 206, 110592. [Google Scholar] [CrossRef]
- Moshkina, T.N.; Le Poul, P.; Barsella, A.; Pytela, O.; Bureš, F.; Robin-Le Guen, F.; Achelle, S.; Nosova, E.V.; Lipunova, G.N.; Charushin, V.N. Electron-Withdrawing Substituted Quinazoline Push-Pull Chromophores: Synthesis, Electrochemical, Photophysical and Second-Order Nonlinear Optical Properties. Eur. J. Org. Chem. 2020, 2020, 5445–5454. [Google Scholar] [CrossRef]
- Nosova, E.V.; Moshkina, T.N.; Lipunova, G.N.; Baklanova, I.V.; Kopchuk, D.S.; Slepukhin, P.A.; Charushin, V.N. Synthesis and Photophysical Studies of Novel 2-[5-(4-Diethylaminophenyl)Thiophen-2-yl]Quinazoline Derivatives. Mendeleev Commun. 2018, 28, 14–16. [Google Scholar] [CrossRef]
- Ooyama, Y.; Oda, Y.; Mizumo, T.; Ohshita, J. Specific Solvatochromism of D–π-A Type Pyridinium Dyes Bearing Various Counter Anions in Halogenated Solvents. Tetrahedron 2013, 69, 1755–1760. [Google Scholar] [CrossRef]
- Verbitskiy, E.V.; le Poul, P.; Bureš, F.; Achelle, S.; Barsella, A.; Kvashnin, Y.A.; Rusinov, G.L.; Charushin, V.N. Push–Pull Derivatives Based on 2,4′-Biphenylene Linker with Quinoxaline, [1,2,5]Oxadiazolo [3,4-b]Pyrazine and [1,2,5]Thiadiazolo[3,4-b]Pyrazine Electron Withdrawing Parts. Molecules 2022, 27, 4250. [Google Scholar] [CrossRef] [PubMed]
- Achelle, S.; Rodríguez-López, J.; Robin-Le Guen, F. Photoluminescence Properties of Aryl-, Arylvinyl-, and Arylethynylpyrimidine Derivatives. ChemistrySelect 2018, 3, 1852–1886. [Google Scholar] [CrossRef]
- Jiao, Y.; Mao, L.; Liu, S.; Tan, T.; Wang, D.; Cao, D.; Mi, B.; Gao, Z.; Huang, W. Effects of Meta or Para Connected Organic Dyes for Dye-Sensitized Solar Cell. Dyes Pigment. 2018, 158, 165–174. [Google Scholar] [CrossRef]
- Moshkina, T.N.; Nosova, E.V.; Kopotilova, A.E.; Savchuk, M.I.; Nikonov, I.L.; Kopchuk, D.S.; Slepukhin, P.A.; Kim, G.A.; Lipunova, G.N.; Charushin, V.N. Synthesis and Photophysical Properties of Pyridyl- and Quinolinyl-Substituted 4-(4-Aminophenyl)Quinazolines. J. Photochem. Photobiol. A Chem. 2022, 429, 113917. [Google Scholar] [CrossRef]
- Nosova, E.V.; Moshkina, T.N.; Lipunova, G.N.; Kelbysheva, E.S.; Loim, N.M.; Slepukhin, P.A.; Charushin, V.N.; Baklanova, I.V. Synthesis and Photophysical Studies of Novel 4-Aryl Substituted 2-Phenyl-, 2-(Fluoren-2-yl)- and 2-Cymantrenylquinazolines. Mendeleev Commun. 2018, 28, 33–35. [Google Scholar] [CrossRef]
- El-Zohry, A.M.; Orabi, E.A.; Karlsson, M.; Zietz, B. Twisted Intramolecular Charge Transfer (TICT) Controlled by Dimerization: An Overlooked Piece of the TICT Puzzle. J. Phys. Chem. A 2021, 125, 2885–2894. [Google Scholar] [CrossRef]
- Sagara, Y.; Yamane, S.; Mitani, M.; Weder, C.; Kato, T. Mechanoresponsive Luminescent Molecular Assemblies: An Emerging Class of Materials. Adv. Mater. 2016, 28, 1073–1095. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Li, W.; Wang, L.; Gong, L.; Tang, H.; Cao, D. Twisted Intramolecular Charge Transfer and Aggregation-Enhanced Emission Characteristics Based Quinoxaline Luminogen: Photophysical Properties and a Turn-on Fluorescent Probe for Glutathione. J. Mater. Chem. C 2019, 7, 3779–3786. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- McLean, A.D.; Chandler, G.S. Contracted Gaussian Basis Sets for Molecular Calculations. I. Second Row Atoms, Z=11-18. J. Chem. Phys. 1980, 72, 5639–5648. [Google Scholar] [CrossRef]
- Clark, T.; Chandrasekhar, J.; Spitznagel, G.W.; Schleyer, P.V.R. Efficient Diffuse Function-augmented Basis Sets for Anion Calculations. III. The 3-21+G Basis Set for First-row Elements, Li–F. J. Comput. Chem. 1983, 4, 294–301. [Google Scholar] [CrossRef]
- Frisch, M.J.; Pople, J.A.; Binkley, J.S. Self-Consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets. J. Chem. Phys. 1984, 80, 3265–3269. [Google Scholar] [CrossRef]
- Neese, F. The ORCA Program System. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Rurack, K. Fluorescence quantum yields: Methods of determination and standards. In Standardization and Quality Assurance in Fluorescence Measurements I; Springer: Berlin/Heidelberg, Germany, 2008; pp. 101–145. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
Compound | Solvent | λabs, nm (ε, 10−3 M−1·cm−1) | λex, nm | λem, nm | ΔνSt d, cm−1 | ΦF f, % (λex, nm) |
---|---|---|---|---|---|---|
4a [32] | Toluene | 410 (-) a | - c | 490 | 3982 | 71 |
MeCN | 404 (-) a | - c | 541 | 6368 | 28 | |
4b | Toluene | 405 (35.8), 304 (21.8) | 404, 309 | 470 | 3415 | 82 g (380) |
MeCN | 398, 297, 282 (-) b | 399, 296 | 545 | 6777 | 50 g (380) | |
4c | Toluene | 370 (-) b, 290 (-) b | 370 | 430, 456 | 5097 e | 26 (350) |
MeCN | 363 (-) b | 359 | 490 | 7140 | 43 (360) | |
5a | Toluene | 370 (37.1) | 360, 370 | 450 | 4805 | 84 (350) |
MeCN | 367 (-) b | 367 | 535 | 8556 | 49 (360) | |
5b | Toluene | 370 (30.1), 302 (22.5) | 371, 360, 309 | 445 | 4555 | 89 g (380) |
MeCN | 360, 298 (-) b | 355, 297 | 535 | 9086 | 43 g (380) | |
5c | Toluene | 342 (36.5) b | 342 | 415 | 5143 | 3 (350) |
MeCN | 330 (-) b | 340 | 490 | 9895 | 38 (320) | |
6a | Toluene | 310 (33.6) | 325 | 460 | 10,519 | 14 (315) |
MeCN | 310 (34.2) | 354 | 560 | 14,401 | <1(360) | |
6b | Toluene | 328 (39.3), 308 (36.5) | 340 | 430 | 7232 | 23 (328) |
MeCN | 328 (30.9), 305 (32.1) | 330 | 420, 560 | 12,631 e | 2 (328) | |
6c | Toluene | 340sh, 310 (-) b | 352 | broad band 380, 405, 430, 450 | 9002 e | <1 (315) |
MeCN | 340sh, 302sh, 292 (-)b | 340 | 408 | 9737 | 5 (320) | |
10 | Toluene | 367 (33.9), 295 (18.4) | 370, 360, 305 | 430 | 3992 | 71 g (380) |
MeCN | 359, 292 (-) b | 356, 292 | 500 | 7855 | 46 g (380) | |
7a [31] | Toluene | 475 sh, 402 (-) a | - c | 485, 670 | 9950 e | <1 |
MeCN | 397 (-) a | - c | 564 | 7458 | <1 | |
7b [31] | Toluene | 440 sh (18.3), 397 (28.3), 302 (29.4) | 450, 400, 302 | 485, 623 | 6171 e | 5 |
MeCN | 450 sh (16.7), 391 (29.8), 298 (27.5) | 450, 390, 298 | 525 | 3425 | <1 | |
7c [31] | Toluene | 365 (-) a | - c | 452, 538 | 8810 e | 22 |
MeCN | 356 (-) a | - c | 494 | 7847 | 8 | |
8а | Toluene | 425 sh (9.3), 370 (21.3) | 425, 360 | 460, 600 | 6863 e | 7 |
MeCN | 365 (21.2), 268 (21.5) | 360 | 530 | 8529 | <1 | |
8b | Toluene | 415 sh (25.8), 365 (46.6), 347 (46.8) | 415, 340, 310 | 465, 555 | 6078 e | 23 |
MeCN | 360 (31.1) | 360 | 400, 540 | 2777 e | <1 | |
9 | Toluene | 337 sh (31.1), 309 (37.0) | 386, 308 | 468 | 8306 | 15 |
MeCN | 320 sh (30.0), 306 (33.1) | 380, 295 | 560 | 14,822 | 3 | |
11 | Toluene | 432 (11.2), 367 (35.7), 303 (21.1) | 440, 360, 308 | 570 | 5604 | 15 |
MeCN | 415 sh (10.7), 360 (36.6), 299 (20.6) | - | - | - | - |
Comp. | Solvent | λem, [nm] | τ avg, [ns] | χ2 | λex, [nm] |
---|---|---|---|---|---|
4a | Toluene | 490 | 1.94 | 1.067 | 375 |
MeCN | 541 | 2.71 | 1.170 | 375 | |
4b | Toluene | 470 | 1.90 | 1.131 | 375 |
MeCN | 545 | 3.25 | 1.091 | 292 | |
4c | Toluene | 430, 456 | 0.75, 0.75 | 1.029, 1.339 | 375 |
MeCN | 490 | 2.54 | 1.094 | 375 | |
5a | Toluene | 450 | 1.38 | 1.126 | 375 |
MeCN | 535 | 2.64 | 1.164 | 375 | |
5b | Toluene | 445 | 1.61 | 1.180 | 375 |
MeCN | 535 | 3.22 | 1.095 | 375 | |
5c | Toluene | 415 | 0.62 | 1.254 | 300 |
MeCN | 490 | 3.66 | 1.186 | 300 | |
6a | Toluene | 460 | 8.43 | 1.097 | 300 |
MeCN | 560 | Cannot be detected | |||
6b | Toluene | 430 | 5.12 | 1.128 | 300 |
MeCN | 565 | 5.94 | 1.117 | 300 | |
6c | Toluene | 430 | 2.49 | 1.119 | 300 |
MeCN | 408 | 7.86 | 0.934 | 300 | |
10 | Toluene | 430 | 2.10 | 1.049 | 375 |
MeCN | 500 | 4.80 | 1.091 | 375 | |
7a | Toluene | 471 | 2.06 | 1.080 | 375 |
MeCN | 539 | 3.13 | 1.198 | ||
7b | Toluene | 480, 621 | 1.56, 1.73 | 1.024, 1.044 | 375 |
MeCN | 525 | 2.87 | 1.011 | 375 | |
7c | Toluene | 541 | 4.77 | 1.079 | 375 |
MeCN | 491 | 2.71 | 1.125 | 375 | |
8a | Toluene | 460, 600 | 2.22, 2.95 | 1.082, 1.170 | 375, 375 |
MeCN | 530 | 2.33 | 1.060 | 375 | |
8b | Toluene | 465, 555 | 2.58, 7.01 | 1.093, 1.015 | 375, 375 |
MeCN | 400, 540 | 1.35, 2.69 | 1.159, 1.090 | 375 | |
9 | Toluene | 468 | 3.08 | 1.100 | |
MeCN | 560 | 3.07 | 1.002 | 300 | |
11 | Toluene | 570 | 9.68 | 1.043 | 375 |
MeCN | Not emissive |
Compound | λem, nm (Solid) | φ а, % | λem, nm (MeCN) |
---|---|---|---|
4a | 537 | <1 | 541 |
4b | 497 | 2 | 545 |
4c | 476 | 2 | 490 |
5a | 456 | 10 | 535 |
5b | 468 | 40 | 535 |
5c | 441 | 10 | 490 |
6a | 464 | <1 | 560 |
6b | 427 | 13 | 420, 560 b |
6c | 407 | 9 | 408 |
10 | 557 | 1 | 500 |
7a | 485, 661 b | <1 | 564 |
7b | 474, 598 b | <1 | 525 |
7c | 435, 557 b | 2 | 494 |
8a | 468, 615 b | <1 | 530 |
8b | 451, 596 b | <1 | 400, 540 b |
9 | 437, 642 b | <1 | 560 |
11 | 610 | 3 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moshkina, T.N.; Nosova, E.V.; Permyakova, J.V.; Lipunova, G.N.; Zhilina, E.F.; Kim, G.A.; Slepukhin, P.A.; Charushin, V.N. Push-Pull Structures Based on 2-Aryl/thienyl Substituted Quinazolin-4(3H)-ones and 4-Cyanoquinazolines. Molecules 2022, 27, 7156. https://doi.org/10.3390/molecules27217156
Moshkina TN, Nosova EV, Permyakova JV, Lipunova GN, Zhilina EF, Kim GA, Slepukhin PA, Charushin VN. Push-Pull Structures Based on 2-Aryl/thienyl Substituted Quinazolin-4(3H)-ones and 4-Cyanoquinazolines. Molecules. 2022; 27(21):7156. https://doi.org/10.3390/molecules27217156
Chicago/Turabian StyleMoshkina, Tatyana N., Emiliya V. Nosova, Julia V. Permyakova, Galina N. Lipunova, Ekaterina F. Zhilina, Grigory A. Kim, Pavel A. Slepukhin, and Valery N. Charushin. 2022. "Push-Pull Structures Based on 2-Aryl/thienyl Substituted Quinazolin-4(3H)-ones and 4-Cyanoquinazolines" Molecules 27, no. 21: 7156. https://doi.org/10.3390/molecules27217156
APA StyleMoshkina, T. N., Nosova, E. V., Permyakova, J. V., Lipunova, G. N., Zhilina, E. F., Kim, G. A., Slepukhin, P. A., & Charushin, V. N. (2022). Push-Pull Structures Based on 2-Aryl/thienyl Substituted Quinazolin-4(3H)-ones and 4-Cyanoquinazolines. Molecules, 27(21), 7156. https://doi.org/10.3390/molecules27217156