Bisindolylmaleimides New Ligands of CaM Protein
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of the Kds of the BIM Compounds Using the Fluorescent Biosensor hCaM-M124C-mBBr
2.2. Docking Studies of the BIMs Series with the CaM Protein
2.3. Molecular Dynamics Simulation Studies
2.4. Chemoinformatic Analysis
3. Materials and Methods
3.1. Chemistry
3.2. Steady-State Fluorescence
3.3. Preparation of Initial Coordinate Files
3.4. Docking Studies
3.5. Molecular Dynamics Simulation Studies
3.6. Binding Free Energies Calculated by Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA)
3.7. Trajectory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faul, M.M.; Winneroski, L.L.; Krumrich, C.A. A New, Efficient Method for the Synthesis of Bisindolylmaleimides. J. Org. Chem. 1998, 63, 6053–6058. [Google Scholar] [CrossRef] [PubMed]
- Toullec, D.; Pianetti, P.; Coste, H.; Bellevergue, P.; Grand-Perret, T.; Ajakane, M.; Baudet, V.; Boissin, P.; Boursier, E.; Loriolle, F.; et al. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J. Biol. Chem. 1991, 266, 15771–15781. [Google Scholar] [CrossRef]
- Hers, I.; Tavare, J.M.; Denton, R.M. The protein kinase C inhibitors bisindolylmaleimide I (GF 109203x) and IX (Ro 31-8220) are potent inhibitors of glycogen synthase kinase-3 activity. FEBS Lett. 1999, 460, 433–436. [Google Scholar] [CrossRef] [Green Version]
- Coultrap, S.J.; Sun, H.; Tenner, T.E., Jr.; Machu, T.K. Competitive antagonism of the mouse 5-hydroxytryptamine3 receptor by bisindolylmaleimide I, a "selective" protein kinase C inhibitor. J. Pharmacol. Exp. Ther. 1999, 290, 76–82. [Google Scholar]
- Davis, P.D.; Hill, C.H.; Lawton, G.; Nixon, J.S.; Wilkinson, S.E.; Hurst, S.A.; Keech, E.; Turner, S.E. Inhibitors of protein kinase C. 1. 2,3-Bisarylmaleimides. J. Med. Chem. 1992, 35, 177–184. [Google Scholar] [CrossRef]
- Robey, R.W.; Shukla, S.; Steadman, K.; Obrzut, T.; Finley, E.M.; Ambudkar, S.V.; Bates, S.E. Inhibition of ABCG2-mediated transport by protein kinase inhibitors with a bisindolylmaleimide or indolocarbazole structure. Mol. Cancer Ther. 2007, 6, 1877–1885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayati, A.; Bruyere, A.; Moreau, A.; Jouan, E.; Denizot, C.; Parmentier, Y.; Fardel, O. Protein Kinase C-Independent Inhibition of Organic Cation Transporter 1 Activity by the Bisindolylmaleimide Ro 31-8220. PLoS One 2015, 10, e0144667. [Google Scholar] [CrossRef]
- Deane, F.M.; Lin, A.J.S.; Hains, P.G.; Pilgrim, S.L.; Robinson, P.J.; McCluskey, A. FD5180, a Novel Protein Kinase Affinity Probe, and the Effect of Bead Loading on Protein Kinase Identification. ACS Omega 2017, 2, 3828–3838. [Google Scholar] [CrossRef] [Green Version]
- Birchall, A.M.; Bishop, J.; Bradshaw, D.; Cline, A.; Coffey, J.; Elliott, L.H.; Gibson, V.M.; Greenham, A.; Hallam, T.J.; Harris, W.; et al. Ro 32-0432, a selective and orally active inhibitor of protein kinase C prevents T-cell activation. J. Pharmacol. Exp. Ther. 1994, 268, 922–929. [Google Scholar]
- Bit, R.A.; Davis, P.D.; Elliott, L.H.; Harris, W.; Hill, C.H.; Keech, E.; Kumar, H.; Lawton, G.; Maw, A.; Nixon, J.S.; et al. Inhibitors of protein kinase C. 3. Potent and highly selective bisindolylmaleimides by conformational restriction. J. Med. Chem. 1993, 36, 21–29. [Google Scholar] [CrossRef]
- Hoeflich, K.P.; Ikura, M. Calmodulin in action: Diversity in target recognition and activation mechanisms. Cell 2002, 108, 739–742. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, S.; Waxham, M.N.; Cheung, M.S.; Liu, Y. Lessons in Protein Design from Combined Evolution and Conformational Dynamics. Sci. Rep. 2015, 5, 14259. [Google Scholar] [CrossRef]
- Jurado, L.A.; Chockalingam, P.S.; Jarrett, H.W. Apocalmodulin. Physiol. Rev. 1999, 79, 661–682. [Google Scholar] [CrossRef]
- Komeiji, Y.; Ueno, Y.; Uebayasi, M. Molecular dynamics simulations revealed Ca(2+)-dependent conformational change of Calmodulin. FEBS Lett. 2002, 521, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Seales, E.C.; Micoli, K.J.; McDonald, J.M. Calmodulin is a critical regulator of osteoclastic differentiation, function, and survival. J. Cell Biochem. 2006, 97, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Junker, J.P.; Ziegler, F.; Rief, M. Ligand-dependent equilibrium fluctuations of single calmodulin molecules. Science 2009, 323, 633–637. [Google Scholar] [CrossRef]
- Weiss, B.; Prozialeck, W.C.; Wallace, T.L. Interaction of drugs with calmodulin. Biochemical, pharmacological and clinical implications. Biochem. pharmacol. 1982, 31, 2217–2226. [Google Scholar] [CrossRef]
- Mayur, Y.C.; Jagadeesh, S.; Thimmaiah, K.N. Targeting calmodulin in reversing multi drug resistance in cancer cells. Mini Rev. Med. Chem. 2006, 6, 1383–1389. [Google Scholar] [CrossRef]
- Mayur, Y.C.; Padma, T.; Parimala, B.H.; Chandramouli, K.H.; Jagadeesh, S.; Gowda, N.M.; Thimmaiah, K.N. Sensitization of multidrug resistant (MDR) cancer cells to vinblastine by novel acridones: Correlation between anti-calmodulin activity and anti-MDR activity. Med. Chem. 2006, 2, 63–77. [Google Scholar] [CrossRef]
- Chin, D.; Means, A.R. Calmodulin: A prototypical calcium sensor. Trends Cell Biol. 2000, 10, 322–328. [Google Scholar] [CrossRef]
- Gonzalez-Andrade, M.; Figueroa, M.; Rodriguez-Sotres, R.; Mata, R.; Sosa-Peinado, A. An alternative assay to discover potential calmodulin inhibitors using a human fluorophore-labeled CaM protein. Anal. Biochem. 2009, 387, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Mata, R.; Figueroa, M.; Gonzalez-Andrade, M.; Rivera-Chavez, J.A.; Madariaga-Mazon, A.; Del Valle, P. Calmodulin inhibitors from natural sources: An update. J. Nat. Prod. 2015, 78, 576–586. [Google Scholar] [CrossRef] [PubMed]
- González-Andrade, M.; Del Valle, P.; Macías-Rubalcava, M.L.; Sosa-Peinado, A.; Del Carmen González, M.; Mata, R. Calmodulin inhibitors from aspergillus stromatoides. Chem. Biodivers. 2013, 10, 328–337. [Google Scholar] [CrossRef]
- González-Andrade, M.; Benito-Peña, E.; Mata, R.; Moreno-Bondi, M.C. Biosensor for on-line fluorescent detection of trifluoroperazine based on genetically modified calmodulin. Anal. Bioanal. Chem. 2012, 402, 3211–3218. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, M.; González-Andrade, M.; Sosa-Peinado, A.; Madariaga-Mazón, A.; Del Río-Portilla, F.; Del Carmen González, M.; Mata, R. Fluorescence, circular dichroism, NMR, and docking studies of the interaction of the alkaloid malbrancheamide with calmodulin. J. Enzym. Inhib. Med. Chem. 2011, 26, 378–385. [Google Scholar] [CrossRef] [Green Version]
- Vásquez-Bochm, L.X.; Velázquez-López, I.; Mata, R.; Sosa-Peinado, A.; Cano-Sánchez, P.; González-Andrade, M. Application of a Fluorescent Biosensor in Determining the Binding of 5-HT to Calmodulin. Chemosensors 2021, 9, 250. [Google Scholar] [CrossRef]
- Gonzalez-Andrade, M.; Rodriguez-Sotres, R.; Madariaga-Mazon, A.; Rivera-Chavez, J.; Mata, R.; Sosa-Peinado, A.; Pozo-Yauner, L.D.; Arias, O., II. Insights into molecular interactions between CaM and its inhibitors from molecular dynamics simulations and experimental data. J. Biomol. Struct. Dyn. 2016, 34, 78–91. [Google Scholar] [CrossRef]
- Orosz, F.; Vertessy, B.G.; Salerno, C.; Crifo, C.; Capuozzo, E.; Ovadi, J. The interaction of a new anti-tumour drug, KAR-2 with calmodulin. Br. J. Pharmacol. 1997, 121, 955–962. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.; Deo, S.K.; Bachas, L.G.; Daunert, S. Competitive binding assay using fluorescence resonance energy transfer for the identification of calmodulin antagonists. Bioconjug. Chem. 2005, 16, 1257–1263. [Google Scholar] [CrossRef]
- Juhasz, T.; Kardos, J.; Durvanger, Z.; Harmat, V.; Liliom, K. Comparison of ligand binding and conformational stability of human calmodulin with its homolog from the malaria parasite Plasmodium falciparum. FASEB Bioadv. 2020, 2, 489–505. [Google Scholar] [CrossRef]
- Bruno, C.; Cavalluzzi, M.M.; Rusciano, M.R.; Lovece, A.; Carrieri, A.; Pracella, R.; Giannuzzi, G.; Polimeno, L.; Viale, M.; Illario, M.; et al. The chemosensitizing agent lubeluzole binds calmodulin and inhibits Ca(2+)/calmodulin-dependent kinase II. Eur. J. Med. Chem. 2016, 116, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Sosa-Peinado, A.; Leon-Cruz, E.; Velazquez-Lopez, I.; Matuz-Mares, D.; Cano-Sanchez, P.; Gonzalez-Andrade, M. Theoretical-experimental studies of calmodulin-peptide interactions at different calcium equivalents. J. Biomol. Struct. Dyn. 2022, 40, 2689–2700. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Andrade, M.; Rivera-Chavez, J.; Sosa-Peinado, A.; Figueroa, M.; Rodriguez-Sotres, R.; Mata, R. Development of the fluorescent biosensor hCalmodulin (hCaM)L39C-monobromobimane(mBBr)/V91C-mBBr, a novel tool for discovering new calmodulin inhibitors and detecting calcium. J. Med. chem. 2011, 54, 3875–3884. [Google Scholar] [CrossRef] [PubMed]
- Vandonselaar, M.; Hickie, R.A.; Quail, J.W.; Delbaere, L.T. Trifluoperazine-induced conformational change in Ca(2+)-calmodulin. Nat. Struct. Biol. 1994, 11, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Gotz, A.W.; Williamson, M.J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R.C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 2012, 8, 1542–1555. [Google Scholar] [CrossRef]
- Wedemeyer, W.J.; Baker, D. Efficient minimization of angle-dependent potentials for polypeptides in internal coordinates. Proteins 2003, 53, 262–272. [Google Scholar] [CrossRef]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- Huey, R.; Morris, G.M.; Olson, A.J.; Goodsell, D.S. A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem. 2007, 28, 1145–1152. [Google Scholar] [CrossRef]
- Moitessier, N.; Henry, C.; Maigret, B.; Chapleur, Y. Combining pharmacophore search, automated docking, and molecular dynamics simulations as a novel strategy for flexible docking. Proof of concept: Docking of arginine-glycine-aspartic acid-like compounds into the alphavbeta3 binding site. J. Med. Chem. 2004, 47, 4178–4187. [Google Scholar] [CrossRef]
- DeLano, W.L. Use of PYMOL as a communications tool for molecular science. Abstr. Pap. Am. Chem. Soc. 2004, 228, U313–U314. [Google Scholar]
- Tian, C.; Kasavajhala, K.; Belfon, K.A.A.; Raguette, L.; Huang, H.; Migues, A.N.; Bickel, J.; Wang, Y.; Pincay, J.; Wu, Q.; et al. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16, 528–552. [Google Scholar] [CrossRef]
- Huggins, D.J. Comparing the Performance of Different AMBER Protein Forcefields, Partial Charge Assignments, and Water Models for Absolute Binding Free Energy Calculations. J. Chem. Theory Comput. 2022, 18, 2616–2630. [Google Scholar] [CrossRef] [PubMed]
- Case, D.A.; Cheatham, T.E., 3rd; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.C.; Crowley, M.F.; Case, D.A. The implementation of a fast and accurate QM/MM potential method in Amber. J. Comput. Chem. 2008, 29, 1019–1031. [Google Scholar] [CrossRef] [Green Version]
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 2010, 78, 1950–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, A.S.; Mao, S.; Elcock, A.H. Flexibility of the bacterial chaperone trigger factor in microsecond-timescale molecular dynamics simulations. Biophys. J. 2013, 105, 732–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006, 25, 247–260. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Salomon-Ferrer, R.; Gotz, A.W.; Poole, D.; Le Grand, S.; Walker, R.C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878–3888. [Google Scholar] [CrossRef]
- Treesuwan, W.; Hannongbua, S. Bridge water mediates nevirapine binding to wild type and Y181C HIV-1 reverse transcriptase--evidence from molecular dynamics simulations and MM-PBSA calculations. J. Mol. Graph. Model. 2009, 27, 921–929. [Google Scholar] [CrossRef]
- Zhou, Z.; Madura, J.D. Relative free energy of binding and binding mode calculations of HIV-1 RT inhibitors based on dock-MM-PB/GS. Proteins 2004, 57, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; et al. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 2000, 33, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 2011, 51, 69–82. [Google Scholar] [CrossRef] [PubMed]
Experimental Studies | Docking Studies | |||||
---|---|---|---|---|---|---|
Kd (nM) | Stoichiometry | Ki (nM) | ||||
Site I | Site II | Site III | Site IV | |||
Ca2+-CaM -BIM-II | 257.8 ± 5.5 | 2.5 ± 0.2 | 109.79 | 161.58 | - | - |
Ca2+-CaM -BIM-IV | 223.8 ± 3.7 | 3.7 ± 0.2 | 17.10 | 3390 | 7450 | - |
Ca2+-CaM -BIM-VII | 186.2 ± 4.1 | 4.4 ± 0.1 | 2.14 | 26.95 | 52.43 | 263.87 |
Ca2+-CaM -BIM-X | 205.2 ± 3.8 | 4.3 ± 0.1 | 20.36 | 59.39 | 71.65 | 217.1 |
Ca2+-CaM -BIM-XI | 239.0 ± 5.0 | 3.4 ± 0.1 | 9.66 | 55.96 | 75.12 | 191.71 |
Ca2+-CaM -CPZ | 492.2 ± 4.6 | 3.4 ± 0.1 | 715.65 | 1169 | 1640 | - |
Ca2+-CaM -TFP | 532.7 ± 74.2 1 | 1.6 ± 0.2 | 384 | 707 | 959 | 976 |
Interaction Residuals | |
---|---|
Ca2+-CaM-BIM-II | Leu39, Ala88, Val91, Phe141, Phe92, Ile100, Leu105, Val108, Met109, Leu112, Met124, Ile125, Glu127, Val136 |
Ca2+-CaM-BIM-IV | Glu127, Ile125, Met124, Leu105, Val108, Met109, Leu112, Leu39, Phe141, Phe92, Ile100, Val136 |
Ca2+-CaM-BIM-VII | Glu7, Glu11, Glu14, Phe92, Phe141, Phe144, Leu105, Ile100, Val136, Met124, Ile125, Met109, Glu127 |
Ca2+-CaM-BIM-X | Met124, Glu127, Phe92, Ile100, Leu112, Met109, Val108, Leu39, Phe141, Met144, Met145 |
Ca2+-CaM-BIM-XI | Val136, Phe92, Ile100, Ala128, Glu127, Ile125, Met124, Lys148, Ala147, Met145, Met144 |
Ca2+-CaM -CPZ | Glu127, Ile125, Met124, Leu105, Val136, Ile100, Phe92, Phe141, Met144 |
ΔG (Kcal/mol) | ΔH (Kcal/mol) | ΔS (Kcal/mol) | |
---|---|---|---|
Ca2+-CaM-BIM-II | −42.73 ± 9.64 | −67.61 ± 3.88 | −24.87 ± 8.82 |
Ca2+-CaM-BIM-IV | −30.25 ± 3.91 | −47.61 ± 3.29 | −17.36 ± 2.10 |
Ca2+-CaM-BIM-VII | −49.48 ± 6.92 | −72.65 ± 5.11 | −23.17 ± 4.67 |
Ca2+-CaM-BIM-X | −23.57 ± 5.19 | −49.64 ± 3.31 | −26.06 ± 4.00 |
Ca2+-CaM-BIM-XI | −45.47 ± 9.67 | −71.21 ± 5.23 | −25.74 ± 8.13 |
Ca2+-CaM-CPZ | −16.77 ± 5.77 | −35.01 ± 4.53 | −18.24 ± 3.58 |
Compound | BIM-II | BIM-IV | BIM-VII | BIM-X | BIM-XI | CPZ |
---|---|---|---|---|---|---|
cLogP | 2.43 | 1.58 | 1.55 | 2.4 | 3.02 | 4.61 |
Solubility (LogS) | −3.38 | −3.55 | −2.55 | −3.23 | −2.78 | −4.8 |
Molecular weight | 438.53 | 327.34 | 453.54 | 425.5 | 452.56 | 318.87 |
Druglikeness | 7.73 | 4.21 | 6.81 | 6.65 | 8.05 | 8.38 |
H bond acceptor | 6 | 5 | 7 | 6 | 6 | 2 |
H bond donor | 2 | 3 | 3 | 2 | 1 | 0 |
Stereocenters | 1 | 0 | 0 | 1 | 1 | 0 |
Rotatable bonds | 5 | 2 | 6 | 3 | 4 | 4 |
Drug score | 0.81 | 0.92 | 0.64 | 0.83 | 0.77 | 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sosa-Peinado, A.; Fructuoso-García, K.; Vásquez-Bochm, L.X.; González-Andrade, M. Bisindolylmaleimides New Ligands of CaM Protein. Molecules 2022, 27, 7161. https://doi.org/10.3390/molecules27217161
Sosa-Peinado A, Fructuoso-García K, Vásquez-Bochm LX, González-Andrade M. Bisindolylmaleimides New Ligands of CaM Protein. Molecules. 2022; 27(21):7161. https://doi.org/10.3390/molecules27217161
Chicago/Turabian StyleSosa-Peinado, Alejandro, Karina Fructuoso-García, L. X. Vásquez-Bochm, and Martin González-Andrade. 2022. "Bisindolylmaleimides New Ligands of CaM Protein" Molecules 27, no. 21: 7161. https://doi.org/10.3390/molecules27217161
APA StyleSosa-Peinado, A., Fructuoso-García, K., Vásquez-Bochm, L. X., & González-Andrade, M. (2022). Bisindolylmaleimides New Ligands of CaM Protein. Molecules, 27(21), 7161. https://doi.org/10.3390/molecules27217161