Flower-Shaped Carbon Nanomaterials for Highly Efficient Solar-Driven Water Evaporation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Water Evaporation Performance
2.3. Water Treatment Performance
3. Experimental
3.1. Materials
3.2. Fabrication of Carbon Particles
3.3. Characterization of Samples
3.4. Solar Water Evaporation Experiment
3.5. Solar Water Evaporation Performance Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Yan, B.; Zheng, J.; Feng, L.; Chen, Z.; Zhang, Q.; Liao, T.; Chen, J.; Jiang, S.; Du, C.; et al. Recent progress in template-assisted synthesis of porous carbons for supercapacitors. Adv. Powder Mater. 2022, 1, 100018. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Sheng, X.; Lin, P.; Tang, J.; Pan, L.; Kaneti, Y.V.; Yang, T.; Yamauchi, Y. Solar-powered sustainable water production: State-of-the-art technologies for sunlight–energy–water nexus. ACS Nano 2021, 15, 12535–12566. [Google Scholar] [CrossRef] [PubMed]
- Tan, N.P.B.; Ucab, P.M.L.; Dadol, G.C.; Jabile, L.M.; Talili, I.N.; Cabaraban, M.T.I. A review of desalination technologies and its impact in the Philippines. Desalination 2022, 534, 115805. [Google Scholar] [CrossRef]
- Krishnan, J.N.; Venkatachalam, K.R.; Ghosh, O. Review of thin film nanocomposite membranes and their applications in desalination. Front. Chem. 2022, 10, 781372. [Google Scholar] [CrossRef] [PubMed]
- Lim, B.J.; Choi, S.M.; Cho, S.H.; Lee, G.R.; Park, C.D. Designs and performance analysis of vertical multi-effect diffusion solar distiller: A review. Desalination 2022, 527, 115572. [Google Scholar] [CrossRef]
- Lin, S.; Zhao, H.; Zhu, L.; He, T.; Chen, S.; Gao, C.; Zhang, L. Seawater desalination technology and engineering in China: A review. Desalination 2021, 498, 114728. [Google Scholar] [CrossRef]
- Yaqub, M.; Nguyen, M.N.; Lee, W. Treating reverse osmosis concentrate to address scaling and fouling problems in zero-liquid discharge systems: A scientometric review of global trends. Sci. Total Environ. 2022, 844, 157081. [Google Scholar] [CrossRef]
- Shefer, I.; Lopez, K.; Straub, A.P.; Epsztein, R. Applying Transition-State Theory to Explore Transport and Selectivity in Salt-Rejecting Membranes: A Critical Review. Environ. Sci. Technol. 2022, 56, 7467–7483. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, P.; Yang, C.; Liao, Q.; Hao, X.; Huang, Y.; Zhang, M.; Wang, X.; Lin, T.; Cheng, H.; et al. Janus-interface engineering boosting solar steam towards high-efficiency water collection. Energy Environ. Sci. 2021, 14, 5330–5338. [Google Scholar] [CrossRef]
- Cao, P.; Zhao, L.; Zhang, J.; Zhang, L.; Yuan, P.; Zhang, Y.; Li, Q. Gradient heating effect modulated by hydrophobic/hydrophilic carbon nanotube network structures for ultrafast solar steam generation. ACS Appl. Mater. Interfaces 2021, 13, 19109–19116. [Google Scholar] [CrossRef]
- He, J.; Foysal, T.R.; Yang, H.; Islam, M.; Li, L.; Li, W.; Cui, W. A facile and low-cost method to improve the efficiency of solar steam evaporation. Mater. Lett. 2020, 261, 126962. [Google Scholar] [CrossRef]
- Wang, A.; Liang, H.; Chen, F.; Tian, X.; Yin, S.; Jing, S.; Tsiakaras, P. Facile synthesis of C3N4/NiIn2S4 heterostructure with novel solar steam evaporation efficiency and photocatalytic H2O2 production performance. Appl. Catal. B Environ. 2022, 310, 121336. [Google Scholar] [CrossRef]
- Alfaro-Barajas, A.; Vega-Hincapie, D.J.; Hdz-Garcia, H.; Oliva, J.; Herrera-Trejo, M.; Mtz-Enriquez, A.I. Carbon monoliths from PET wastes for interfacial solar evaporation. Mater. Lett. 2021, 294, 129796. [Google Scholar] [CrossRef]
- Meng, T.; Jiang, B.; Li, Z.; Xu, X.; Li, D.; Henzie, J.; Nanjundan, A.K.; Yamauchi, Y.; Bando, Y. Programmed design of selectively-functionalized wood aerogel: Affordable and mildew-resistant solar-driven evaporator. Nano Energy 2021, 87, 106146. [Google Scholar] [CrossRef]
- Li, Z.; Wang, C. Novel advances in metal-based solar absorber for photothermal vapor generation. Chin. Chem. Lett. 2020, 31, 2159–2166. [Google Scholar] [CrossRef]
- Fan, Q.; Wu, L.; Liang, Y.; Xu, Z.; Li, Y.; Wang, J.; Lund, P.D.; Zeng, M.; Wang, W. The role of micro-nano pores in interfacial solar evaporation systems—A review. Appl. Energy 2021, 292, 116871. [Google Scholar] [CrossRef]
- Tan, K.W.; Yap, C.M.; Zheng, Z.; Haw, C.Y.; Khiew, P.S.; Chiu, W.S. State-of-the-Art Advances, Development, and Challenges of Metal Oxide Semiconductor Nanomaterials for Photothermal Solar Steam Generation. Adv. Sustain. Syst. 2022, 6, 2100416. [Google Scholar] [CrossRef]
- Du, Q.; Xu, J.; Chen, S.; Gao, J. Study on radiation characteristics of Au-CuS nanofluids. Energy Sources Part A 2022, 44, 1316–1326. [Google Scholar] [CrossRef]
- Margeson, M.J.; Dasog, M. Plasmonic metal nitrides for solar-driven water evaporation. Environ. Sci. Technol. 2020, 6, 3169–3177. [Google Scholar]
- Xu, Y.; Ma, J.; Han, Y.; Xu, H.; Wang, Y.; Qi, D.; Wang, W. A simple and universal strategy to deposit Ag/polypyrrole on various substrates for enhanced interfacial solar evaporation and antibacterial activity. Chem. Eng. J. 2020, 384, 123379. [Google Scholar] [CrossRef]
- Chen, S.; Sun, Z.; Xiang, W.; Shen, C.; Wang, Z.; Jia, X.; Sun, J.; Liu, C.J. Plasmonic wooden flower for highly efficient solar vapor generation. Nano Energy 2020, 76, 104998. [Google Scholar] [CrossRef]
- Ren, J.; Yang, S.; Hu, Z.; Wang, H. Self-Propelled Aerogel Solar Evaporators for Efficient Solar Seawater Purification. Langmuir 2021, 37, 9532–9539. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; You, D.; Yang, W.; Yu, H.; Pan, Q.; Song, S. Cobalt nanoparticle–carbon nanoplate as the solar absorber of a wood aerogel evaporator for continuously efficient desalination. Environ. Sci. Technol. 2022, 8, 151–161. [Google Scholar] [CrossRef]
- Li, X.; Tanyan, S.; Xie, S.; Chen, R.; Liao, Q.; Zhu, X.; He, X. A 3D porous PDMS sponge embedded with carbon nanoparticles for solar driven interfacial evaporation. Sep. Purif. Technol. 2022, 292, 120985. [Google Scholar] [CrossRef]
- Wilson, H.M.; Ahirrao, D.J.; Ar, S.R.; Jha, N. Biomass-derived porous carbon for excellent low intensity solar steam generation and seawater desalination. Sol. Energy Mat. Sol. C 2020, 215, 110604. [Google Scholar] [CrossRef]
- Ye, M.; Zhu, K.; Gao, J.; Chen, R.; Zhang, T. A carbon black floating film for seawater desalination based on interfacial solar heating. Water Supply 2019, 19, 1938–1944. [Google Scholar] [CrossRef]
- Meng, T.; Li, Z.; Wan, Z.; Zhang, J.; Wang, L.; Shi, K.; Bu, X.; Alshehri, S.M.; Bando, Y.; Yamauchi, Y. MOF-Derived Nanoarchitectured Carbons in Wood Sponge Enable Solar-Driven Pumping for High-Efficiency Soil Water Extraction. Chem. Eng. J. 2023, 452, 139193. [Google Scholar] [CrossRef]
- Ming, X.; Guo, A.; Zhang, Q.; Guo, Z.; Yu, F.; Hou, B.; Wang, Y.; Homewood, K.P.; Wang, X. 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification. Carbon 2020, 167, 285–295. [Google Scholar] [CrossRef]
- Wu, D.; Liang, J.; Zhang, D.; Zhang, C.; Zhu, H. Solar evaporation and electricity generation of porous carbonaceous membrane prepared by electrospinning and carbonization. Sol. Energ. Mat. Sol. C 2020, 215, 110591. [Google Scholar] [CrossRef]
- He, P.; Hao, L.; Liu, N.; Bai, H.; Niu, R.; Gong, J. Controllable synthesis of sea urchin-like carbon from metal-organic frameworks for advanced solar vapor generators. Chem. Engin. J. 2021, 423, 130268. [Google Scholar] [CrossRef]
- Wang, Y.; Nie, J.; He, Z.; Zhi, Y.; Ma, X.; Zhong, P. Ti3C2Tx MXene Nanoflakes Embedded with Copper Indium Selenide Nanoparticles for Desalination and Water Purification through High-Efficiency Solar-Driven Membrane Evaporation. ACS Appl. Mater. Interfaces 2022, 14, 5876–5886. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xiao, P.; Ni, F.; Yan, L.; Liu, Q.; Zhang, D.; Gu, J.; Wang, W.; Chen, T. Converting pomelo peel into eco-friendly and low-consumption photothermic biomass sponge toward multifunctioal solar-to-heat conversion. ACS Sustain. Chem. Eng. 2020, 8, 5328–5337. [Google Scholar] [CrossRef]
- Cong, C.; Gao, M.; Xing, G.; Wu, Y.; Liu, L.; Mainul, M.; Wang, J.; Wang, Z. Carbon nanomaterials treated by combination of oxidation and flash for highly efficient solar water evaporation. Chemosphere 2021, 277, 130248. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, X.; Zhang, T.; Li, X.P.; Li, W.; Yu, Z.Z. All-weather-available electrothermal and solar–thermal wood-derived porous carbon-based steam generators for highly efficient water purification. Mater. Chem. Front. 2022, 6, 306–315. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.; Peng, X. Carbon nanofiber stringed hierarchical porous carbon polyhedrons flexible thin films for solar vapor generation. Appl. Phys. A-Mater. 2019, 125, 1–8. [Google Scholar] [CrossRef]
- Luo, X.; Huang, C.; Liu, S.; Zhong, J. High performance of carbon-particle/bulk-wood bi-layer system for solar steam generation. Int. J. Energy Res. 2018, 42, 4830–4839. [Google Scholar] [CrossRef]
- Luo, Z.Y.; Wang, D.; Chen, K.X.; Huang, L.; Liu, X.; Zhang, Q.; Zhu, S.; Zhu, S. Metal Oxy-Hydroxides with a Hierarchical and Hollow Structure for Highly Efficient Solar-Thermal Water Evaporation. ACS Appl. Mater. Interfaces 2021, 13, 27726–27733. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, H.; Yin, Z.; Zhao, J.; Yin, X.; Li, N.; Yin, D.; Li, Y.; Lei, B.; Du, Y.; et al. A general salt-resistant hydrophilic/hydrophobic nanoporous double layer design for efficient and stable solar water evaporation distillation. Mater. Horiz. 2018, 5, 1143–1150. [Google Scholar] [CrossRef]
- Shi, Y.; Meng, N.; Wang, Y.; Cheng, Z.; Zhang, W.; Liao, Y. Scalable Fabrication of Conjugated Microporous Polymer Sponges for Efficient Solar Steam Generation. ACS Appl. Mater. Interfaces 2022, 14, 4522–4531. [Google Scholar] [CrossRef]
- Yin, M.; Hsin, Y.; Guo, X.; Zhang, R.; Huang, X.; Zhang, X. Facile and low-cost ceramic fiber-based carbon-carbon composite for solar evaporation. Sci. Total Environ. 2021, 759, 143546. [Google Scholar] [CrossRef]
- Liu, S.; Huang, C.; Huang, Q.; Wang, F.; Guo, C. A new carbon-black/cellulose-sponge system with water supplied by injection for enhanc-ing solar vapor generation. J. Mater. Chem. A 2019, 7, 17954–17965. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, Q.; Xue, C.; Yang, J.; Hu, S. Chemical treatment of biomass wastes as carbon dot carriers for solar-driven water purification. J. Colloid Interf. Sci. 2022, 621, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Lu, H.; Zhao, F.; Zhou, X.; Shi, W.; Yu, G. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv. Mater. 2020, 32, 1907061. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Xu, H.; Yao, J.; Yang, B.; Li, G.; Bai, Z. Flower-Shaped Carbon Nanomaterials for Highly Efficient Solar-Driven Water Evaporation. Molecules 2022, 27, 7163. https://doi.org/10.3390/molecules27217163
Wang N, Xu H, Yao J, Yang B, Li G, Bai Z. Flower-Shaped Carbon Nanomaterials for Highly Efficient Solar-Driven Water Evaporation. Molecules. 2022; 27(21):7163. https://doi.org/10.3390/molecules27217163
Chicago/Turabian StyleWang, Nan, Haifeng Xu, Jixin Yao, Bo Yang, Guang Li, and Zhi Bai. 2022. "Flower-Shaped Carbon Nanomaterials for Highly Efficient Solar-Driven Water Evaporation" Molecules 27, no. 21: 7163. https://doi.org/10.3390/molecules27217163
APA StyleWang, N., Xu, H., Yao, J., Yang, B., Li, G., & Bai, Z. (2022). Flower-Shaped Carbon Nanomaterials for Highly Efficient Solar-Driven Water Evaporation. Molecules, 27(21), 7163. https://doi.org/10.3390/molecules27217163