A Novel Nanocomposite Based on Triazine Based Covalent Organic Polymer Blended with Porous g-C3N4 for Photo Catalytic Dye Degradation of Rose Bengal and Fast Green
Abstract
:1. Introduction
2. Materials and Synthesis Procedures
2.1. Materials
2.2. Synthesis of Triazine Based Monomer and Polymer
2.2.1. Synthesis of Triazine Based Triarylaldehyde (Tripod)
2.2.2. Synthesis of Polymer of COP-N and COP-A
2.2.3. Synthesis of Bulk and Porous g-C3N4
2.2.4. Synthesis of COP and g-C3N4 Based Nanocomposites
2.3. Measurement
2.4. Sun Light Active Photocatalytic Study of Fast Green (FG) and Rose Bengal (RB)
3. Result and Discussion
3.1. Synthesis of Triazine Based Monomer and Polymer
3.2. XRD Analysis
3.3. Morphology and Elemental Analysis
3.4. Optical Analysis
3.5. Surface Area Analysis
3.6. Photocatalytic Analysis
3.7. Photo Catalysis Mechanism
- (i)
- Production of excitons
- (ii)
- Hydroxyl radicals Generation
- (iii)
- Superoxide radicals Generation
- (iv)
- Degradation of dye molecules
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, J.; Yu, J.; Jiang, C.; Cheng, B. GC3N4-Based Heterostructured Photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. [Google Scholar] [CrossRef]
- Wu, G.; Thind, S.S.; Wen, J.; Yan, K.; Chen, A. A Novel Nanoporous α-C3N4 Photocatalyst with Superior High Visible Light Activity. Appl. Catal. B Environ. 2013, 142–143, 590–597. [Google Scholar] [CrossRef]
- Jagielski, J.; Moncoffre, N.; Delichère, P.; Marest, G. On the Possibility of β-C3N4 Carbon Nitride Synthesis via C and N Implantation into Copper. J. Mater. Sci. 1999, 34, 2949–2954. [Google Scholar] [CrossRef]
- Zheng, Q.; Shen, H.; Shuai, D. Emerging Investigators Series: Advances and Challenges of Graphitic Carbon Nitride as a Visible-Light-Responsive Photocatalyst for Sustainable Water Purification. Environ. Sci. Water Res. Technol. 2017, 3, 982–1001. [Google Scholar] [CrossRef]
- Sun, Y.; Ha, W.; Chen, J.; Qi, H.; Shi, Y. Advances and Applications of Graphitic Carbon Nitride as Sorbent in Analytical Chemistry for Sample Pretreatment: A Review. TrAC Trends Anal. Chem. 2016, 84, 12–21. [Google Scholar] [CrossRef]
- Jiang, L.; Yuan, X.; Pan, Y.; Liang, J.; Zeng, G.; Wu, Z.; Wang, H. Doping of Graphitic Carbon Nitride for Photocatalysis: A Reveiw. Appl. Catal. B Environ. 2017, 217, 388–406. [Google Scholar] [CrossRef]
- Li, X.; Edelmannová, M.; Huo, P.; Kočí, K. Fabrication of Highly Stable CdS/g-C3N4 Composite for Enhanced Photocatalytic Degradation of RhB and Reduction of CO2. J. Mater. Sci. 2020, 55, 3299–3313. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Antonietti, M. Graphitic Carbon Nitride “Reloaded”: Emerging Applications beyond (Photo)Catalysis. Chem. Soc. Rev. 2016, 45, 2308–2326. [Google Scholar] [CrossRef] [Green Version]
- Zhai, H.-S.; Cao, L.; Xia, X.-H. Synthesis of Graphitic Carbon Nitride through Pyrolysis of Melamine and Its Electrocatalysis for Oxygen Reduction Reaction. Chin. Chem. Lett. 2013, 24, 103–106. [Google Scholar] [CrossRef]
- Zhu, J.; Xiao, P.; Li, H.; Carabineiro, S.A.C. Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis. ACS Appl. Mater. Interfaces 2014, 6, 16449–16465. [Google Scholar] [CrossRef]
- Li, X.; Xiong, J.; Gao, X.; Huang, J.; Feng, Z.; Chen, Z.; Zhu, Y. Recent Advances in 3D G-C3N4 Composite Photocatalysts for Photocatalytic Water Splitting, Degradation of Pollutants and CO2 Reduction. J. Alloys Compd. 2019, 802, 196–209. [Google Scholar] [CrossRef]
- Shi, L.; Liang, L.; Wang, F.; Ma, J.; Sun, J. Polycondensation of Guanidine Hydrochloride into a Graphitic Carbon Nitride Semiconductor with a Large Surface Area as a Visible Light Photocatalyst. Catal. Sci. Technol. 2014, 4, 3235–3243. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Highly Selective Production of Hydrogen Peroxide on Graphitic Carbon Nitride (g-C3 N4) Photocatalyst Activated by Visible Light. ACS Catal. 2014, 4, 774–780. [Google Scholar] [CrossRef]
- Xu, Q.; Cheng, B.; Yu, J.; Liu, G. Making Co-Condensed Amorphous Carbon/g-C3N4 Composites with Improved Visible-Light Photocatalytic H2-Production Performance Using Pt as Cocatalyst. Carbon 2017, 118, 241–249. [Google Scholar] [CrossRef]
- Tian, N.; Zhang, Y.; Li, X.; Xiao, K.; Du, X.; Dong, F.; Waterhouse, G.I.N.; Zhang, T.; Huang, H. Precursor-Reforming Protocol to 3D Mesoporous g-C3N4 Established by Ultrathin Self-Doped Nanosheets for Superior Hydrogen Evolution. Nano Energy 2017, 38, 72–81. [Google Scholar] [CrossRef]
- Li, G.; Lian, Z.; Wang, W.; Zhang, D.; Li, H. Nanotube-Confinement Induced Size-Controllable g-C3N4 Quantum Dots Modified Single-Crystalline TiO2 Nanotube Arrays for Stable Synergetic Photoelectrocatalysis. Nano Energy 2016, 19, 446–454. [Google Scholar] [CrossRef]
- Dong, G.; Ho, W.; Li, Y.; Zhang, L. Facile Synthesis of Porous Graphene-like Carbon Nitride (C6N9H3) with Excellent Photocatalytic Activity for NO Removal. Appl. Catal. B Environ. 2015, 174–175, 477–485. [Google Scholar] [CrossRef]
- Cao, M.; Zhang, X.; Qin, J.; Liu, R. Enhancement of Hydrogen Evolution Reaction Performance of Graphitic Carbon Nitride with Incorporated Nickel Boride. ACS Sustain. Chem. Eng. 2018, 6, 16198–16204. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.; Guan, J.; Zhen, J.; Sun, Z.; Du, P.; Lu, Y.; Yang, S. A Facile Mechanochemical Route to a Covalently Bonded Graphitic Carbon Nitride (g-C3N4) and Fullerene Hybrid toward Enhanced Visible Light Photocatalytic Hydrogen Production. Nanoscale 2017, 9, 5615–5623. [Google Scholar] [CrossRef]
- Wen, J.; Xie, J.; Chen, X.; Li, X. A Review on G-C 3 N 4 -Based Photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. [Google Scholar] [CrossRef]
- Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric Photocatalysts Based on Graphitic Carbon Nitride. Adv. Mater. 2015, 27, 2150–2176. [Google Scholar] [CrossRef] [PubMed]
- Kessler, F.K.; Zheng, Y.; Schwarz, D.; Merschjann, C.; Schnick, W.; Wang, X.; Bojdys, M.J. Functional Carbon Nitride Materials—Design Strategies for Electrochemical Devices. Nat. Rev. Mater. 2017, 2, 17030. [Google Scholar] [CrossRef]
- Darkwah, W.K.; Oswald, K.A. Photocatalytic Applications of Heterostructure Graphitic Carbon Nitride: Pollutant Degradation, Hydrogen Gas Production (Water Splitting), and CO2 Reduction. Nanoscale Res. Lett. 2019, 14, 234. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Wan, W.; Li, H.; Yuan, S.; Zhao, H.; Wong, P.K. A Hierarchical Z-Scheme α-Fe2O3/g-C3N4 Hybrid for Enhanced Photocatalytic CO2 Reduction. Adv. Mater. 2018, 30, 1706108. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Zhu, Y. Nanoporous Graphitic Carbon Nitride with Enhanced Photocatalytic Performance. Langmuir 2013, 29, 10566–10572. [Google Scholar] [CrossRef] [PubMed]
- Spitler, E.L.; Colson, J.W.; Uribe-Romo, F.J.; Woll, A.R.; Giovino, M.R.; Saldivar, A.; Dichtel, W.R. Lattice Expansion of Highly Oriented 2D Phthalocyanine Covalent Organic Framework Films. Angew. Chem. 2012, 124, 2677–2681. [Google Scholar] [CrossRef]
- Dogru, M.; Handloser, M.; Auras, F.; Kunz, T.; Medina, D.; Hartschuh, A.; Knochel, P.; Bein, T. A Photoconductive Thienothiophene-Based Covalent Organic Framework Showing Charge Transfer Towards Included Fullerene. Angew. Chem. Int. Ed. 2013, 52, 2920–2924. [Google Scholar] [CrossRef]
- Bertrand, G.H.V.; Michaelis, V.K.; Ong, T.-C.; Griffin, R.G.; Dincă, M. Thiophene-Based Covalent Organic Frameworks. Proc. Natl. Acad. Sci. USA 2013, 110, 4923–4928. [Google Scholar] [CrossRef] [Green Version]
- Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. A Belt-Shaped, Blue Luminescent, and Semiconducting Covalent Organic Framework. Angew. Chem. Int. Ed. 2008, 47, 8826–8830. [Google Scholar] [CrossRef]
- Díaz, U.; Corma, A. Ordered Covalent Organic Frameworks, COFs and PAFs. From Preparation to Application. Coord. Chem. Rev. 2016, 311, 85–124. [Google Scholar] [CrossRef]
- Dalapati, S.; Jin, S.; Gao, J.; Xu, Y.; Nagai, A.; Jiang, D. An Azine-Linked Covalent Organic Framework. J. Am. Chem. Soc. 2013, 135, 17310–17313. [Google Scholar] [CrossRef] [PubMed]
- Doonan, C.J.; Tranchemontagne, D.J.; Glover, T.G.; Hunt, J.R.; Yaghi, O.M. Exceptional Ammonia Uptake by a Covalent Organic Framework. Nat. Chem. 2010, 2, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Gu, S.; Zheng, J.; Zhuang, Z.; Qiu, S.; Yan, Y. 3D Microporous Base-Functionalized Covalent Organic Frameworks for Size-Selective Catalysis. Angew. Chem. 2014, 126, 2922–2926. [Google Scholar] [CrossRef]
- Ding, S.-Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.-G.; Su, C.-Y.; Wang, W. Construction of Covalent Organic Framework for Catalysis: Pd/COF-LZU1 in Suzuki–Miyaura Coupling Reaction. J. Am. Chem. Soc. 2011, 133, 19816–19822. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Chen, X.; Gao, J.; Lin, J.; Addicoat, M.; Irle, S.; Jiang, D. Catalytic Covalent Organic Frameworks via Pore Surface Engineering. Chem. Commun. 2014, 50, 1292–1294. [Google Scholar] [CrossRef]
- Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. A Photoconductive Covalent Organic Framework: Self-Condensed Arene Cubes Composed of Eclipsed 2D Polypyrene Sheets for Photocurrent Generation. Angew. Chem. 2009, 121, 5547–5550. [Google Scholar] [CrossRef]
- DeBlase, C.R.; Silberstein, K.E.; Truong, T.-T.; Abruña, H.D.; Dichtel, W.R. β-Ketoenamine-Linked Covalent Organic Frameworks Capable of Pseudocapacitive Energy Storage. J. Am. Chem. Soc. 2013, 135, 16821–16824. [Google Scholar] [CrossRef]
- Manibalan, G.; Murugadoss, G.; Thangamuthu, R.; Kumar, M.R.; Kumar, R.M.; Jayavel, R. CeO2-Based Heterostructure Nanocomposite for Electrochemical Determination of l-Cysteine Biomolecule. Inorg. Chem. Commun. 2020, 113, 107793. [Google Scholar] [CrossRef]
- Murugadoss, G.; Ma, J.; Ning, X.; Kumar, M.R. Selective Metal Ions Doped CeO2 Nanoparticles for Excellent Photocatalytic Activity under Sun Light and Supercapacitor Application. Inorg. Chem. Commun. 2019, 109, 107577. [Google Scholar] [CrossRef]
- Murugadoss, G.; Jayavel, R.; Thangamuthu, R.; Kumar, M.R. PbO/CdO/ZnO and PbS/CdS/ZnS Nanocomposites: Studies on Optical, Electrochemical and Thermal Properties. J. Lumin. 2016, 170, 78–89. [Google Scholar] [CrossRef]
- Murugadoss, G.; Thiruppathi, K.; Venkatesh, N.; Hazra, S.; Mohankumar, A.; Thiruppathi, G.; Kumar, M.R.; Sundararaj, P.; Rajabathar, J.R.; Sakthivel, P. Construction of Novel Quaternary Nanocomposite and Its Synergistic Effect towards Superior Photocatalytic and Antibacterial Application. J. Environ. Chem. Eng. 2022, 10, 106961. [Google Scholar] [CrossRef]
- Ranjith Kumar, D.; Ranjith, K.S.; Nivedita, L.R.; Asokan, K.; Rajendra Kumar, R.T. Swift Heavy Ion Induced Effects on Structural, Optical and Photo-Catalytic Properties of Ag Irradiated Vertically Aligned ZnO Nanorod Arrays. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2019, 450, 95–99. [Google Scholar] [CrossRef]
- Xu, N.; Wang, R.L.; Li, D.P.; Meng, X.; Mu, J.L.; Zhou, Z.Y.; Su, Z.M. A New Triazine-Based Covalent Organic Polymer for Efficient Photodegradation of Both Acidic and Basic Dyes under Visible Light. Dalt. Trans. 2018, 47, 4191–4197. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Hu, X.; Wang, Y.; Meng, L.; Zhou, Y.; Zhang, J.; Chen, M.; Zhang, X. Triazine-Based Covalent Organic Frameworks for Photodynamic Inactivation of Bacteria as Type-II Photosensitizers. J. Photochem. Photobiol. B Biol. 2017, 175, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Wu, K.; Wu, H.; Guo, J.; Zhang, L. Effect of Fe/Sn Doping on the Photocatalytic Performance of Multi-Shelled ZnO Microspheres: Experimental and Theoretical Investigations. Dalt. Trans. 2019, 48, 13260–13272. [Google Scholar] [CrossRef]
- Murugadoss, G.; Kumar, D.D.; Kumar, M.R.; Venkatesh, N.; Sakthivel, P. Silver Decorated CeO2 Nanoparticles for Rapid Photocatalytic Degradation of Textile Rose Bengal Dye. Sci. Rep. 2021, 11, 1080. [Google Scholar] [CrossRef]
- Padmanaban, A.; Murugadoss, G.; Venkatesh, N.; Hazra, S.; Rajesh Kumar, M.; Tamilselvi, R.; Sakthivel, P. Electrochemical Determination of Harmful Catechol and Rapid Decolorization of Textile Dyes Using Ceria and Tin Doped ZnO Nanoparticles. J. Environ. Chem. Eng. 2021, 9, 105976. [Google Scholar] [CrossRef]
- Prashantha Kumar, T.K.M.; Ashok Kumar, S.K. Visible-Light-Induced Degradation of Rhodamine B by Nanosized Ag2S-ZnS Loaded on Cellulose. Photochem. Photobiol. Sci. 2019, 18, 148–154. [Google Scholar] [CrossRef]
S. No | Catalyst | Degradation Efficiency (%) | K (min−1) | R2 |
---|---|---|---|---|
FG dye solution | ||||
1 | COP-N | 57.07 | 0.011 | 0.91 |
2 | COP-A | 68.86 | 0.017 | 0.99 |
3 | P-GCN | 80.66 | 0.023 | 0.98 |
4 | PN-GCN | 79.71 | 0.023 | 0.98 |
5 | PA-GCN | 88.20 | 0.032 | 0.96 |
RB dye solution | ||||
1 | COP-N | 51.4 | 0.009 | 0.91 |
2 | COP-A | 55.3 | 0.012 | 0.99 |
3 | P-GCN | 81.4 | 0.023 | 0.95 |
4 | PN-GCN | 77.8 | 0.020 | 0.95 |
5 | PA-GCN | 82.3 | 0.024 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venkatesh, N.; Murugadoss, G.; Mohamed, A.A.A.; Kumar, M.R.; Peera, S.G.; Sakthivel, P. A Novel Nanocomposite Based on Triazine Based Covalent Organic Polymer Blended with Porous g-C3N4 for Photo Catalytic Dye Degradation of Rose Bengal and Fast Green. Molecules 2022, 27, 7168. https://doi.org/10.3390/molecules27217168
Venkatesh N, Murugadoss G, Mohamed AAA, Kumar MR, Peera SG, Sakthivel P. A Novel Nanocomposite Based on Triazine Based Covalent Organic Polymer Blended with Porous g-C3N4 for Photo Catalytic Dye Degradation of Rose Bengal and Fast Green. Molecules. 2022; 27(21):7168. https://doi.org/10.3390/molecules27217168
Chicago/Turabian StyleVenkatesh, Nachimuthu, Govindhasamy Murugadoss, Abdul Azeez Ashif Mohamed, Manavalan Rajesh Kumar, Shaik Gouse Peera, and Pachagounder Sakthivel. 2022. "A Novel Nanocomposite Based on Triazine Based Covalent Organic Polymer Blended with Porous g-C3N4 for Photo Catalytic Dye Degradation of Rose Bengal and Fast Green" Molecules 27, no. 21: 7168. https://doi.org/10.3390/molecules27217168
APA StyleVenkatesh, N., Murugadoss, G., Mohamed, A. A. A., Kumar, M. R., Peera, S. G., & Sakthivel, P. (2022). A Novel Nanocomposite Based on Triazine Based Covalent Organic Polymer Blended with Porous g-C3N4 for Photo Catalytic Dye Degradation of Rose Bengal and Fast Green. Molecules, 27(21), 7168. https://doi.org/10.3390/molecules27217168