Design and Preparation of NiFe2O4@FeOOH Composite Electrocatalyst for Highly Efficient and Stable Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Synthesis of FeOOH NSs/Fe, NFO@FeOOH NSs/Fe, and NFO NFs@FeOOH NSs/Fe Catalysts
3.3. Material Characterization
3.4. Electrochemical Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Li, G.; Dang, C.; Hou, Y.; Dang, F.; Fan, Y.; Guo, Z. Experimental and Theoretical Characteristic of Single Atom Co-N-C Catalyst For Li-O2 Batteries. Eng. Sci. 2020, 10, 85–94. [Google Scholar] [CrossRef]
- Padvi, M.N.; Moholkar, A.V.; Prasad, S.R.; Prasad, N.R. A Critical Review on Design and Development of Gas Sensing Materials. Eng. Sci. 2021, 15, 20–37. [Google Scholar] [CrossRef]
- Zhao, J.; Wei, D.; Zhang, C.; Shao, Q.; Murugadoss, V.; Guo, Z.; Jiang, Q.; Yang, X. An Overview of Oxygen Reduction Electrocatalysts for Rechargeable Zinc-Air Batteries Enabled by Carbon and Carbon Composites. Eng. Sci. 2021, 15, 1–19. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, J.; Mao, B.; An, T.; Wang, J.; Cao, M. Inside solid-liquid interfaces: Understanding the influence of the electrical double layer on alkaline hydrogen evolution reaction. Appl. Catal. B 2021, 293, 120220. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, L.; Zhao, P.; Lee, L.Y.S.; Wong, K.Y. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem. Rev. 2020, 120, 851–918. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Jana, S.; Singh, G.P.; Dey, R.K. Graphene-supported TiO2: Study of promotion of charge carrier in photocatalytic water splitting and methylene blue dye degradation. Adv. Compos. Hybrid. Mater 2020, 3, 127–140. [Google Scholar] [CrossRef]
- You, B.; Sun, Y. Innovative Strategies for Electrocatalytic Water Splitting. Acc. Chem. Res. 2018, 51, 1571–1580. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Zhu, S.S.; Liu, Y.Y.; Zhang, X.; Wang, J.J.; Braun, A. Covalent SO Bonding Enables Enhanced Photoelectrochemical Performance of Cu2 S/Fe2 O3 Heterojunction for Water Splitting. Small 2021, 17, 2100320. [Google Scholar] [CrossRef]
- Liang, J.; Shen, H.; Kong, J. Steel Mesh Reinforced Ni(OH)2 Nanosheets with Enhanced Oxygen Evolution Reaction Performance. ES Mater. Manuf. 2021, 14, 79–86. [Google Scholar] [CrossRef]
- Lei, Y.Q.; Xu, T.T.; Ye, S.H.; Zheng, L.R.; Liao, P.; Xiong, W.; Hu, J.; Wang, Y.J.; Wang, J.P.; Ren, X.Z.; et al. Engineering defect-rich Fe-doped NiO coupled Ni cluster nanotube arrays with excellent oxygen evolution activity. Appl. Catal. B-Environ. 2021, 285, 119809. [Google Scholar] [CrossRef]
- Sun, H.; Yan, Z.; Liu, F.; Xu, W.; Cheng, F.; Chen, J. Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution. Adv. Mater. 2020, 32, 1806326. [Google Scholar] [CrossRef] [PubMed]
- Pascuzzi, M.E.C.; Hofmann, J.P.; Hensen, E.J.M. Promoting oxygen evolution of IrO2 in acid electrolyte by Mn. Electrochim. Acta 2021, 366, 137448. [Google Scholar] [CrossRef]
- Li, S.; Gao, Y.; Li, N.; Ge, L.; Bu, X.; Feng, P. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ. Sci. 2021, 14, 1897–1927. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, P.; Yang, J.; Wang, X. Update on Recent Designing Strategies of Transition Metal-Based Layered Double Hydroxides Bifunctional electrocatalysts. ES Energy Environ. 2019, 5, 22–36. [Google Scholar] [CrossRef]
- Ma, Y.; Xie, X.; Yang, W.; Yu, Z.; Sun, X.; Zhang, Y.; Yang, X.; Kimura, H.; Hou, C.; Guo, Z.; et al. Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv. Compos Hybrid. Mater 2021, 4, 906–924. [Google Scholar] [CrossRef]
- Guo, Y.; Park, T.; Yi, J.W.; Henzie, J.; Kim, J.; Wang, Z.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J.; et al. Nanoarchitectonics for Transition-Metal-Sulfide-Based Electrocatalysts for Water Splitting. Adv. Mater. 2019, 31, 1807134. [Google Scholar] [CrossRef]
- Li, Z.; Cai, L.; Song, M.; Shen, Y.; Wang, X.; Li, J.; Wang, J.; Wang, P.; Tian, L. Ternary FeCoNi alloy nanoparticles embedded in N-doped carbon nanotubes for efficient oxygen evolution reaction electrocatalysis. Electrochim. Acta 2020, 339, 135886. [Google Scholar] [CrossRef]
- Wu, Z.P.; Lu, X.F.; Zang, S.Q.; Lou, X.W. Non-Noble-Metal-Based Electrocatalysts toward the Oxygen Evolution Reaction. Adv. Funct. Mater. 2020, 30, 1910274. [Google Scholar] [CrossRef]
- Hou, C.; Yang, W.; Xie, X.; Sun, X.; Wang, J.; Naik, N.; Pan, D.; Mai, X.; Guo, Z.; Dang, F.; et al. Agaric-like anodes of porous carbon decorated with MoO2 nanoparticles for stable ultralong cycling lifespan and high-rate lithium/sodium storage. J. Colloid. Interface Sci. 2021, 596, 396–407. [Google Scholar] [CrossRef]
- Wu, N.; Du, W.; Hu, Q.; Vupputuri, S.; Jiang, Q. Recent Development in Fabrication of Co Nanostructures and Their Carbon Nanocomposites for Electromagnetic Wave Absorption. Eng. Sci. 2020, 13, 11–23. [Google Scholar] [CrossRef]
- Feng, L.; Lu, W.; Liu, J.; Li, D.; Hu, L.; Xu, C. Guarding active sites and electron transfer engineering of core-shell nanosheet as robust bifunctional applications for overall water splitting and capacitors. Electrochim. Acta 2020, 331, 135372. [Google Scholar] [CrossRef]
- Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chem. Rev. 2017, 117, 10121–10211. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kim, B.; Kim, H.; Kang, K. Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction. Adv. Energy Mater. 2018, 8, 1702774. [Google Scholar] [CrossRef]
- Hou, C.; Wang, B.; Murugadoss, V.; Vupputuri, S.; Chao, Y.; Guo, Z.; Wang, C.; Du, W. Recent Advances in Co3O4 as Anode Materials for High-Performance Lithium-Ion Batteries. Eng. Sci. 2020, 11, 19–30. [Google Scholar] [CrossRef]
- Yang, H.; Liu, Y.; Luo, S.; Zhao, Z.; Wang, X.; Luo, Y.; Wang, Z.; Jin, J.; Ma, J. Lateral-Size-Mediated Efficient Oxygen Evolution Reaction: Insights into the Atomically Thin Quantum Dot Structure of NiFe2O4. ACS Catal. 2017, 7, 5557–5567. [Google Scholar] [CrossRef]
- Yuan, F.; Cheng, X.; Wang, M.; Ni, Y. Controlled synthesis of tubular ferrite MFe2O4 (M = Fe, Co, Ni) microstructures with efficiently electrocatalytic activity for water splitting. Electrochim. Acta 2019, 324, 134883. [Google Scholar] [CrossRef]
- Choi, J.; Kim, D.; Zheng, W.; Yan, B.; Li, Y.; Lee, L.Y.S.; Piao, Y. Interface engineered NiFe2O4−x/NiMoO4 nanowire arrays for electrochemical oxygen evolution. Appl. Catal. B 2021, 286, 119857. [Google Scholar] [CrossRef]
- Liu, J.L.; Zhu, D.D.; Ling, T.; Vasileff, A.; Qiao, S.Z. S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy 2017, 40, 264–273. [Google Scholar] [CrossRef]
- Wu, Z.; Zou, Z.; Huang, J.; Gao, F. NiFe2O4 Nanoparticles/NiFe Layered Double-Hydroxide Nanosheet Heterostructure Array for Efficient Overall Water Splitting at Large Current Densities. ACS Appl. Mater. Interfaces 2018, 10, 26283–26292. [Google Scholar] [CrossRef]
- Fan, A.; Qin, C.; Zhang, X.; Dai, X.; Dong, Z.; Luan, C.; Yu, L.; Ge, J.; Gao, F. Phosphorus-Doped FeNi Alloys/NiFe2O4 Imbedded in Carbon Network Hollow Bipyramid as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Sustain. Chem. Eng. 2018, 7, 2285–2295. [Google Scholar] [CrossRef]
- Chen, S.; Mao, M.; Liu, X.; Hong, S.; Lu, Z.; Sang, S.; Liu, K.; Liu, H. A High-Rate Cathode Material Hybridized by in-Site Grown Ni–Fe Layered Double Hydroxides and Carbon Black Nanoparticles. J. Mater. Chem. A 2016, 4, 4877–4881. [Google Scholar] [CrossRef]
- Ali, G.; Park, Y.J.; Hussain, A.; Cho, S.O. A Novel Route to the Formation of 3D Nanoflower-like Hierarchical Iron Oxide Nanostructure. Nanotechnology 2019, 30, 095601. [Google Scholar] [CrossRef] [PubMed]
- Kan, S.; Xu, M.; Feng, W.; Wu, Y.; Du, C.; Gao, X.; Wu, Y.A.; Liu, H. Tuning Overall Water Splitting on an Electrodeposited NiCoFeP Films. ChemElectroChem 2021, 8, 539–546. [Google Scholar] [CrossRef]
- Li, Z.; Deng, S.; Yu, H.; Yin, Z.; Qi, S.; Yang, L.; Lv, J.; Sun, Z.; Zhang, M. Fe–Co–Ni Trimetallic Organic Framework Chrysanthemum-like Nanoflowers: Efficient and Durable Oxygen Evolution Electrocatalysts. J. Mater. Chem. A 2022, 10, 4230–4241. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, J.-J.; Zou, Y.; Jiang, L.-W.; Liu, X.-L.; Jiang, W.-J.; Liu, H.; Hu, J.-S. Selective Se doping of NiFe2O4 on an active NiOOH scaffold for efficient and robust water oxidation. Chem. Eng. J. 2021, 42, 1395–1403. [Google Scholar] [CrossRef]
- Chourpa, I.; Douziech-Eyrolles, L.; Ngaboni-Okassa, L.; Fouquenet, J.F.; Cohen-Jonathan, S.; Souce, M.; Marchais, H.; Dubois, P. Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst 2005, 130, 1395–1403. [Google Scholar] [CrossRef]
- Xiao, Y.L.; Zai, J.T.; Li, X.M.; Gong, Y.; Li, B.; Han, Q.Y.; Qian, X.F. Polydopamine functionalized graphene/NiFe2O4 nanocomposite with improving Li storage performances. Nano Energy 2014, 6, 51–58. [Google Scholar] [CrossRef]
- Landon, J.; Demeter, E.; Inoglu, N.; Keturakis, C.; Wachs, I.E.; Vasic, R.; Frenkel, A.I.; Kitchin, J.R. Spectroscopic Characterization of Mixed Fe-Ni Oxide Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Electrolytes. ACS Catal. 2012, 2, 1793–1801. [Google Scholar] [CrossRef]
- Zhou, L.J.; Huang, X.; Chen, H.; Jin, P.; Li, G.D.; Zou, X. A high surface area flower-like Ni-Fe layered double hydroxide for electrocatalytic water oxidation reaction. Dalton Trans. 2015, 44, 11592–11600. [Google Scholar] [CrossRef]
- Hunter, B.M.; Hieringer, W.; Winkler, J.R.; Gray, H.B.; Müller, A.M. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy Environ. Sci. 2016, 9, 1734–1743. [Google Scholar] [CrossRef]
- Chen, X.; Zeng, Y.; Chen, Z.; Wang, S.; Xin, C.; Wang, L.; Shi, C.; Lu, L.; Zhang, C. Synthesis and Electrochemical Property of FeOOH/Graphene Oxide Composites. Front. Chem. 2020, 8, 328. [Google Scholar] [CrossRef] [PubMed]
- Safi, S.R.; Senmoto, K.; Gotoh, T.; Iizawa, T.; Nakai, S. The effect of gamma-FeOOH on enhancing arsenic adsorption from groundwater with DMAPAAQ + FeOOH gel composite. Sci. Rep. 2019, 9, 11909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, N.; Zhang, Y.; Zhang, T.; Liu, Y.; Qiao, J. Efficient quantum dots anchored nanocomposite for highly active ORR/OER electrocatalyst of advanced metal-air batteries. Nano Energy 2019, 57, 176–185. [Google Scholar] [CrossRef]
- Liu, X.; Guo, R.; Ni, K.; Xia, F.; Niu, C.; Wen, B.; Meng, J.; Wu, P.; Wu, J.; Wu, X.; et al. Reconstruction-Determined Alkaline Water Electrolysis at Industrial Temperatures. Adv. Mater. 2020, 32, 2001136. [Google Scholar] [CrossRef]
- Kuai, C.; Xi, C.; Hu, A.; Zhang, Y.; Xu, Z.; Nordlund, D.; Sun, C.-J.; Cadigan, C.A.; Richards, R.M.; Li, L.; et al. Revealing the Dynamics and Roles of Iron Incorporation in Nickel Hydroxide Water Oxidation Catalysts. J. Am. Chem. Soc. 2021, 143, 18519–18526. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.B.; Enman, L.J.; Batchellor, A.S.; Cosby, M.R.; Vise, A.E.; Trang, C.D.M.; Boettcher, S.W. Measurement Techniques for the Study of Thin Film Heterogeneous Water Oxidation Electrocatalysts. Chem. Mat. 2017, 29, 120–140. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S.; Shao, Z.; Lim, J. Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 2020, 49, 9154–9196. [Google Scholar] [CrossRef]
- Sun, H.; Qin, D.; Huang, S.; Guo, X.; Li, D.; Luo, Y.; Meng, Q. Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ. Sci. 2011, 4, 2630–2637. [Google Scholar] [CrossRef]
- Xu, Q.; Jiang, H.; Duan, X.; Jiang, Z.; Hu, Y.; Boettcher, S.W.; Zhang, W.; Guo, S.; Li, C. Fluorination-enabled Reconstruction of NiFe Electrocatalysts for Efficient Water Oxidation. Nano Lett. 2021, 21, 492–499. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Z.; Pan, Z.; Liu, L.; Xi, J.; Luo, X.; Shen, Y. Exceptional Performance of Hierarchical Ni-Fe (hydr)oxide@NiCu Electrocatalysts for Water Splitting. Adv. Mater. 2019, 31, 1806769. [Google Scholar] [CrossRef]
- Anantharaj, S.; Ede, S.R.; Karthick, K.; Sankar, S.S.; Sangeetha, K.; Karthik, P.E.; Kundu, S. Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment. Energy Environ. Sci. 2018, 11, 744–771. [Google Scholar] [CrossRef]
- Gu, Y.; Pan, Z.; Zhang, H.; Zhu, J.; Yuan, B.; Pan, D.; Wu, C.; Dong, B.; Guo, Z. Synthesis of high performance diesel oxidation catalyst using novel mesoporous AlLaZrTiOx mixed oxides by a modified sol-gel method. Adv. Compos Hybrid. Mater. 2020, 3, 583–593. [Google Scholar] [CrossRef]
- Khan, S.H.; Pathak, B.; Fulekar, M.H. A study on the influence of metal (Fe, Bi, and Ag) doping on structural, optical, and antimicrobial activity of ZnO nanostructures. Adv. Compos Hybrid. Mater. 2020, 3, 551–569. [Google Scholar] [CrossRef]
- Cui, M.; Yang, C.; Li, B.; Dong, Q.; Wu, M.; Hwang, S.; Xie, H.; Wang, X.; Wang, G.; Hu, L. High-Entropy Metal Sulfide Nanoparticles Promise High-Performance Oxygen Evolution Reaction. Adv. Energy Mater. 2020, 11, 2002887. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S.L.; Maijenburg, A.W.; Wehrspohn, R.B. Bifunctional Heterostructure Assembly of NiFe LDH Nanosheets on NiCoP Nanowires for Highly Efficient and Stable Overall Water Splitting. Adv. Funct. Mater. 2018, 28, 1706847. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, K.; Yu, Z.; Sun, C.; Wang, Z.; Feng, N.; Mai, L.; Wang, Y.; Xia, Y. In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction. Energy Environ. Sci. 2020, 13, 2200–2208. [Google Scholar] [CrossRef]
- Li, X.-L.; Yang, G.-Q.; Li, S.-S.; Xiao, N.; Li, N.; Gao, Y.-Q.; Lv, D.; Ge, L. Novel dual co-catalysts decorated Au@HCS@PdS hybrids with spatially separated charge carriers and enhanced photocatalytic hydrogen evolution activity. Chem. Eng. J. 2020, 379, 122350. [Google Scholar] [CrossRef]
- Mabayoje, O.; Shoola, A.; Wygant, B.R.; Mullins, C.B. The Role of Anions in Metal Chalcogenide Oxygen Evolution Catalysis: Electrodeposited Thin Films of Nickel Sulfide as “Pre-catalysts”. ACS Energy Lett. 2016, 1, 195–201. [Google Scholar] [CrossRef]
- He, F.; Huang, Z.; Wei, G.; Zhao, K.; Wang, G.; Kong, X.; Feng, Y.; Tan, H.; Hou, S.; Lv, Y.; et al. Biomass chemical-looping gasification coupled with water/CO2-splitting using NiFe2O4 as an oxygen carrier. Energy Convers. Manag. 2019, 201, 112157. [Google Scholar]
- Domínguez-Arvizu, J.L.; Jiménez-Miramontes, J.A.; Salinas-Gutiérrez, J.M.; Meléndez-Zaragoza, M.J.; López-Ortiz, A.; Collins-Martínez, V. Study of NiFe2O4 nanoparticles optical properties by a six-flux radiation model towards the photocatalytic hydrogen production. Int. J. Hydrogen Energy 2019, 44, 12455–12462. [Google Scholar] [CrossRef]
- Shinde, P.V.; Mane, P.; Chakraborty, B.; Sekhar Rout, C. Spinel NiFe2O4 nanoparticles decorated 2D Ti3C2 MXene sheets for efficient water splitting: Experiments and theories. J. Colloid. Interface. Sci. 2021, 602, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.J.; Pachfule, P.; Li, S.; Simke, J.R.J.; Schmidt, J.; Thomas, A. Bifunctional Electrocatalysts for Overall Water Splitting from an Iron/Nickel-Based Bimetallic Metal-Organic Framework/Dicyandiamide Composite. Angew. Chem.-Int. Edit. 2018, 57, 8921–8926. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Gao, G.; Wang, X.; Wu, H.; Shen, S.; Zuo, W.; Cai, G.; Wei, G.; Shi, Y.; Fu, D.; et al. Ion Irradiation Inducing Oxygen Vacancy-Rich NiO/NiFe2O4 Heterostructure for Enhanced Electrocatalytic Water Splitting. Small 2021, 17, e2103501. [Google Scholar] [CrossRef] [PubMed]
- Karpuraranjith, M.; Chen, Y.; Wang, B.; Ramkumar, J.; Yang, D.; Srinivas, K.; Wang, W.; Zhang, W.; Manigandan, R. Hierarchical ultrathin layered MoS2@NiFe2O4 nanohybrids as a bifunctional catalyst for highly efficient oxygen evolution and organic pollutant degradation. J. Colloid. Interface. Sci. 2021, 592, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Weng, W.; Gu, D.; Xiao, W. Nickel based oxide film formed in molten salts for efficient electrocatalytic oxygen evolution. J. Mater. Chem. A 2019, 7, 10514–10522. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.-T.; Shi, B.-Y.; Jiang, L.-W.; Zheng, J.-F.; Wang, J.-J. Design and Preparation of NiFe2O4@FeOOH Composite Electrocatalyst for Highly Efficient and Stable Oxygen Evolution Reaction. Molecules 2022, 27, 7438. https://doi.org/10.3390/molecules27217438
Li T-T, Shi B-Y, Jiang L-W, Zheng J-F, Wang J-J. Design and Preparation of NiFe2O4@FeOOH Composite Electrocatalyst for Highly Efficient and Stable Oxygen Evolution Reaction. Molecules. 2022; 27(21):7438. https://doi.org/10.3390/molecules27217438
Chicago/Turabian StyleLi, Tian-Tian, Bu-Yan Shi, Li-Wen Jiang, Jin-Fan Zheng, and Jian-Jun Wang. 2022. "Design and Preparation of NiFe2O4@FeOOH Composite Electrocatalyst for Highly Efficient and Stable Oxygen Evolution Reaction" Molecules 27, no. 21: 7438. https://doi.org/10.3390/molecules27217438
APA StyleLi, T. -T., Shi, B. -Y., Jiang, L. -W., Zheng, J. -F., & Wang, J. -J. (2022). Design and Preparation of NiFe2O4@FeOOH Composite Electrocatalyst for Highly Efficient and Stable Oxygen Evolution Reaction. Molecules, 27(21), 7438. https://doi.org/10.3390/molecules27217438