Responsive Ag@NiCo2O4 Nanowires Anchored on N-Doped Carbon Cloth as Array Electrodes for Nonenzymatic Glucose Sensing
Abstract
:1. Introduction
2. Results and Discussions
2.1. Physical Characterization
2.2. Electrochemical Measurements
3. Materials and Methods
3.1. Preparation of N-Doped Carbon Cloth (NC)
3.2. Preparation of NiCo2O4-NC
3.3. Preparation of Ag-NiCo2O4-NC
3.4. Electrochemical Measurements
3.5. Physical Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Slaughter, G.; Kulkarni, T. Highly Selective and Sensitive Self-Powered Glucose Sensor Based on Capacitor Circuit. Sci. Rep. 2017, 7, 1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, E.; Cao, Z. Coated glucose sensors dodge recalibration. Nat. Biomed Eng. 2018, 2, 881–882. [Google Scholar] [CrossRef]
- Jian, M.; Wang, C.; Wang, Q.; Wang, H.; Xia, K.; Yin, Z.; Zhang, M.; Liang, X.; Zhang, Y. Advanced carbon materials for flexible and wearable sensors. Sci. China Mater. 2017, 60, 1026–1062. [Google Scholar] [CrossRef]
- Li, H.; Liu, C.; Wang, D.; Zhang, C. Chemiluminescence cloth-based glucose test sensors (CCGTSs): A new class of chemiluminescence glucose sensors. Biosens. Bioelectron. 2017, 91, 268–275. [Google Scholar] [CrossRef]
- Shin, D.H.; Kim, W.; Jun, J.; Lee, J.S.; Kim, J.H.; Jang, J. Highly selective FET-type glucose sensor based on shape-controlled palladium nanoflower-decorated graphene. Sens. Actuators B Chem. 2018, 264, 216–223. [Google Scholar] [CrossRef]
- Cao, M.; Wang, H.; Ji, S.; Zhao, Q.; Pollet, B.G.; Wang, R. Hollow core-shell structured Cu2O@Cu1.8S spheres as novel electrode for enzyme free glucose sensing. Mater. Sci. Eng. C 2019, 95, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Wang, H.; Kannan, P.; Ji, S.; Wang, X.; Zhao, Q.; Linkov, V.; Wang, R. Highly efficient non-enzymatic glucose sensor based on CuxS hollow nanospheres. Appl. Surf. Sci. 2019, 492, 407–416. [Google Scholar] [CrossRef]
- Kim, S.K.; Jeon, C.; Lee, G.H.; Koo, J.; Cho, S.H.; Han, S.; Shin, M.H.; Sim, J.Y.; Hahn, S.K. Hyaluronate-Gold Nanoparticle/Glucose Oxidase Complex for Highly Sensitive Wireless Noninvasive Glucose Sensors. ACS Appl. Mater. Interfaces 2019, 11, 37347–37356. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, X.; Ma, Y.; Yu, Z.; Li, T. Stretchable Transparent Conductive Films Based on Ag Nanowires for Flexible Circuits and Tension Sensors. ACS Appl. Nano Mater. 2021, 4, 3760–3766. [Google Scholar] [CrossRef]
- Bihar, E.; Wustoni, S.; Pappa, A.M.; Salama, K.N.; Baran, D.; Inal, S. A fully inkjet-printed disposable glucose sensor on paper. NPG Flexible Electronics 2018, 2, 30. [Google Scholar] [CrossRef]
- Huang, H.J.; Ning, X.; Zhou, M.B.; Sun, T.; Wu, X.; Zhang, X.P. A Three-Dimensional Printable Liquid Metal-Like Ag Nanoparticle Ink for Making a Super-Stretchable and Highly Cyclic Durable Strain Sensor. ACS Appl. Mater. Interfaces 2021, 13, 18021–18032. [Google Scholar] [CrossRef] [PubMed]
- Liao, Q.L.; Jiang, H.; Zhang, X.W.; Qiu, Q.F.; Tang, Y.; Yang, X.K.; Liu, Y.L.; Huang, W.H. A single nanowire sensor for intracellular glucose detection. Nanoscale 2019, 11, 10702–10708. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Qiao, Y.; Zhao, H.; Liang, J.; Li, T.; Luo, Y.; Lu, S.; Shi, X.; Lu, W.; Sun, X. Electrochemical non-enzymatic glucose sensors: Recent progress and perspectives. Chem. Commun. 2020, 56, 14553–14569. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Ji, S.; Lu, J.; Zhang, L.; Wang, X.; Wang, H. Quick in situ generation of a quinone-enriched surface of N-doped carbon cloth electrodes for electric double-layer capacitors. Dalton Trans. 2021, 50, 3651–3659. [Google Scholar] [CrossRef] [PubMed]
- Gong, K.; Hu, Q.; Xiao, Y.; Cheng, X.; Liu, H.; Wang, N.; Qiu, B.; Guo, Z. Triple layered core–shell ZVI@carbon@polyaniline composite enhanced electron utilization in Cr(vi) reduction. J. Mater. Chem. A 2018, 6, 11119–11128. [Google Scholar] [CrossRef]
- Meng, W.; Wen, Y.; Dai, L.; He, Z.; Wang, L. A novel electrochemical sensor for glucose detection based on Ag@ZIF-67 nanocomposite. Sensors Actuators B Chem. 2018, 260, 852–860. [Google Scholar] [CrossRef]
- Lv, X.; Ji, S.; Linkov, V.; Wang, X.; Wang, H.; Rongfang, W. Three-dimensional N-doped super-hydrophilic carbon electrodes with porosity tailored by Cu2O template-assisted electrochemical oxidation to improve performance of electrical double layer capacitors. J Mater. Chem. A 2020, 9, 2928–2936. [Google Scholar] [CrossRef]
- Yang, X.; Li, Q.; Lu, E.; Wang, Z.; Gong, X.; Yu, Z.; Guo, Y.; Wang, L.; Guo, Y.; Zhan, W.; et al. Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nat. Commun. 2019, 10, 1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Fu, L.; Liu, N.; Liu, M.; Wang, Y.; Liu, Z. Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv. Mater. 2011, 23, 1020–1024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, H.; Ji, S.; Wang, X.; Wang, R. Porous-sheet-assembled Ni(OH)2/NiS arrays with vertical in-plane edge structure for supercapacitors with high stability. Dalton Trans. 2019, 48, 17364–17370. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wang, H.; Ji, S.; Linkov, V.; Wang, R. Core-shell structured Ni3S2@Co(OH)2 nano-wires grown on Ni foam as binder-free electrode for asymmetric supercapacitors. Chem. Eng. J. 2018, 345, 48–57. [Google Scholar] [CrossRef]
- Boppella, R.; Tan, J.; Yang, W.; Moon, J. Homologous CoP/NiCoP Heterostructure on N-Doped Carbon for Highly Efficient and pH-Universal Hydrogen Evolution Electrocatalysis. Adv. Func. Mater. 2018, 29, 1807976. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, X.; Sun, Y.; Zhang, J.; Yang, S.; Song, X.; Yang, Z. A facile strategy for the synthesis of hierarchical CuO nanourchins and their application as non-enzymatic glucose sensors. RSC Adv. 2013, 3, 13712–13719. [Google Scholar] [CrossRef]
- Song, J.; Xu, L.; Xing, R.; Qin, W.; Dai, Q.; Song, H. Ag nanoparticles coated NiO nanowires hierarchical nanocomposites electrode for nonenzymatic glucose biosensing. Sens. Actuators B Chem. 2013, 182, 675–681. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Yang, J.; Liu, G.; Li, J.; Guo, L.; Chen, S.; Guo, Q. NiCo2O4 nanoneedle-decorated electrospun carbon nanofiber nanohybrids for sensitive non-enzymatic glucose sensors. Sens. Actuators B Chem. 2018, 258, 920–928. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, B.; Xiao, C.; Zhou, H.; Wang, X.; He, D. Carbon nanotube template synthesis of hierarchical NiCoO2 composite for non-enzyme glucose detection. Sens. Actuators B Chem. 2016, 222, 232–239. [Google Scholar] [CrossRef]
- Xu, D.; Zhu, C.; Meng, X.; Chen, Z.; Li, Y.; Zhang, D.; Zhu, S. Design and fabrication of Ag-CuO nanoparticles on reduced graphene oxide for nonenzymatic detection of glucose. Sensors Actuators B Chem. 2018, 265, 435–442. [Google Scholar] [CrossRef]
- Ngo, Y.-L.T.; Hoa, L.T.; Chung, J.S.; Hur, S.H. Multi-dimensional Ag/NiO/reduced graphene oxide nanostructures for a highly sensitive non-enzymatic glucose sensor. J. Alloys Compd. 2017, 712, 742–751. [Google Scholar] [CrossRef]
Catalyst | Sensitivity (μA cm−2 mM−1) | Linear Range (mM) | DOL (μM) | R2 | Ref. |
---|---|---|---|---|---|
NiCo2O4 | 1197 | 0.001~1 | 2.494 | 0.995 | This work |
208 | 1~6 | 14.356 | 0.996 | ||
30 min Ag/NiCo2O4 | 1367 | 0.001~1 | 2.190 | 0.998 | This work |
218 | 1~6 | 13.486 | 0.980 | ||
60 min Ag/NiCo2O4 | 2803 | 0.001~1 | 1.065 | 0.995 | This work |
337 | 1~6 | 8.733 | 0.981 | ||
90 min Ag/NiCo2O4 | 2592 | 0.001~1 | 1.152 | 0.995 | This work |
254 | 1~6 | 11.610 | 0.983 | ||
NiO@Ag/GCE | 67.51 | 0~1.28 | 1.01 | 0.994 | [24] |
NiCo2O4/ECF | 1947.2 | 0.005~19.175 | 1.5 | 0.995 | [25] |
NiCo2O4@CNT | 1424.41 | 0.01~1.55 | 1.14 | 0.993 | [26] |
Ag@ZIF-67/GCE | 379 | 0.002~1 | 0.66 | 0.995 | [16] |
Ag-CuO/rGO/GCE | 214.37 | 0.01~28 | 0.28 | 0.995 | [27] |
Ag/NiO/rGO | 1869.4 | -- | -- | 0.996 | [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Lv, X.; Zhang, L.; Fang, Y.; Wang, H.; Ren, J. Responsive Ag@NiCo2O4 Nanowires Anchored on N-Doped Carbon Cloth as Array Electrodes for Nonenzymatic Glucose Sensing. Molecules 2022, 27, 7745. https://doi.org/10.3390/molecules27227745
Wang L, Lv X, Zhang L, Fang Y, Wang H, Ren J. Responsive Ag@NiCo2O4 Nanowires Anchored on N-Doped Carbon Cloth as Array Electrodes for Nonenzymatic Glucose Sensing. Molecules. 2022; 27(22):7745. https://doi.org/10.3390/molecules27227745
Chicago/Turabian StyleWang, Li, Xiaowei Lv, Lei Zhang, Yanli Fang, Hui Wang, and Jianwei Ren. 2022. "Responsive Ag@NiCo2O4 Nanowires Anchored on N-Doped Carbon Cloth as Array Electrodes for Nonenzymatic Glucose Sensing" Molecules 27, no. 22: 7745. https://doi.org/10.3390/molecules27227745
APA StyleWang, L., Lv, X., Zhang, L., Fang, Y., Wang, H., & Ren, J. (2022). Responsive Ag@NiCo2O4 Nanowires Anchored on N-Doped Carbon Cloth as Array Electrodes for Nonenzymatic Glucose Sensing. Molecules, 27(22), 7745. https://doi.org/10.3390/molecules27227745