The Synthesis, Fungicidal Activity, and in Silico Study of Alkoxy Analogues of Natural Precocenes I, II, and III
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Natural 2H-1-Chromene Compounds and Their Alkoxy Regioisomer Analogues
2.2. Evaluation of Antifungal Activity
2.3. Molecular Docking
3. Materials and Methods
3.1. Chemicals and Spectroscopy
3.2. General Procedure of the Synthesis of Chromene Analogues
3.2.1. Synthesis of 1-[Trihydroxyphenyl]-3-methyl-1-oxo-buta-2-ene (3a–b) and 1-(2′,4′-dihydroxyphenyl)-3-methyl-1-oxo-buta-2-ene (8)
3.2.2. Synthesis of dihydroxy 2,2-dimethylchroman-4-one (4a–c) and 7-hydroxy 2, 2-dimethyl chroman-4-one (9)
3.2.3. Synthesis of Monoalkoxy, Monohydroxy-2,2-dimethyl chroman-4-ones (5a–f) and 7-O-alkyl-2, 2-dimethyl chroman-4-one (10a–b)
3.2.4. Synthesis of dialkoxy 2,2-dimethyl chroman-4-one (6a–f)
3.2.5. Synthesis of dialkoxy 2,2-dimethyl 2H-1-chromene (7a–f) and monoalkoxy 2,2-dimethyl 2H-1-chromene (11a–b)
3.2.6. Fungitoxic Evaluation of Synthetic Chromene and Chromanone Compounds
- dc = the diameter of the fungal colony in the negative control;
- dt = the diameter of the fungal colony in treatment.
3.3. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dayan, F.E.; Romagni, J.G.; Tellez, M.R.; Rimando, A.M.; Duke, S.O. Managing weeds with natural products. Pesticidal Outlook 1999, 5, 185–188. [Google Scholar]
- Agarwal, S.K.; Verma, S.; Singh, S.S.; Tripathi, A.K.; Khan, Z.K.; Kumar, S. Antifeedant and antifungal activity of chromene compounds isolated from Blepharispermum subsessile. J. Ethnopharmacol. 2000, 71, 231–234. [Google Scholar] [CrossRef]
- Meepagala, K.M.; Schrader, K.K.; Burandt, C.L.; Wedge, D.E.; Duke, S.O. New class of algicidal compounds and fungicidal activities derived from a chromene amide of Amyris texana. J. Agr. Food Chem. 2010, 58, 9476–9482. [Google Scholar] [CrossRef] [PubMed]
- Malquichagua, S.K.J.; Delgado, P.G.E.; Lluncor, L.R.; Young, M.C.M.; Kato, M.J. Chromenes of polyketide origin from Peperomia villipetiola. Phytochem 2005, 66, 573–579. [Google Scholar] [CrossRef]
- Zheng, G.W.; Luo, S.H.; Li, S.F.; Hua, J.; Li, W.Q.; Li, S.H. Specialized metabolites from Ageratina adenophora and their inhibitory activities against pathogenic fungi. Phytochem 2018, 148, 57–62. [Google Scholar] [CrossRef]
- Yadave, N.; Ganie, S.A.; Singh, B.; Chhillar, A.K.; Yadav, S.S. Phytochemical constituents and ethnopharmacological properties of Ageratum conyzoides L. Phytother. Res. 2019, 33, 2163–2178. [Google Scholar] [CrossRef]
- Pratap, R.; Ram, V.J. Natural and synthetic chromenes, fused chromenes, and versatility of dihydrobenzo[h]chromenes in organic synthesis. Chem. Rev. 2014, 114, 10476–10526. [Google Scholar] [CrossRef]
- Li, Y.; Luo, B.; Luo, Z.; Ma, T.; Fan, L.; Liu, W.; Fan, J.; Guo, B.; Xue, W.; Tang, L. Design and synthesis of novel 2,2-dimethylchromene derivatives as potential antifungal agents. Mol. Diver. 2022, 1–13. [Google Scholar] [CrossRef]
- Sneh, B. Identification of Rhizoctonia Species; APS Press: St. Paul, MN, USA, 1991. [Google Scholar]
- Hane, J.K.; Anderson, J.P.; Williams, A.H.; Sperschneider, J.; Singh, K.B. Genome Sequencing and Comparative Genomics of the Broad Host-Range Pathogen Rhizoctonia solani AG8. PLoS Genetics 2014, 10, e1004281. [Google Scholar] [CrossRef] [Green Version]
- Keijer, J. The initial steps of the infection process in Rhizoctonia solani. In Rhizoctonia Species, Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control; Sneh, B., Hare, S., Neate, S., Dijst, G., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Giraldo, M.C.; Valent, B. Filamentous plant pathogen effectors in action. Nat. Rev. Microbiol. 2013, 11, 800–814. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, N.; Liu, J.; Liu, W.; Wang, G.-L. The role of effectors and host immunity in plant-necrotrophic fungal interactions. Virulence 2014, 5, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.X.; Henderson, G.; Dong, S.L. Studies of precocene I, precocene II and biogenic amines on formosan subterranean Termite (Isoptera, Rhinotermitidae) presoldier/soldier formation. J. Entomol. Sci. 2010, 45, 27–34. [Google Scholar] [CrossRef]
- Samnesh, E.T.; Tayebeh, R.; Hassan, E.; Vahid, N. Composition of essential oils in subterranean organs of three species of Valeriana L. Nat. Prod. Res. 2010, 24, 1834–1842. [Google Scholar] [CrossRef]
- Ramadan, K.M.A.; Ali, M.K.; Georghiou, P.E. Natural fungitoxicants of essential oil from ageratum houstonianum l. and its application in control the root-rot diseases of common bean. J. Biol. Chem. Environ. Sci. 2012, 7, 437–453. Available online: www.acepsag.org (accessed on 8 June 2022).
- Parra, J.E.; Delgado, W.A.; Cuca, L.E. Cumanensic acid, a new chromene isolated from Piper cf. cumanense Kunth. (Piperaceae). Phytochem. Lett. 2011, 4, 280–282. [Google Scholar] [CrossRef]
- De Lorenzo, G.; D’Ovidio, R.; Cervone, F. The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi. Annu Rev Phytopathol. 2001, 39, 313–335. [Google Scholar] [CrossRef] [PubMed]
- Futamura, N.; Mori, H.; Kouchi, H.; Shinohara, K. Male flower-specific expression of genes for polygalacturonase, pectin methylesterase and beta-1,3-glucanase in a dioecious willow (Salix gilgiana Seemen). Plant Cell Physiol. 2000, 41, 16–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.Y.; MacRae, E.A.; Wright, M.A.; Bolitho, K.M.; Ross, G.S.; Atkinson, R.G. Polygalacturonase gene expression in kiwifruit: Relationship to fruit softening and ethylene production. Plant Mol Biol. 2000, 42, 317–328. [Google Scholar] [CrossRef]
- Roongsattham, P.; Morcillo, F.; Jantasuriyarat, C.; Pizot, M.; Moussu, S.; Jayaweera, D.; Tranbarger, T.J. Temporal and spatial expression of polygalacturonase gene family members reveals divergent regulation during fleshy fruit ripening and abscission in the monocot species oil palm. BMC Plant Biol. 2012, 12, 150. [Google Scholar] [CrossRef] [Green Version]
- Rui, Y.; Xiao, C.; Yi, H.; Kandemir, B.; Wang, J.Z.; Puri, V.M.; Anderson, C.T. Polygalacturonase involved in expansion3 Functions in Seedling Development, Rosette Growth, and Stomatal Dynamics in Arabidopsis thaliana. Plant Cell 2017, 29, 2413–2432. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Patterson, S.E. Expression divergence and functional redundancy of Polygalacturonases in floral organ abscission. Plant Signal. Behav. 2006, 1, 281–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, R.L.; Lonsdale, D.M. Molecular characterization of one of the maize polygalacturonase gene family members which are expressed during late pollen development. Plant J. 1993, 3, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Colombini, M. VDAC: The channel at the interface between mitochondria and the cytosol. Mol. Cell Biochem. 2004, 256, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Lustgarten, M.S.; Bhattacharya, A.; Muller, F.L.; Jang, Y.C.; Shimizu, T.; Shirasawa, T.; Van Remmen, H. Complex I generated, mitochondrial matrix-directed superoxide is released from the mitochondria through voltage dependent anion channels. Biochem. Biophys. Res. Commun. 2012, 422, 515–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrunhosa, L.; Costa, M.; Areias, F.; Venancio, A.; Proenca, F. Antifungal activity of a novel chromene dimer. J. Ind. Microbiol. Biotechnol. 2007, 34, 787–792. [Google Scholar] [CrossRef] [Green Version]
- Timár, T.; Jaszberenyi, J.C. A novel synthesis of precocenes. Efficinat synthesis and regioselective O-Alkylation of dihydroxy-2,2-dimethyl-4-chromanones. J. Heterocyclic Chem. 1988, 25, 871–877. [Google Scholar] [CrossRef]
- Naidu, V.M.; Rao, K.G. Synthetic studies in aromatic hemiterpenes of natural origin, part VI- Synthesis of 7-Methoxy-2,2-dimethyl-6- vinylchromene (Anhydroencecalinol), a natural product isolated from Flourensia cernua. Indian J. Chem. 1980, 19, 313–315. [Google Scholar]
- Kumar, P.; Bodes, S.M. A novel synthesis of 4H-chromen-4-ones via intramolecular Witting reaction. Org. Lett. 2000, 2, 3821–3823. [Google Scholar] [CrossRef]
- Sosnovskikh, Y.V.; Usachev, I.B.; Sevenard, V.D.; Gerd-Volker, R. Regioselective neucleophilic 1,4- trifluoromethylation of 2- polyfluoroalkylchromenes with (trifluoromethyl) trimethylsilane. Synthesis of fluorinated analoges of natural 2,2- dimethylchroman-4-ones and 2,2- dimethylchromenes. J. Org. Chem. 2003, 68, 7747–7754. [Google Scholar] [CrossRef]
- Wang, Q.; She, X.O.; Ren, X.; Ma, J.; Pan, X. The first asymmetric total synthesis of several 3,4-dimethyl-chroman derivatives. Tetrahedron. Asymmetry 2004, 15, 29–34. [Google Scholar] [CrossRef]
- Pandey, G.; Krishna, A. Synthesis application of photo induced single electron transfer reaction, A convenient synthetic approach for the 2, 2-dimethyl-2H-chromene system. J. Org. Chem. 1988, 53, 2364–2365. [Google Scholar] [CrossRef]
- Camps, C.J.; Ricart, S. Synthesis of crown-ether precocenes. J. Heterocyclic Chem. 1983, 20, 249–250. [Google Scholar] [CrossRef]
- Fargo, B.M.; Garcia, V.P. one-step preparation of the 3, 3′-dimer of precocene II. J. Org. Chem. 1987, 52, 5032–5034. [Google Scholar] [CrossRef]
- North, T.J.; Kronenthal, D.; Pullockaran, A.; Real, S.; Chen, H. Synthesis of 6- cyano-2,2-dimethyl-2H-1-benzopyran and other substituted 2,2-dimethyl-2H- benzopyrans. J.Org. Chem. 1995, 60, 3397–3400. [Google Scholar] [CrossRef]
- Tomaskovic, L.; Mintas, M.; Trötsch, T.; Mannscheck, A. 2H- chromenes, synthesis, separation of enantiomers, circular dichrois and thermal racemization. Enantiomer 1997, 2, 459–472. [Google Scholar]
- Wang, Q.; Finn, G.M. 2H-chromenes from salicylaldehydes by a catalytic Petasis reaction. Org. Lett. 2000, 2, 4063–4065. [Google Scholar] [CrossRef]
- Smith, L.R.; Mahoney, N.; Molyneux, R.J. Synthesis and structure- phytotoxicity relationship of acetylenic phenols and chromene metabolites, and their analogues, from the grapevine pathogen Eutypa lata. J. Nat. Prod. 2003, 66, 169–176. [Google Scholar] [CrossRef]
- Anderson, A.R.; Hamilton-Kemp, R.T.; Hildebrand, F.D. Structure antifungal activity relationships among volatile C6 and C9 aliphatic aldehydes, ketones and alcohols. J. Agric. Food Chem. 1994, 42, 1563–1568. [Google Scholar] [CrossRef]
- Schawenstein, E.; Esterbauer, H.; Zollner, H. α,β-Unsaturated Aldehydes. In Aldehydes in Biological Systems; Lagnado, J.R., Ed.; Pion: London, UK, 1977; Translated by Gore, P.H. [Google Scholar]
- Witz, G. Biological interactions of α,β-Unsaturated aldehydes. Free Rad. Biol. Med. 1989, 7, 333–349. [Google Scholar] [CrossRef]
- Feron, V.J.; Til, H.P.; De Vrijer, F.; Woutersen, R.A.; Cassee, F.R.; Van Baladeren, P.J. Aldehydes: Occurrence, carcinogenic potential, mechanism of action and risk assessment. Mutat. Res. 1991, 259, 363–385. [Google Scholar] [CrossRef]
- Zghab, I.; Trimeche, B.; BenMansour, M.; Hassine, M.; Touboul, D.; BenJann, H. Regiospecific synthesis, antibacterial and anticoagulant activities of novel isoxazoline chromene derivatives. Arab. J. Chem. 2017, 10, S2651–S2658. [Google Scholar] [CrossRef] [Green Version]
- Alam, S. Synthesis, antibacterial and antifungal activity of some derivatives of 2-phenyl-chromen-4-one. J. Chem Sci. 2004, 116, 325–331. [Google Scholar] [CrossRef]
- Reimann, S.; Deising, H.B. Inhibition of efflux transporter- mediated fungicide resistance in Pyrenophora tritici- repentis by derivative of 4′-hydroxyflavone and enhancement of fungicide activity. Appl. Environ. Microbiol. 2005, 71, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Ramadan, K.M.; Ali, M.K.; El-Gobashy, R.E.; Georghiou, P.E.; Ali, N.A.; Zaher, E.A. Application of volatile fractions from Ageratum houstonianum and Tagetes erecta as safe management of some root phytopatogenic fungi. Arab Univ. J. Agric. Sci. 2007, 15, 185–193. [Google Scholar] [CrossRef]
- Morandim, A.; Bergamo, D.C.B.; Kato, M.J.; Cavalheiro, A.J.; Bolzani, V.S.; Furlan, M. Circadian rhythm of anti-fungal prenylated chromene in leaves of Piper aduncum. Phytochem. Anal. 2005, 16, 282–286. [Google Scholar] [CrossRef]
- Kim, J.H.; Mahoney, N.; Chan, K.L.; Molyneux, R.J.; Campbell, B.C. Secondary metabolites of the grapevine pathogen Eutypa lata inhibit mitochondrial respiration, based on a model bioassay using the yeast Saccharomyces cerevisiae. Curr. Microbiol. 2004, 49, 282–287. [Google Scholar] [CrossRef]
- Furukawa, T.; Sakamoto, N.; Suzuki, M.; Kimura, M.; Nagasawa, H.; Sakuda, S. Precocene II, a Trichothecene production inhibitor, binds to voltage-dependent anion channel and increases the superoxide level in mitochondria of Fusarium graminearum. PLoS ONE 2015, 10, e0135031. [Google Scholar] [CrossRef]
- Ekundayo, O.; Loakso, I.; Hiltunen, R. Essential oil of Ageratum conyzoides. Planta Med. 1988, 54, 55–57. [Google Scholar] [CrossRef]
- Mensa, M.; Sarpong, K.; Baser, K.H.C.; Ozek, T. The essential oil of Ageratum conyzoides L. From Ghana. J. Essential Oil Res. 1993, 5, 113–115. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, P.O. Analysis of precocenes in the essential oil of Ageratum spp. by reverse-phase high performance liquid chromatography. Phytochem.Anal. 2001, 12, 263–265. [Google Scholar] [CrossRef]
- Yaguchi, A.; Yoshinari, T.; Tsuyuki, R.; Takahashi, H.; Nakajima, T.; Sugita-Konishi, Y.; Nagasawa, H.; Sakuda, S. Isolation and identification of precocenes and piperitone from essential oils as specific inhibitors of trichothecene production by Fusarium graminearum. J. Agric. Food Chem. 2009, 57, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Westler, W.M.; Stockman, B.J.; Hosoya, Y.; Miyake, Y.; Kainosho, M.; Markley, J.L. Correlation of carbon-13 and nitrogen-15 chemical shifts in selectively and uniformly labeled proteins by heteronuclear two-dimensional NMR spectroscopy. J. Am. Chem. Soc. 1988, 110, 6256–6258. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.M.; Saify, Z.S.; Khan, M.Z.; Safdar, H.; Saeedan, B.; Fatima, N.; Choudhary, M.I.; Shahnaz, P.; Atta, R. Synthesis, antifungal, and phytotoxic effect of some benzopyrane derivatives. Nat. Prod. Res. 2004, 18, 21–27. [Google Scholar] [CrossRef]
- Cortés, I.; Cordisco, E.; Kaufman, T.S.; Sortino, M.A.; Svetaz, L.A.; Bracca, A.B.J. First total synthesis of chromanone A, preparation of related compounds and evaluation of their antifungal activity against Candida albicans, a biofilm forming agent. RSC Adv. 2021, 11, 19587–19597. [Google Scholar] [CrossRef] [PubMed]
- Nayak, P.; Kalidass, C. In vitro Regeneration of Blepharispermum subsessile DC: An endangered medicinal plant of Odisha, India using cotyledon explants. Plant Tissue Cult. Biotech. 2016, 26, 255–266. [Google Scholar]
- Chun, H.G.; Matsura, H.; Takoshi, T.; Kawano, S.; Yoshihara, T. A new antifungal metabolite from Penicillium expansum. J. Natur. Prod. 2004, 67, 1084–1087. [Google Scholar] [CrossRef]
- Sariaslani, F.S.; Mc Gee, L.R.; Ovenall, D.W. Microbial transformation of precocene II, Oxidative reactions by Streptomyces griseus. Appl. Environ. Microbiol. 1987, 53, 1780–1784. [Google Scholar] [CrossRef] [Green Version]
- Conner, D.E.; Beuchat, L.R. Effect of essential oils from plants on growth of food spoilage yeast. J. Food Sci. 1984, 49, 429–434. [Google Scholar] [CrossRef]
- Knobloch, K.; Weigand, H.; Weis, N.; Schwarm, H.-M.; Vigenschow, H. Action of terpenoides on energy metabolism. In Progress in Essential Oil Research; Brunke, E.J., Ed.; De Gruyter: Berlin, Boston, 1986; pp. 429–445. [Google Scholar] [CrossRef]
- Khastini, R.O.; Saraswati, I.; Sulaiman, F.; Alimuddin Sari, I.J. Antifungal activity of Jukut Batau (Ageratum conyzoides) leaves extract on Candida Albicans In Vitro. Int. J. Sci. Technol. Res. 2019, 8, 2494–2497. [Google Scholar]
- Sakuda, S.; Yoshinari, T.; Furukawa, T.; Jermnak, U.; Takagi, K.; Iimura, K.; Yamamoto, T.; Suzuki, M.; Nagasawa, H. Search for aflatoxin and trichothecene production inhibitors and analysis of their modes of action. Biosci. Biotechnol. Biochem. 2016, 80, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Chahal, R.; Nanda, A.; Akkol, E.K.; Sobarzo-Sánchez, E.; Arya, A.; Kaushik, D.; Dutt, R.; Bhardwaj, R.; Rahman, M.H.; Mittal, V. Ageratum conyzoides L. and Its secondary metabolites in the management of different fungal pathogens. Molecules 2021, 26, 2933. [Google Scholar] [CrossRef]
- Sowmithran, D.; Prasad, J.R. Aluminium Chloride/Phosphoryl Chloride as an efficient acylating agent. Synthesis 1985, 1985, 545–546. [Google Scholar] [CrossRef]
- Lyar, P.R.; Shah, G.D. Synthesis of Chromanones using A mixture of Zinc Chloride+ Phosphorus Oxychloride. Indian J. Chem. 1968, 6, 227. [Google Scholar]
- Ninagawa, A.; Nakamura, M.; Matsuda, H. Formaldehyde polymers, 30. Preparation of 5-hydroxy-4-chromanones and 8-hydroxy-1-tetralon and their properties as UV-absorbers. Die Makromol. Chem. 1982, 183, 1969–1977. [Google Scholar] [CrossRef]
- Kishore, N.; Dwivedi, R.S. Fungitoxicity of the essential oil of Tagetes erecta L. against Phythium aphanidermatum Fitz. The damping-off pathogen. Flavour Frag. J. 1991, 6, 291–294. [Google Scholar] [CrossRef]
- Pandey, D.K.; Chandra, H.; Tripathi, N.; Dixit, S. Mycotoxicity in leaves of some higher plants with special references to that of Ageratum houstonianum Mill. Mykosen 1983, 26, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Abd El–Naeem, F.M.; Gad, M.R.A.; Ali, M.K.; Ahmed, E.M. Fungitoxic activity chemical composition interaction of some citrus essential oils against three postharvest citrus pathogens. J. Environ. Sci. 2004, 8, 147–161. [Google Scholar]
- Trott, O.; Olson, A.J. AutoDock Vina, improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Grimm, M.; Dai, W.; Hou, M.; Xiao, H.; Cao, Y. CB-Dock, a web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacol. Sin. 2020, 41, 138–144. [Google Scholar] [CrossRef]
Compound | EC50 (µg × mL−1) | EC90 (µg × mL−1) | Reg. Equation | (R2) |
---|---|---|---|---|
Amphotericin-B | 5.519 | 16.99 | Log y = 3.4857x + 30.762 | 0.9971 |
3a | 614.56 | 833.66 | Log y = 9.6659x − 21.954 | 0.9575 |
3b | 1023.29 | 1591.74 | Log y = 6.6711x − 15.08 | 0.9454 |
4a | 1664.00 | 5620.50 | Log y = 2.4214x − 2.7997 | 0.9464 |
4b | 1475.63 | 6939.33 | Log y = 1.9038x − 1.0331 | 0.9377 |
4c | 603.55 | 19,561.23 | Log y = 0.8473x + 2.6439 | 0.9771 |
5a | 3033.37 | 45,951.72 | Log y = 1.0844x + 1.2242 | 0.9196 |
5b | 630.80 | 6361.74 | Log y = 1.2753x + 1.4293 | 0.9646 |
5c | 125.70 | 5064.54 | Log y = 0.7974x + 3.326 | 0.8440 |
5d | 624.90 | 1628.46 | Log y = 3.0345x − 3.4838 | 0.9931 |
5e | 318.10 | 1274.00 | Log y = 2.1241x − 0.3157 | 0.9992 |
5f | 681.08 | 7654.24 | Log y = 1.2188x + 1.5463 | 0.8207 |
6a | 527.48 | 1434.27 | Log y = 2.9464x − 3.0207 | 0.9395 |
6b | 1191.3 | 10,743.32 | Log y = 1.2878x + 1.0387 | 0.7784 |
6c | 398.32 | 1380.38 | Log y = 2.3377x − 1.0733 | 0.9229 |
6d | 410.60 | 1269.20 | Log y = 2.6116x − 1.8252 | 0.9499 |
6e | 582.13 | 3269.80 | Log y = 1.7078x + 0.2779 | 0.9578 |
6f | 617.90 | 2392.70 | Log y = 2.1769x − 1.0755 | 0.9350 |
7a | 97.18 | 688.60 | Log y = 1.5051x + 2.0085 | 0.9859 |
7b (Precocene II) | 106.80 | 809.01 | Log y = 1.4558x + 2.0466 | 0.7307 |
7c | 8398.20 | * | Log y = 0.2704x + 3.9389 | 0.9999 |
7d | 170.58 | 197,513.13 | Log y = 0.4178x + 4.0675 | 0.9995 |
7e (Precocene III) | 3963.08 | ** | Log y = 0.4881x + 3.2438 | 0.9842 |
7f | 4079.89 | 9371.57 | Log y = 3.5441x − 7.7965 | 0.2556 |
8 | 356.98 | 969.71 | Log y = 2.9493x − 2.5285 | 0.9175 |
9 | 1375.35 | 6760.83 | Log y = 1.8546x − 0.8205 | 0.9955 |
10a | 221.31 | 799.7 | Log y = 2.2942x − 0.3799 | 0.9628 |
10b | 2.91×108 | *** | Log y = −0.0683x + 5.5781 | 0.0079 |
11a (Precocene I) | 584.58 | 2060.81 | Log y = 2.3392x − 1.4722 | 0.9945 |
11b | 1235.61 | 5613.94 | Log y = 1.9471x − 1.0202 | 0.8709 |
EC50 (µg × mL−1) | EC90 (µg × mL−1) | Reg. Equation | (R2) | |
---|---|---|---|---|
Amphotericin-B | 2.70 | 10.86 | Log y = 4.9381x + 36.331 | 0.9920 |
3a | 123.77 | 544.38 | Log y = 1.9898x + 0.8361 | 0.8622 |
8 | 76.62 | 282.90 | Log y = 2.2562x + 0.7485 | 0.9878 |
5b | 616.60 | 1059.53 | Log y = 5.5307x − 10.451 | 0.9566 |
5c | 46.88 | 146.16 | Log y = 2.5918x + 0.6692 | 0.9432 |
5d | 558.10 | 1424.47 | Log y = 3.1454x − 3.6395 | 0.9809 |
5e | 318.19 | 1244.68 | Log y = 2.1608x − 0.4078 | 0.8465 |
5f | 334.29 | 869.98 | Log y = 3.0815x − 2.7781 | 0.9826 |
6a | 593.10 | 928.85 | Log y = 6.5702x − 13.22 | 0.9841 |
6c | 381.13 | 765.89 | Log y = 4.2232x − 5.9004 | 0.9857 |
6d | 245.42 | 406.91 | Log y = 5.8289x − 8.9305 | 0.9802 |
6e | 645.06 | 1654.44 | Log y = 3.1292x − 3.7918 | 0.9052 |
6f | 204.55 | 720.24 | Log y = 2.3414x − 0.4105 | 0.9951 |
10a | 100.00 | 191.90 | Log y = 4.5264x − 4.0541 | 0.989 |
10b | 59.85 | 230.81 | Log y = 2.1836x + 1.1196 | 0.991 |
7a | 35.30 | 199.94 | Log y = 1.6996x + 2.3694 | 0.9644 |
7b | 4.94 | 74.69 | Log y = 1.0857x + 4.2462 | 0.8489 |
7f | 517.90 | 21,160.64 | Log y = 0.7944x + 2.8438 | 0.991 |
11a | 10.39 | 2057.29 | Log y = 0.5573x + 4.4335 | 0.873 |
11b | 116.47 | 3530.73 | Log y = 0.8639x + 3.215 | 0.9432 |
Compound | 5a | 5b | 5c | 5d | 5e | 5f | 6a | 6b | 6c | 6d | 6e | 6f | 10a | 10b |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reaction Time (h) | 6 | 3 | 8 | 6 | 2 | 5 | 10 | 15 | 40 | 8 | 8 | 60 | 6 | 10 |
* % of Reaction Yield | 55.3 | 64.0 | 50.5 | 43.4 | 63.2 | 70.0 | 56.5 | 77.9 | 50.5 | 76.9 | 56.5 | 73.5 | 83.3 | 85.0 |
Compound | Reduction Time (h) | Dehydration Time | % Reaction Yield * |
---|---|---|---|
7a | 2.0 | 2.0 | 58.4 |
7b (Precocene II) | 1.5 | 1.5 | 87.3 |
7c | 2.5 | 2.5 | 72.0 |
7d | 1.5 | 3.0 | 80.0 |
7e (Precocene III) | 2.0 | 2.0 | 62.5 |
7f | 2.0 | 3.0 | 83.9 |
11a (Precocene I) | 3.0 | 3.0 | 53.0 |
11b | 4.0 | 3.0 | 61.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramadan, K.M.A.; El-Beltagi, H.S.; Iqbal, Z.; Bendary, E.S.A. The Synthesis, Fungicidal Activity, and in Silico Study of Alkoxy Analogues of Natural Precocenes I, II, and III. Molecules 2022, 27, 7177. https://doi.org/10.3390/molecules27217177
Ramadan KMA, El-Beltagi HS, Iqbal Z, Bendary ESA. The Synthesis, Fungicidal Activity, and in Silico Study of Alkoxy Analogues of Natural Precocenes I, II, and III. Molecules. 2022; 27(21):7177. https://doi.org/10.3390/molecules27217177
Chicago/Turabian StyleRamadan, Khaled M. A., Hossam S. El-Beltagi, Zafar Iqbal, and Eslam S. A. Bendary. 2022. "The Synthesis, Fungicidal Activity, and in Silico Study of Alkoxy Analogues of Natural Precocenes I, II, and III" Molecules 27, no. 21: 7177. https://doi.org/10.3390/molecules27217177
APA StyleRamadan, K. M. A., El-Beltagi, H. S., Iqbal, Z., & Bendary, E. S. A. (2022). The Synthesis, Fungicidal Activity, and in Silico Study of Alkoxy Analogues of Natural Precocenes I, II, and III. Molecules, 27(21), 7177. https://doi.org/10.3390/molecules27217177