Comparison of the Hydride-Donating Ability and Activity of Five- and Six-Membered Benzoheterocyclic Compounds in Acetonitrile
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Analysis of Thermodynamic Driving Forces of DMBI, DMIZ, DMPZ, and DMPX as Hydride Donors in Acetonitrile
3.2. Analysis of Kinetic Intrinsic Barriers of DMBI, DMIZ, DMPZ, and DMPX as Hydride Donors in Acetonitrile
3.3. Analysis of Thermo-Kinetic Parameters of DMBI, DMIZ, DMPZ, and DMPX as Hydride Donors in Acetonitrile
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kim, M.K.; Shin, H.; Park, K.S.; Kim, H.; Park, J.; Kim, K.; Nam, J.; Choo, H.; Chong, Y. Benzimidazole Derivatives as Potent JAK1-Selective Inhibitors. J. Med. Chem. 2015, 58, 7596–7602. [Google Scholar] [CrossRef] [PubMed]
- El-masry, A.H.; Fahmy, H.H.; Ali Abdelwahed, S.H. Synthesis and Antimicrobial Activity of Some New Benzimidazole Derivatives. Molecules 2000, 5, 1429–1438. [Google Scholar] [CrossRef] [Green Version]
- Kayser, O.; Waters, W.R.; Woods, K.M.; Upton, S.J.; Keithly, J.S.; Laatsch, H.; Kiderlen, A.F. Evaluation of in vitro and in vivo activity of benzindazole-4,9-quinones against Cryptosporidium parvum. J. Antimicrob. Chemother. 2002, 50, 975–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chesnut, R.W.; Haslam, D.F.; Durham, N.N.; Berlin, K.D. Berlin, Mechanism of Biological Action of a New Benzindazole Compound. Can. J. Biochem. 1972, 50, 516–523. [Google Scholar] [CrossRef]
- Mhaske, S.B.; Argade, N.P. The chemistry of recently isolated naturally occurring quinazolinone alkaloids. Tetrahedron 2006, 62, 9787–9826. [Google Scholar] [CrossRef]
- Asif, M. Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Int. J. Med. Chem. 2014, 2014, 395637. [Google Scholar] [CrossRef] [PubMed]
- Ajani, O.O.; Obafemi, C.A.; Nwinyi, O.C.; Akinpelu, D.A. Microwave assisted synthesis and antimicrobial activity of 2-quinoxalinone-3-hydrazone derivatives. Bioorg. Med. Chem. 2010, 18, 214–221. [Google Scholar] [CrossRef]
- El-Sabbagh, O.I.; El-Sadek, M.E.; Lashine, S.M.; Yassin, S.H.; El-Nabtity, S.M. Synthesis of new 2(1H)-quinoxalinone derivatives for antimicrobial and antiinflammatory evaluation. Med. Chem. Res. 2009, 18, 782–797. [Google Scholar] [CrossRef]
- Rybniker, J.; Vocat, A.; Sala, C.; Busso, P.; Pojer, F.; Benjak, A.; Cole, S.T. Lansoprazole is an antituberculous prodrug targeting cytochrome bc1. Nat. Commun. 2015, 6, 7659. [Google Scholar] [CrossRef] [Green Version]
- Gumus, E.; Karaca, O.; Babaoglu, M.O.; Baysoy, G.; Balamtekin, N.; Demir, H.; Uslu, N.; Bozkurt, A.; Yuce, A.; Yasar, U. Evaluation of lansoprazole as a probe for assessing cytochrome P450 2C19 activity and genotype-phenotype correlation in childhood. Eur. J. Clin. Pharm. 2012, 68, 629–636. [Google Scholar] [CrossRef]
- Ducharme, A.; Swedberg, K.; Pfeffer, M.A.; Cohen-Solal, A.; Granger, C.B.; Maggioni, A.P.; Michelson, E.L.; McMurray, J.J.; Olsson, L.; Rouleau, J.L.; et al. Prevention of atrial fibrillation in patients with symptomatic chronic heart failure by candesartan in the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) program. Am. Heart J. 2006, 151, 985–991. [Google Scholar] [CrossRef]
- Tveit, A.; Grundvold, I.; Olufsen, M.; Seljeflot, I.; Abdelnoor, M.; Arnesen, H.; Smith, P. Candesartan in the prevention of relapsing atrial fibrillation. Int. J. Cardiol. 2007, 120, 85–91. [Google Scholar] [CrossRef]
- Pourgholami, M.H.; Woon, L.; Almajd, R.; Akhter, J.; Bowery, P.; Morris, D.L. In vitro and in vivo suppression of growth of hepatocellular carcinoma cells by albendazole. Cancer Lett. 2001, 165, 43–49. [Google Scholar] [CrossRef]
- Horton, R.J. Chemotherapy of Echinococcus infection in man with albendazole. Trans. R. Soc. Trop. Med. Hyg. 1989, 83, 97–102. [Google Scholar] [CrossRef]
- Nath, K.; Guo, L.; Nancolas, B.; Nelson, D.S.; Shestov, A.A.; Lee, S.C.; Roman, J.; Zhou, R.; Leeper, D.B.; Halestrap, A.P.; et al. Mechanism of antineoplastic activity of lonidamine. Biochim. Biophys. Acta 2016, 1866, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Zhang, Q.; Pan, J.; Lee, Y.; Ouari, O.; Hardy, M.; Zielonka, M.; Myers, C.R.; Zielonka, J.; Weh, K.; et al. Targeting lonidamine to mitochondria mitigates lung tumorigenesis and brain metastasis. Nat. Commun. 2019, 10, 2205. [Google Scholar] [CrossRef] [Green Version]
- Matthews, R.W. Clinical evaluation of benzydamine, chlorhexidine, and placebo mouthwashes in the management of recurrent aphthous stomatitis. Oral. Surg. Oral. Med. Oral. Pathol. 1987, 63, 189–191. [Google Scholar] [CrossRef]
- Karavana, S.Y.; Guneri, P.; Ertan, G. Benzydamine hydrochloride buccal bioadhesive gels designed for oral ulcers: Preparation, rheological, textural, mucoadhesive and release properties. Pharm. Dev. Technol. 2009, 14, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Kalia, V.; Garg, T.; Rath, G.; Goyal, A.K. Development and evaluation of a sublingual film of the antiemetic granisetron hydrochloride. Artif. Cells Nanomed. Biotechnol. 2016, 44, 842–846. [Google Scholar] [CrossRef]
- Salunkhe, N.H.; Jadhav, N.R.; Mali, K.K.; Dias, R.J.; Ghorpade, V.S.; Yadav, A.V. Mucoadhesive microsphere based suppository containing granisetron hydrochloride for management of emesis in chemotherapy. J. Pharm. Investig. 2014, 44, 253–263. [Google Scholar] [CrossRef]
- Shah, N.T.; Kris, M.G.; Pao, W.; Tyson, L.B.; Pizzo, B.M.; Heinemann, M.H.; Ben-Porat, L.; Sachs, D.L.; Heelan, R.T.; Miller, V.A. Practical management of patients with non-small-cell lung cancer treated with gefitinib. J. Clin. Oncol. 2005, 23, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Cappuzzo, F.; Hirsch, F.R.; Rossi, E.; Bartolini, S.; Ceresoli, G.L.; Bemis, L.; Haney, J.; Witta, S.; Danenberg, K.; Domenichini, I.; et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J. Natl. Cancer Inst. 2005, 97, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Keating, G.M. Afatinib: A review of its use in the treatment of advanced non-small cell lung cancer. Drugs 2014, 74, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Herwig, P.; Moll, K.P. Monica Musteanu, Emilio Casanova, Afatinib restrains K-RAS–driven lung tumorigenesis. Sci. Transl. Med. 2018, 10, eaao2301. [Google Scholar]
- Kelly, C.; Bhuva, N.; Harrison, M.; Buckley, A.; Saunders, M. Use of raltitrexed as an alternative to 5-fluorouracil and capecitabine in cancer patients with cardiac history. Eur. J. Cancer 2013, 49, 2303–2310. [Google Scholar] [CrossRef]
- Clarke, S.J.; Beale, P.J.; Rivory, L.P. Clinical and Preclinical Pharmacokinetics of Raltitrexed. Clin. Pharm. 2000, 39, 429–443. [Google Scholar] [CrossRef]
- Balzarini, J.; Pelemans, H.; Riess, G.; Roesner, M.; Winkler, I.; De Clercq, E.; Kleim, J. Zidovudine-Resistant Human Immunodeficiency Virus Type1 Strains Subcultured in the Presence of Both Lamivudine and Quinoxaline HBY 097 Retain Marked Sensitivity to HBY 097 but Not to Lamivudine. J. Infect. Dis. 1997, 176, 1392–1397. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.H.; Shen, G.B.; Wang, K.; Zhu, X.Q. Comparison of Thermodynamic, Kinetic Forces for Three NADH Analogues to Release Hydride Ion or Hydrogen Atom in Acetonitrile. ChemistrySelect 2021, 6, 8007–8010. [Google Scholar] [CrossRef]
- Fu, Y.H.; Wang, K.; Shen, G.B.; Zhu, X.Q. Quantitative comparison of the actual antioxidant activity of Vitamin C, Vitamin E, and NADH. J. Phys. Org. Chem. 2022, 35, e4358. [Google Scholar] [CrossRef]
- Fu, Y.-H.; Shen, G.-B.; Li, Y.; Yuan, L.; Li, J.-L.; Li, L.; Fu, A.-K.; Chen, J.-T.; Chen, B.-L.; Zhu, L.; et al. Realization of Quantitative Estimation for Reaction Rate Constants Using only One Physical Parameter for Each Reactant. ChemistrySelect 2017, 2, 904–925. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Zhu, X.Q. Comparison between 1,2-Dihydropyridine and 1,4-Dihydropyridine on Hydride-Donating Ability and Activity. Molecules 2022, 27, 5382. [Google Scholar] [CrossRef] [PubMed]
- Lei, N.P.; Fu, Y.H.; Zhu, X.Q. Elemental step thermodynamics of various analogues of indazolium alkaloids to obtaining hydride in acetonitrile. Org. Biomol. Chem. 2015, 13, 11472–11485. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.B.; Xia, K.; Li, X.T.; Li, J.L.; Fu, Y.H.; Yuan, L.; Zhu, X.Q. Prediction of Kinetic Isotope Effects for Various Hydride Transfer Reactions Using a New Kinetic Model. J. Phys. Chem. A 2016, 120, 1779–1799. [Google Scholar] [CrossRef]
- Zhu, X.Q.; Deng, F.H.; Yang, J.D.; Li, X.T.; Chen, Q.; Lei, N.P.; Meng, F.K.; Zhao, X.P.; Han, S.H.; Hao, E.J.; et al. A classical but new kinetic equation for hydride transfer reactions. Org. Biomol. Chem. 2013, 11, 6071–6089. [Google Scholar] [CrossRef] [PubMed]
- Nakao, Y.; Idei, H.; Kanyiva, K.S.; Hiyama, T. Direct Alkenylation and Alkylation of Pyridone Derivatives by Ni/AlMe3 Catalysis. J. Am. Chem. Soc. 2009, 131, 15996–15997. [Google Scholar] [CrossRef]
- Edward CTaylor, C.A.M.; Jerauld, S. Skotnicki, Heterocyclization with cyano and sulfonyl epoxides. Preparation of quinoxalines and tetrahydroquinoxalines. J. Org. Chem. 1980, 45, 2512–2515. [Google Scholar]
DMBI/DMIZ + AcrH+ | DMPZ/DMPX + TEMPO+ | |||
---|---|---|---|---|
DMBI | DMIZ | DMPZ | DMPX | |
k2a | 1.77 × 102 | 2.17 × 10−2 | 1.68 | 50.27 |
ΔG≠ b | 14.38 | 19.71 | 17.14 | 15.13 |
ΔG° c | −27.0 | −22.5 | −27.5 | −21.2 |
Compounds | ΔG° (Y+) a | ΔG≠o (Y+) b |
---|---|---|
AcrH+ | −76.2 | −28.16 |
TEMPO+ | −100.7 | −37.13 |
DMBI | DMIZ | DMPZ | DMPX | |
---|---|---|---|---|
ΔG° (XH) | 49.2 | 53.7 | 73.2 | 79.5 |
ΔG≠XH/X | 35.88 | 42.04 | 35.34 | 25.02 |
ΔG≠° (XH) | 42.54 | 47.87 | 54.27 | 52.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.-Y.; Zhu, X.-Q. Comparison of the Hydride-Donating Ability and Activity of Five- and Six-Membered Benzoheterocyclic Compounds in Acetonitrile. Molecules 2022, 27, 7252. https://doi.org/10.3390/molecules27217252
Zhang J-Y, Zhu X-Q. Comparison of the Hydride-Donating Ability and Activity of Five- and Six-Membered Benzoheterocyclic Compounds in Acetonitrile. Molecules. 2022; 27(21):7252. https://doi.org/10.3390/molecules27217252
Chicago/Turabian StyleZhang, Jin-Ye, and Xiao-Qing Zhu. 2022. "Comparison of the Hydride-Donating Ability and Activity of Five- and Six-Membered Benzoheterocyclic Compounds in Acetonitrile" Molecules 27, no. 21: 7252. https://doi.org/10.3390/molecules27217252
APA StyleZhang, J. -Y., & Zhu, X. -Q. (2022). Comparison of the Hydride-Donating Ability and Activity of Five- and Six-Membered Benzoheterocyclic Compounds in Acetonitrile. Molecules, 27(21), 7252. https://doi.org/10.3390/molecules27217252