The Analytical Strategy of “Ion Induction and Deduction Based on Net-Hubs” for the Comprehensive Characterization of Naringenin Metabolites In Vivo and In Vitro Using a UHPLC-Q-Exactive Orbitrap Mass Spectrometer
Abstract
:1. Introduction
2. Results
2.1. The Establishment of an Analytical Strategy
2.2. The Induction of “DPI Group I”
2.3. The Induction of “DPI Group II” and the Establishment of Related “Net-Hubs”
2.4. The Induction of “DPI Group III” and the Establishment of Other “Net-Hubs”
2.5. The Identification of Naringenin Metabolites
2.5.1. The Identification of Naringenin Metabolites Produced by “Reaction I” (M1–M40)
2.5.2. The Identification of Naringenin Metabolites Produced by “Reaction II” (N1–N24)
2.5.3. Identification of Phenolic Acid Metabolites
2.6. Possible Biotransformation Pathways of Naringenin
3. Discussion
3.1. Naringenin Metabolites In Vivo and In Vitro
3.2. Comparison of the Different Biological Treatment Methods
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. In Vivo Experiment
4.2.1. Animals and Drug Administration
4.2.2. Sample Collection and Preparation
4.3. Experiment In Vitro
4.4. Instruments and Analytical Conditions
4.4.1. UHPLC Parameters
4.4.2. High-Resolution ESI-MS (HRMS) Parameters
4.5. Peak Selections and Data Processing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Schijlen, E.G.; Ric de Vos, C.H.; van Tunen, A.J.; Bovy, A.G. Modification of flavonoid biosynthesis in crop plants. Phytochemistry 2004, 65, 2631–2648. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Aquino, E.; Muriel, P. Beneficial effects of naringenin in liver diseases: Molecular mechanisms. World J. Gastroenterol. 2018, 24, 1679–16707. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Lin, B.; Xie, S.; Yang, W.; Lin, J.; Li, Z.; Zhan, Y.; Gui, S.; Lin, B. Naringenin protects RPE cells from NaIO(3)-induced oxidative damage in vivo and in vitro through up-regulation of SIRT1. Phytomed. Int. J. Phytother. Phytopharm. 2021, 80, 153375. [Google Scholar]
- Memariani, Z.; Abbas, S.Q.; Ul Hassan, S.S.; Ahmadi, A.; Chabra, A. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacol. Res. 2021, 171, 105264. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Lee, D.H.; Jang, H.; Park, S.Y.; Seol, J.W. Naringenin exerts anticancer effects by inducing tumor cell death and inhibiting angiogenesis in malignant melanoma. Int. J. Med. Sci. 2020, 17, 3049–3057. [Google Scholar] [CrossRef]
- Pateliya, B.; Burade, V.; Goswami, S. Combining naringenin and metformin with doxorubicin enhances anticancer activity against triple-negative breast cancer in vitro and in vivo. Eur. J. Pharmacol. 2021, 891, 173725. [Google Scholar] [CrossRef]
- Pinho-Ribeiro, F.A.; Zarpelon, A.C.; Fattori, V.; Manchope, M.F.; Mizokami, S.S.; Casagrande, R.; Verri, W.A., Jr. Naringenin reduces inflammatory pain in mice. Neuropharmacology 2016, 105, 508–519. [Google Scholar] [CrossRef]
- Zeng, W.; Jin, L.; Zhang, F.; Zhang, C.; Liang, W. Naringenin as a potential immunomodulator in therapeutics. Pharmacol. Res. 2018, 135, 122–126. [Google Scholar] [CrossRef]
- Den Hartogh, D.J.; Tsiani, E. Antidiabetic Properties of Naringenin: A Citrus Fruit Polyphenol. Biomolecules 2019, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhao, C.; Yang, M.; Zhang, L.; Wei, R.; Meng, K.; Bao, Y.; Zhang, L.; Zheng, J. Four Citrus Flavanones Exert Atherosclerosis Alleviation Effects in ApoE(-/-) Mice via Different Metabolic and Signaling Pathways. J. Agric. Food Chem. 2021, 69, 5226–5237. [Google Scholar] [CrossRef]
- Heidary Moghaddam, R.; Samimi, Z.; Moradi, S.Z.; Little, P.J.; Xu, S.; Farzaei, M.H. Naringenin and naringin in cardiovascular disease prevention: A preclinical review. Eur. J. Pharmacol. 2020, 887, 173535. [Google Scholar] [CrossRef] [PubMed]
- Abrego-Peredo, A.; Romero-Ramírez, H.; Espinosa, E.; López-Herrera, G.; García-García, F.; Flores-Muñoz, M.; Sandoval-Montes, C.; Rodríguez-Alba, J.C. Naringenin mitigates autoimmune features in lupus-prone mice by modulation of T-cell subsets and cytokines profile. PLoS ONE 2020, 15, e0233138. [Google Scholar] [CrossRef] [PubMed]
- Nouri, Z.; Fakhri, S.; El-Senduny, F.F.; Sanadgol, N.; Abd-ElGhani, G.E.; Farzaei, M.H.; Chen, J.T. On the Neuroprotective Effects of Naringenin: Pharmacological Targets, Signaling Pathways, Molecular Mechanisms, and Clinical Perspective. Biomolecules 2019, 9, 690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebello, C.J.; Greenway, F.L.; Lau, F.H.; Lin, Y.; Stephens, J.M.; Johnson, W.D.; Coulter, A.A. Naringenin Promotes Thermogenic Gene Expression in Human White Adipose Tissue. Obesity 2019, 27, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Tutunchi, H.; Naeini, F.; Ostadrahimi, A.; Hosseinzadeh-Attar, M.J. Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19. Phytother. Res. PTR 2020, 34, 3137–3147. [Google Scholar] [CrossRef]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Kirchmair, J.; Göller, A.H.; Lang, D.; Kunze, J.; Testa, B.; Wilson, I.D.; Glen, R.C.; Schneider, G. Predicting drug metabolism: Experiment and/or computation? Nat. Rev. Drug Discov. 2015, 14, 387–404. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Gao, N.; Tian, X.; Liu, T.; Fang, Y.; Zhou, J.; Wen, Q.; Xu, B.; Qi, B.; Gao, J.; et al. Content and activity of human liver microsomal protein and prediction of individual hepatic clearance in vivo. Sci. Rep. 2015, 5, 17671. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhang, J.; Wang, Y.; Hu, F.; Zhang, Y. Metabolism of vesatolimod in rat, dog, and human liver microsomes: Metabolic stability assessment, metabolite identification, and interspecies comparison. Drug Test. Anal. 2019, 11, 240–249. [Google Scholar] [CrossRef]
- Bai, Y.; Peng, W.; Yang, C.; Zou, W.; Liu, M.; Wu, H.; Fan, L.; Li, P.; Zeng, X.; Su, W. Pharmacokinetics and Metabolism of Naringin and Active Metabolite Naringenin in Rats, Dogs, Humans, and the Differences Between Species. Front. Pharmacol. 2020, 11, 364. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, M.; Sano, A.; Kamei, J.; Obata, A. Identification and quantification of metabolites of orally administered naringenin chalcone in rats. J. Agric. Food Chem. 2009, 57, 6432–6437. [Google Scholar] [CrossRef] [PubMed]
- Dall’Asta, M.; Derlindati, E.; Curella, V.; Mena, P.; Calani, L.; Ray, S.; Zavaroni, I.; Brighenti, F.; Del Rio, D. Effects of naringenin and its phase II metabolites on in vitro human macrophage gene expression. Int. J. Food Sci. Nutr. 2013, 64, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Zhu, M. Applications of mass spectrometry in drug metabolism: 50 years of progress. Drug Metab. Rev. 2015, 47, 71–87. [Google Scholar] [CrossRef]
- Ma, S.; Chowdhury, S.K. Data acquisition and data mining techniques for metabolite identification using LC coupled to high-resolution MS. Bioanalysis 2013, 5, 1285–1297. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Dong, P.; Cui, Y.; Li, H.; Jiang, S.; Wang, Y.; Zhang, J. Comprehensive analysis of dihydromyricetin metabolites in rats using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry. J. Sep. Sci. 2022; in press. [Google Scholar]
- Dong, P.; Shi, L.; Wang, S.; Jiang, S.; Li, H.; Dong, F.; Xu, J.; Dai, L.; Zhang, J. Rapid Profiling and Identification of Vitexin Metabolites in Rat Urine, Plasma and Faeces after Oral Administration Using a UHPLC-Q-Exactive Orbitrap Mass Spectrometer Coupled with Multiple Data-mining Methods. Curr. Drug Metab. 2021, 22, 185–197. [Google Scholar]
- Sun, S.; Xie, Z.S.; Liu, E.H.; Yan, Y.T.; Xu, X.J.; Li, P. Chemical profiling of Jinqi Jiangtang tablets by HPLC-ESI-Q-TOF/MS. Chin. J. Nat. Med. 2014, 12, 229–240. [Google Scholar] [CrossRef]
- Shang, Z.; Xin, Q.; Zhao, W.; Wang, Z.; Li, Q.; Zhang, J.; Cong, W. Rapid profiling and identification of puerarin metabolites in rat urine and plasma after oral administration by UHPLC-LTQ-Orbitrap mass spectrometer. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1068–1069, 80–192. [Google Scholar] [CrossRef]
- Roowi, S.; Mullen, W.; Edwards, C.A.; Crozier, A. Yoghurt impacts on the excretion of phenolic acids derived from colonic breakdown of orange juice flavanones in humans. Mol. Nutr. Food Res. 2009, 53 (Suppl. 1), S68–S75. [Google Scholar] [CrossRef]
- Pereira-Caro, G.; Borges, G.; van der Hooft, J.; Clifford, M.N.; Del Rio, D.; Lean, M.E.; Roberts, S.A.; Kellerhals, M.B.; Crozier, A. Orange juice (poly)phenols are highly bioavailable in humans. Am. J. Clin. Nutr. 2014, 100, 1378–1384. [Google Scholar] [CrossRef] [Green Version]
- Borges, G.; Lean, M.E.; Roberts, S.A.; Crozier, A. Bioavailability of dietary (poly)phenols: A study with ileostomists to discriminate between absorption in small and large intestine. Food Funct. 2013, 4, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, S.A.; Parama, D.; Daimari, E.; Girisa, S.; Banik, K.; Harsha, C.; Dutta, U.; Kunnumakkara, A.B. Rationalizing the therapeutic potential of apigenin against cancer. Life Sci. 2021, 267, 118814. [Google Scholar] [PubMed]
- Ren, B.; Qin, W.; Wu, F.; Wang, S.; Pan, C.; Wang, L.; Zeng, B.; Ma, S.; Liang, J. Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats. Eur. J. Pharmacol. 2016, 773, 13–23. [Google Scholar] [CrossRef]
- Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. J. Nutr. Sci. Vitaminol. 2006, 52, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Li, P.; An, Y.; Ren, J.; Yan, D.; Cui, J.; Li, D.; Li, M.; Wang, M.; Zhong, G. Phloretin ameliorates dextran sulfate sodium-induced ulcerative colitis in mice by regulating the gut microbiota. Pharmacol. Res. 2019, 150, 104489. [Google Scholar] [CrossRef]
- Frankenfeld, C.L. O-desmethylangolensin: The importance of equol’s lesser known cousin to human health. Adv. Nutr. 2011, 2, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Pereira-Caro, G.; Ludwig, I.A.; Polyviou, T.; Malkova, D.; García, A.; Moreno-Rojas, J.M.; Crozier, A. Identification of Plasma and Urinary Metabolites and Catabolites Derived from Orange Juice (Poly)phenols: Analysis by High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry. J. Agric. Food Chem. 2016, 64, 5724–5735. [Google Scholar] [CrossRef] [Green Version]
- Jordan, T.B.; Nichols, D.S.; Kerr, N.I. Selection of SPE cartridge for automated solid-phase extraction of pesticides from water followed by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2009, 394, 2257–2266. [Google Scholar] [CrossRef]
- Ulrich, S. Solid-phase microextraction in biomedical analysis. J. Chromatogr. A 2000, 902, 167–194. [Google Scholar] [CrossRef]
- Shou, W.Z.; Zhang, J. Recent development in high-throughput bioanalytical support for in vitro ADMET profiling. Expert Opin. Drug Metab. Toxicol. 2010, 6, 321–336. [Google Scholar] [CrossRef] [PubMed]
Peak | tR (min) | Formula [M ± H]+ | Ion Mode | Theoretical Mass (m/z) | Experimental Mass (m/z) | Error (ppm) | MS/MS Fragment Ions | P-S | P-M | P-A | U | F | L | LM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M0 * | 13.33 | C15H11O5 | N | 271.06120 | 271.06226 | 3.923 | 271.06 (100), 151.00 (69), 119.05 (40), 107.01 (16), 93.03 (11), 152.01 (3), 120.05 (3) | √ | ||||||
13.31 | C15H13O5 | P | 273.07575 | 273.07599 | 0.879 | 153.02 (100), 273.08 (92), 147.04 (60), 154.02 (7), 148.05 (6), 119.05 (5), 123.04 (4) | √ | √ | √ | |||||
Naringenin Metabolites by “Reaction I” | ||||||||||||||
M1 | 6.20 | C27H27O17 | N | 623.12480 | 623.12726 | 3.029 | 447.09 (100), 113.02 (59), 271.06 (56), 623.13 (25), 151.00 (21), 175.02 (21), 119.05 (6) | √ | ||||||
M2 | 6.8 | C27H27O17 | N | 623.12480 | 623.12744 | 3.318 | 447.09 (100), 271.06 (53), 85.03 (26), 175.02 (20), 151.00 (20), 119.05 (6) | √ | √ | √ | ||||
M3 | 8.39 | C27H27O17 | N | 623.12480 | 623.12756 | 3.511 | 271.06 (100), 151.00 (52), 447.09 (45), 119.05 (16), 175.02 (11), 85.03 (7), 107.01 (3) | √ | √ | |||||
8.35 | C27H29O17 | P | 625.13935 | 625.14093 | 1.607 | 273.08 (100), 153.02 (43), 449.11 (34), 147.04 (28), 171.03 (10), 497.30 (3), | √ | |||||||
M4 | 9.61 | C27H27O17 | N | 623.12480 | 623.12689 | 4.196 | 623.13 (48), 271.06 (19), 151.00 (12), 175.02 (5), 119.05 (3), 447.09 (2), 459.09 (1), 341.73 (0.4) | √ | ||||||
9.56 | C27H29O17 | P | 625.13935 | 625.13953 | −0.633 | 273.08 (100), 153.02 (39), 171.03 (24), 147.04 (15), 431.10 (10), 413.09 (8), 505.08 (0.3), 497.10 (0.2) | √ | |||||||
M5 | 8.23 | C21H19O12 | N | 463.08770 | 463.08948 | 3.95 | 463.09 (100), 151.00 (95), 287.06 (90), 337.04 (45), 175.02 (27), 85.03 (22.42), 271.06 (13), 285.04 (7), 167.00 (6), 141.02 (4), 193.02 (3) | √ | ||||||
M6 | 8.60 | C21H19O12 | N | 463.08770 | 463.08926 | 3.475 | 287.06 (100), 337.04 (79), 463.09 (28), 167.00 (17), 125.02 (15), 175.02 (15), 119.05 (12), 271.06 (11), 235.15 (9), 193.03 (4), 141.02 (2) | √ | ||||||
M7 | 9.57 | C21H19O12 | N | 463.08770 | 463.08838 | 1.575 | 287.06 (100), 151.00 (75), 463.09 (56), 175.02 (26.32), 125.02 (16.63), 285.04 (13), 337.04 (6), 177.02 (5), 193.03 (3), 167.03 (1), 141.02 (1) | √ | ||||||
M8 | 9.72 | C21H19O12 | N | 463.08770 | 463.08896 | 1.445 | 287.06 (100), 463.09 (94), 285.04 (48.97), 151.00 (43), 175.02 (29), 337.04 (28), 119.05 (27), 167.00 (17), 193.01 (2), 141.02 (1) | √ | ||||||
M9 | 7.97 | C21H21O11 | P | 449.10725 | 449.10840 | 1.252 | 273.08 (100), 153.02 (52), 147.04 (21), 413.09 (3), 231.03 (2), 431.09 (1) | √ | √ | |||||
M10 | 9.61 | C21H19O11 | N | 447.09270 | 447.09467 | 3.099 | 271.06 (100), 151.00 (48), 175.02 (37), 447.09 (24), 271.03 (5) | √ | ||||||
9.60 | C21H21O11 | P | 449.10725 | 449.10822 | 0.851 | 273.08 (100), 153.02 (31), 147.04 (22), 154.02 (3), 449.11 (2), 123.04 (2), 255.77 (1) | √ | √ | √ | √ | ||||
M11 | 10.77 | C21H21O11 | P | 449.10725 | 449.10822 | 0.851 | 273.08 (100), 153.02 (54), 147.04 (37), 449.11 (16), 123.04 (2), 179.03 (1), 255.07 (0.4), 231.07 (0.4) | √ | √ | √ | ||||
M12 | 10.75 | C15H11O8S | N | 351.01750 | 351.01852 | 3.012 | 271.06 (100), 351.02 (56), 151.00 (37), 207.14 (24), 119.05 (14), 177.02 (5), 79.96 (3), 107.01 (3), 225.15 (2) | √ | ||||||
10.78 | C15H13O8S | P | 353.03205 | 353.03278 | 0.610 | 273.08 (100), 153.02 (83), 353.03 (77), 147.04 (52), 171.03 (5), 121.10 (2), 335.22 (1), 175.11 (0.5), 203.11 (0.3), 227.00 (0.3) | √ | |||||||
M13 | 11.10 | C15H11O8S | N | 351.01750 | 351.01907 | 3.016 | 271.06 (100), 351.02 (34), 151.00 (28), 177.02 (4), 119.05 (9), 93.03 (4), 107.01 (2) | √ | ||||||
11.14 | C15H13O8S | P | 353.03205 | 353.03268 | 0.327 | 273.08 (100), 353.03 (87), 153.02 (79), 147.04 (52), 335.22 (8), 121.10 (5), 109.10 (5), 317.21 (4), 175.11 (2), 203.14 (1), 191.11 (1), 231.06 (1) | √ | |||||||
M14 | 12.04 | C15H11O8S | N | 351.01750 | 351.01901 | 2.845 | 271.06 (100), 151.00 (34), 351.02 (28), 119.05 (11), 107.01 (5), 93.03 (2), 227.07 (2) | √ | √ | |||||
12.06 | C15H13O8S | P | 353.03205 | 353.03275 | 0.525 | 273.08 (100), 153.02 (87), 353.03 (80), 147.04 (50), 109.10 (11), 121.10 (10), 95.09 (10), 171.03 (8), 335.22 (8), 203.14 (2), 175.11 (2) | √ | |||||||
M15 | 9.58 | C15H11O6 | N | 287.05556 | 287.05692 | 2.817 | 259.06 (100), 125.02 (99), 287.06 (83), 243.07 (19), 151.00 (17), 177.05 (10), 135.04 (4), 109.03 (3) | √ | ||||||
9.55 | C15H13O6 | P | 289.07011 | 289.07101 | 0.345 | 153.02 (100), 215.07 (59), 243.07 (56), 107.05 (53), 289.07 (42), 163.04 (16), 195.03 (10), 167.03 (10) | √ | |||||||
M16 | 9.99 | C15H11O6 | N | 287.05556 | 287.05676 | 2.260 | 287.06 (100), 151.00 (34), 167.00 (26), 119.05 (18), 259.06 (14), 193.68 (3) | √ | ||||||
M17 | 10.38 | C15H11O6 | N | 287.05556 | 287.05698 | 3.026 | 125.020 (100), 287.06 (17), 151.00 (12), 135.04 (10), 161.02 (5), 107.01 (2) | √ | ||||||
10.38 | C15H13O6 | P | 289.07011 | 289.07111 | 0.445 | 153.02 (100), 289.07 (15), 163.04 (1), 161.85 (1) | √ | |||||||
M18 | 11.52 | C15H11O6 | N | 287.05556 | 287.05643 | 1.110 | 151.00 (100), 135.04 (68), 287.06 (20), 107.01 (10), 152.01 (8), 125.02 (4), 65.00 (4), 109.03 (1) | √ | ||||||
11.51 | C15H13O6 | P | 289.07011 | 289.07059 | −0.075 | 289.07 (100), 153.02 (85), 163.04 (79), 179.03 (8), 111.01 (3), 139.04 (2), 151.04 (1), 229.05 (0.4), 137.06 (0.4) | √ | |||||||
M19 | 13.30 | C15H11O6 | N | 287.05556 | 287.05594 | −0.597 | 287.06 (100), 151.00 (99), 177.02 (27), 119.05 (24), 167.00 (21), 107.01 (13), 193.01 (6) | √ | ||||||
M20 | 11.04 | C16H13O5 | N | 285.07630 | 285.07535 | −3.327 | 241.14 (100), 285.13 (57), 179.14 (36), 242.15 (14), 160.04 (6), 97.06 (3), 205.12 (2), 177.13 (2), 83.05 (2), 151.11 (2), 107.05 (0.4) | √ | ||||||
M21 | 14.85 | C16H13O5 | N | 285.07630 | 285.07693 | 2.216 | 160.04 (32), 179.03 (29), 285.08 (28), 253.15 (27), 241.08 (16), 205.03 (7), 83.05 (4) | √ | ||||||
M22 | 6.03 | C27H29O16 | N | 609.14548 | 609.14838 | 3.730 | 343.08 (100), 609.15 (85), 313.07 (61), 519.12 (53)?, 271.06 (16), 591.14 (14), 489.10 (13), 573.13 (11), 119.05 (10), 555.11 (8), 151.00 (8), 433.12 (8), 448.10 (3) | √ | ||||||
6.04 | C27H31O16 | P | 611.16004 | 611.16101 | 0.571 | 436.14 (83), 315.09 (37), 417.12 (18), 285.08 (15), 381.10 (14), 147.04 (10), 399.11 (10), 273.08 (6), 473.11(4) | √ | |||||||
M23 | 6.61 | C27H29O16 | N | 609.14548 | 609.14838 | 3.730 | 609.15 (100), 313.07 (73), 343.08 (44), 489.10 (20), 271.06 (13), 433.12 (12), 151.00 (7), 119.05 (7) | √ | ||||||
6.61 | C27H31O16 | P | 611.16004 | 611.16119 | 0.865 | 315.09 (36), 417.12 (20), 285.08 (17), 436.14 (10), 399.11 (5) | √ | |||||||
M24 | 7.66 | C27H29O16 | N | 609.14548 | 609.14819 | 3.418 | 313.07 (100), 609.15 (97), 489.10 (38), 343.08 (37), 271.06 (12), 433.11 (7), 151.00 (5), 119.05 (5) | √ | ||||||
7.67 | C27H31O16 | P | 611.16004 | 611.16138 | 1.176 | 315.09 (31), 285.08 (18), 417.12 (14), 399.11 (11), 273.08 (8), 147.04 (6) | √ | |||||||
M25 | 6.03 | C21H19O14S | N | 527.04958 | 527.05145 | 2.563 | 271.06 (100), 527.05 (51), 151.00 (35), 447.09 (23), 351.02 (11), 119.05 (7), 175.02 (5), 107.01 (2), 177.02 (2), 227.07 (2) | √ | ||||||
M26 | 6.38 | C21H19O14S | N | 527.04958 | 527.05109 | 1.880 | 271.06 (100), 527.05 (56), 151.00 (34), 447.09 (25), 351.02 (9), 119.05 (7), 175.02 (5), 107.01 (2) | √ | ||||||
M27 | 7.93 | C21H19O14S | N | 527.04958 | 527.05096 | 1.633 | 271.06 (100), 351.02 (73), 527.05 (62), 447.09 (48), 151.00 (26), 175.02 (17), 119.05 (5.88), 177.02 (4), 93.03 (3) | √ | ||||||
M28 | 8.42 | C21H19O14S | N | 527.04958 | 527.05157 | 2.791 | 271.06 (100), 351.02 (63), 527.05 (54), 447.09 (40), 151.00 (25), 175.02 (15), 119.05 (7), 177.02 (3), 107.01 (2) | √ | ||||||
M29 | 9.50 | C21H19O14S | N | 527.04958 | 527.05133 | 2.336 | 271.06 (60), 527.05 (57), 351.02 (175.02 (28 ), 447.09 (21), 151.00 (14), 119.05 (4), 75.01 (3), 177.02 (2), 93.03 (1) | √ | ||||||
M30 | 7.76 | C21H19O15S | N | 543.04448 | 543.04633 | 2.424 | 367.01 (100), 151.00 (87), 287.06 (76), 543.05 (46), 463.09 (38), 175.02 (12), 107.01 (2), 271.06 (1) | √ | ||||||
M31 | 8.25 | C21H19O15S | N | 543.04451 | 543.04584 | 1.522 | 367.01 (81), 151.00 (77), 287.06 (73), 351.02 (44), 463.20 (44), 271.06 (37), 175.02 (28), 368.02 (12), 79.96 (12) | √ | ||||||
M32 | 9.94 | C22H21O12 | N | 477.10328 | 477.10501 | 2.433 | 301.07 (100), 271.06 (70), 151.00 (46), 477.10 (40), 175.02 (27), 399.05 (6), 107.01 (6)177.02 (4), 286.05 (4) | √ | ||||||
9.96 | C22H23O12 | P | 479.11784 | 479.11862 | −1.835 | 303.09 (100), 177.05 (34), 153.02 (31), 179.03 (5), 479.11 (3), 147.04 (3) | √ | |||||||
M33 | 10.34 | C22H21O12 | N | 477.10328 | 477.10489 | 2.181 | 271.06 (85), 301.07 (80), 477.10 (55), 175.02 (22), 151.00 (12), 286.05 (8), 399.05 (7) | √ | ||||||
10.33 | C22H23O12 | P | 479.11784 | 479.11880 | −1.460 | 303.09 (100), 177.05 (55), 153.02 (36), 179.03 (8), 479.12 (3), 154.02 (2), 121.04 (1) | √ | |||||||
M34 | 11.83 | C22H21O11 | N | 461.10838 | 461.11020 | 2.744 | 271.06 (100), 461.11 (33), 151.00 (31), 119.05 (13), 337.04 (10), 285.08 (8), 175.00 (7), 401.09 (5), 93.03 (5), 177.02 (4) | √ | ||||||
M35 | 13.28 | C22H21O11 | N | 461.10838 | 461.11014 | 2.614 | 285.08 (100), 175.02 (21), 461.11 (13), 337.04 (4), 243.07 (4), 271.06 (4), 151.00 (3), 301.07 (1) | √ | ||||||
M36 | 6.06 | C21H21O13S | N | 513.07021 | 513.07202 | 2.311 | 271.06 (100), 513.07 (54), 433.11 (35), 151.00 (30), 177.02 (3), 93.03 (2), 241.00 (2), 227.07 (1) | √ | ||||||
M37 | 6.17 | C21H21O13S | N | 513.07021 | 513.07233 | 2.915 | 271.06 (100), 513.07 (48), 433.11 (32), 151.00 (31), 119.05 (7), 177.02 (3), 241.00 (2), 107.01 (2), 93.03 (2) | √ | ||||||
M38 | 6.50 | C21H21O13S | N | 513.07021 | 513.07178 | 1.843 | 271.06 (100), 513.07 (51), 433.11 (32), 151.00 (31), 177.02 (3), 241.00 (3), 107.01 (2) | √ | ||||||
M39 | 13.56 | C15H11O11S2 | N | 430.97431 | 430.97592 | 2.539 | 271.06 (100), 351.02 (86), 430.20 (15), 151.00 (14), 119.05 (4), 177.02 (2), 243.82)(2) | √ | √ | |||||
M40 | 14.23 | C15H11O11S2 | N | 430.97431 | 430.97586 | 2.400 | 271.06 (100), 351.02 (86), 151.00 (16), 349.00 (4), 177.02 (3), 93.03 (2) | √ | √ | |||||
Naringenin Metabolites by “Reaction II” | ||||||||||||||
N1 | 1.23 | C15H13O5 | N | 273.07685 | 273.07498 | −4.828 | 179.84 (100), 227.07 (36), 273.83 (33), 125.87 (13) | √ | ||||||
N2 | 8.93 | C15H11O5 | P | 271.06005 | 271.06015 | 0.185 | 271.06 (100), 153.02 (7), 215.07 (5), 243.07 (4), 149.02 (2), 253.05 (2), 147.04 (1), 145.03 (1), 119.05 (1) | √ | ||||||
N3 | 12.95 | C15H11O5 | P | 271.06005 | 271.06009 | −0.037 | 273.08 (100), 153.02 (88), 147.04 (51), 177.05 (10), 235.13 (10), 227.11 (10), 93.07 (8), 119.05 (7), 107.05 (6), 171.03 (5) | √ | ||||||
N4 | 13.35 | C15H9O5 | N | 269.04550 | 269.04657 | 3.804 | 151.00 (100), 107.01 (28), 93.03 (26), 65.00 (14), 125.02 (2), 269.05 (2), 117.03 (0.4) | √ | ||||||
13.33 | C15H11O5 | P | 271.06005 | 271.06070 | 2.214 | 153.02 (100), 147.04 (60), 271.06 (12), 119.05 (7), 171.03 (4), 107.05 (2), 151.04 (1) | √ | |||||||
N5 | 11.55 | C15H15O4 | P | 259.09709 | 259.09677 | 1.098 | 149.06 (100), 121.07 (69), 165.05 (21), 137.06 (16), 259.10 (14), 213.09 (9), 122.07 (6), 241.09 (5), 139.06 (4) | √ | ||||||
11.53 | C15H13O4 | N | 257.08254 | 257.08179 | −0.553 | 221.84 (53), 257.08 (32), 135.04 (31), 239.13 (12), 211.13 (6), 151.11 (4) | √ | |||||||
N6 | 5.56 | C27H27O17 | P | 623.12370 | 623.12445 | 0.280 | 271.06 (100), 447.09 (31), 448.09 (6), 299.07 (1), 284.06 (0.5), 328.06 (0.4), 429.08 (0.3) | √ | ||||||
N7 | 5.88 | C14H11O4 | N | 243.06575 | 243.06673 | 1.843 | 243.07 (100), 124.02 (9), 149.02 (7), 225.06 (3), 93.03 (2), 122.89 (2) | √ | ||||||
N8 | 7.09 | C21H21O10 | P | 433.11230 | 433.11313 | −2.055 | 257.08 (100), 123.04 (52), 271.06 (42), 433.28 (38), 163.04 (30), 223.08 (24), 95.05 (6), 124.05 (4), 136.05 (2) | √ | ||||||
N9 | 7.24 | C21H21O10 | P | 433.11230 | 433.11298 | −2.401 | 257.08 (100), 123.04 (54), 163.04 (31), 135.04 (6), 95.05 (6), 137.02 (5), 271.06 (3), 433.11 (2) | √ | ||||||
N10 | 8.06 | C21H21O10 | P | 433.11230 | 433.11334 | −1.570 | 257.08 (100), 123.04 (46), 163.04 (30), 95.05 (6), 135.04 (6), 137.02 (6), 253.14 (3), 209.15(2), 153.02 (1), 271.06 (1) | √ | ||||||
N11 | 13.04 | C21H21O10 | P | 433.11230 | 433.11340 | −1.432 | 257.08 (100), 153.02 (21), 433.11 (2), 215.07 (1), 125.10 (1), 95.09 (0.5), 271.06 (0.3) | √ | ||||||
N12 | 7.38 | C21H17O12 | N | 461.07205 | 461.07431 | 3.819 | 285.04 (100), 461.07 (22), 177.02 (13), 151.00 (6), 175.02 (5), 107.01 (2), 241.05 (1) | √ | √ | |||||
7.38 | C21H19O12 | P | 463.08660 | 463.08768 | 1.247 | 287.06 (100), 269.04 (7), 463.09 (6), 153.02 (3), 241.05 (2), 121.03 (1), 231.06 (1), 259.06 (1) | √ | |||||||
N13 | 7.88 | C16H11O6 | N | 299.05555 | 299.05670 | 1.968 | 163.00 (100), 135.04 (88), 299.06 (19), 281.05 (2), 123.95 (1), 161.84 (1), 93.03 (1) | √ | ||||||
N14 | 12.63 | C16H11O6 | N | 299.05555 | 299.05664 | 1.768 | 163.00 (100), 135.04 (99), 299.06 (23), 119.05 (11), 164.01 (9), 281.05 (1), 93.03 (1) | √ | ||||||
N15 | 8.32 | C21H17O11 | N | 445.07705 | 445.07907 | 3.225 | 269.05 (100), 175.02 (16), 445.08 (11), 151.00 (1), 327.03 (1), 161.51 (1), 119.03 (1) | √ | √ | |||||
8.31 | C21H19O11 | P | 447.09160 | 447.09280 | 1.369 | 271.06 (100), 447.09 (10), 153.02 (5), 147.04 (2), 215.07 (1), 243.06 (1), 161.73 (0.3) | √ | |||||||
N16 | 8.96 | C21H17O11 | N | 445.07705 | 445.07910 | 3.293 | 269.05 (100), 445.08 (25), 175.02 (5), 225.06 (4), 151.00 (4), 311.06 (2) | √ | ||||||
8.92 | C21H19O11 | P | 447.09160 | 447.09216 | −0.062 | 271.06 (100), 447.22 (8), 95.09 (1), 225.11 (1), 215.07 (1), 176.11 (0.5), 253.05 (0.3), 313.07 (0.2), 329.07 (0.1) | √ | |||||||
N17 | 9.47 | C21H17O11 | N | 445.07705 | 445.07919 | 3.495 | 269.05 (100), 175.02 (15), 445.08 (11), 151.00 (2), 338.82 (1), 93.53 (1) | √ | ||||||
9.46 | C21H19O11 | P | 447.09160 | 447.09274 | 1.235 | 271.06 (100), 447.09 (16), 153.02 (2), 147.04 (1) | √ | √ | ||||||
N18 | 11.42 | C16H13O5 | P | 285.07520 | 285.07568 | −0.246 | 285.08 (100), 270.05 (14), 133.09 (6), 225.05 (2), 177.11 (2) | √ | √ | |||||
N19 | 11.53 | C15H9O6 | N | 285.04100 | 285.04153 | 3.749 | 151.00 (100), 135.04 (69), 107.01 (11), 125.02 (4), 285.04 (4), 65.00 (3), 257.05 (1) | √ | ||||||
N20 | 11.74 | C15H9O6 | N | 285.04100 | 285.04105 | 2.065 | 285.04 (100), 151.00 (11), 135.04 (5), 107.01 (2), 241.05 (1) | √ | ||||||
11.72 | C15H11O6 | P | 287.05555 | 287.05530 | 0.285 | 287.05 (100), 153.02 (29), 163.04 (26), 135.04 (3), 179.03 (2), 123.04 (1), 271.06 (1), 151.04 (0.4) | √ | |||||||
N21 | 11.52 | C21H23O10 | P | 435.12918 | 435.12906 | 1.119 | 149.06 (100), 259.10 (82), 121.07 (41), 213.09 (6), 241.09 (4), 271.19 (1), 435.12 (1), 95.09 (1) | √ | √ | |||||
N22 | 9.59 | C15H13O5 | P | 273.07580 | 273.07596 | 0.210 | 153.02 (100), 273.08 (96), 147.04 (50), 154.02 (8), 119.05 (6), 179.03 (2) | √ | ||||||
N23 | 10.79 | C15H13O5 | P | 273.07580 | 273.07596 | 0.210 | 153.02 (100), 273.08 (89), 147.04 (51), 154.02 (8), 119.05 (7), 237.16 (3) | √ | ||||||
N24 | 8.33 | C15H13O5 | P | 273.07580 | 273.07605 | 1.099 | 153.02 (100), 147.04 (57), 154.02 (7), 119.05 (6), 148.05 (6), 179.03 (1), 109.10 (1), 95.09 (1) | √ | ||||||
Phenolic Acid Metabolites | ||||||||||||||
H1 | 7.12 | C9H9O3 | N | 165.05572 | 165.05528 | −2.650 | 147.04 (100), 165.06 (38), 121.03 (36), 119.05 (39), 137.03 (6), 103.92 (6) | √ | √ | √ | √ | |||
7.08 | C9H11O3 | P | 167.07027 | 167.07076 | 2.929 | 139.98 (69), 167.98 (35), 107.09 (27), 109.06 (18), 93.07 (18), 121.07 (15.01), 149.10 (13), 95.05 (12) | √ | |||||||
H2 | 7.46 | C9H9O3 | N | 165.05572 | 165.05525 | −2.832 | 121.06 (100), 119.05 (51), 121.03 (47), 165.05 (24), 147.04 (5), 137.03 (5), 103.92 (4) | √ | √ | √ | √ | |||
7.42 | C9H11O3 | P | 167.07027 | 167.07057 | 1.791 | 120.08 (100), 139.98 (69), 167.98 (41), 107.09 (35), 102.97 (25), 93.07 (22), 109.07 (16.85), 121.07 (16) | √ | |||||||
H3 | 8.46 | C9H9O3 | N | 165.05572 | 165.05527 | −2.711 | 121.06 (100), 165.05 (22), 119.05 (10), 147.04 (10), 93.03 (0.4) | √ | √ | √ | ||||
8.49 | C9H11O3 | P | 167.07027 | 167.07045 | 1.073 | 120.08 (100), 139.98 (60), 167.98 (34), 107.09 (32), 93.07 (20), 167.06 (18), 109.07 (18) | √ | |||||||
H4 | 14.04 | C9H9O3 | N | 165.05572 | 165.05504 | −4.105 | 121.06 (100), 119.05 (63), 165.05 (30), 147.04 (13), 93.03 (4) | √ | √ | √ | ||||
14.03 | C9H11O3 | P | 167.07027 | 167.07040 | 0.774 | 120.08 (100), 139.98 (60), 167.98 (34), 107.09 (32), 93.07 (20), 109.07 (18), 167.06 (17) | √ | |||||||
H5 | 4.85 | C9H8NO3 | N | 178.05097 | 178.05054 | −2.395 | 134.06 (100), 178.05 (65), 160.04 (1), 121.03 (1), 102.03 (1), 77.04 (0.3) | √ | √ | √ | √ | √ | √ | √ |
4.84 | C9H10NO3 | P | 180.06552 | 180.06580 | −4.534 | 105.03 (100), 180.07 (1), 77.04 (1), 162.06 (0.1), 136.02 (0.1), 79.06 (0.1) | √ | √ | √ | √ | √ | √ | √ | |
H6 | 1.10 | C9H9O3 | P | 165.05462 | 165.05482 | 1.208 | 123.04 (100), 119.05 (38), 95.05 (30), 147.04 (18), 103.05 (3), 121.07 (2) | √ | √ | √ | ||||
H7 | 5.73 | C9H9O3 | P | 165.05462 | 165.05495 | 1.995 | 165.05 (100), 137.06 (13), 109.07 (9), 95.05 (6) | √ | √ | |||||
H8 | 9.06 | C9H9O3 | P | 165.05462 | 165.05487 | 1.511 | 165.05 (100), 120.08 (14), 137.06 (13), 109.07 (8), 95.05 (6) | √ | ||||||
H9 | 6.77 | C9H7O3 | N | 163.04007 | 163.03955 | −3.174 | 119.05 (100), 163.04 (13), 118.03 (1), 93.03 (1) | √ | √ | |||||
H10 | 8.15 | C9H7O3 | N | 163.04007 | 163.03954 | −3.235 | 119.05 (100), 163.04 (32), 115.92 (1), 93.03 (1), 135.04 (0.5) | √ | √ | |||||
H11 | 2.97 | C7H5O3 | N | 137.02442 | 137.02374 | −4.943 | 93.03 (100), 137.02 (57), 109.03 (46), 65.01 (9), 119.02 (5) | √ | √ | |||||
H12 | 9.38 | C7H5O3 | N | 137.02442 | 137.02373 | −1.014 | 93.03 (100), 137.02 (36), 109.03 (24), 119.02 (5) | √ | √ | |||||
H13 | 11.78 | C9H9O2 | N | 149.06080 | 149.06003 | −1.506 | 149.06 (100), 121.03 (25), 91.03 (2), 119.05 (2), 105.04 (2) | √ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.-F.; Zhang, W.-W.; Li, Y.-N.; Xu, J.; Lan, X.-M.; Song, S.-Y.; Lin, Y.-Q.; Dai, L.; Zhang, J.-Y. The Analytical Strategy of “Ion Induction and Deduction Based on Net-Hubs” for the Comprehensive Characterization of Naringenin Metabolites In Vivo and In Vitro Using a UHPLC-Q-Exactive Orbitrap Mass Spectrometer. Molecules 2022, 27, 7282. https://doi.org/10.3390/molecules27217282
Cui Y-F, Zhang W-W, Li Y-N, Xu J, Lan X-M, Song S-Y, Lin Y-Q, Dai L, Zhang J-Y. The Analytical Strategy of “Ion Induction and Deduction Based on Net-Hubs” for the Comprehensive Characterization of Naringenin Metabolites In Vivo and In Vitro Using a UHPLC-Q-Exactive Orbitrap Mass Spectrometer. Molecules. 2022; 27(21):7282. https://doi.org/10.3390/molecules27217282
Chicago/Turabian StyleCui, Yi-Fang, Wen-Wen Zhang, Ya-Nan Li, Jing Xu, Xian-Ming Lan, Shu-Yi Song, Yong-Qiang Lin, Long Dai, and Jia-Yu Zhang. 2022. "The Analytical Strategy of “Ion Induction and Deduction Based on Net-Hubs” for the Comprehensive Characterization of Naringenin Metabolites In Vivo and In Vitro Using a UHPLC-Q-Exactive Orbitrap Mass Spectrometer" Molecules 27, no. 21: 7282. https://doi.org/10.3390/molecules27217282
APA StyleCui, Y. -F., Zhang, W. -W., Li, Y. -N., Xu, J., Lan, X. -M., Song, S. -Y., Lin, Y. -Q., Dai, L., & Zhang, J. -Y. (2022). The Analytical Strategy of “Ion Induction and Deduction Based on Net-Hubs” for the Comprehensive Characterization of Naringenin Metabolites In Vivo and In Vitro Using a UHPLC-Q-Exactive Orbitrap Mass Spectrometer. Molecules, 27(21), 7282. https://doi.org/10.3390/molecules27217282